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“Physicist history of physics”, which is never correct. . . . is a sort of convention- 
alized myth ~ story that the physicists tell to their students, and those tell to their 
students, and is not necessarily related to the actual historical development. 
R. P. Feynman, “QED: The strange theory of light and matter”. Princeton Uni- 
versity Press, Princeton, New Jersey 1986 

A brief review of early Russian works on the Green’s functions applications to many 
body theory, particularly for nonequilibrium states and processes, is presented. 
Discussed are some general features and relations of the real-time Nonequilibrium 
Green’s function (NGF) matrices method to some other approaches. 

Application of field theoretical concepts and methods, including Green’s 
functions, to many body problems in the Soviet physics in the 50s and 60s 
of the last century was in the mainstream of the process in world science. 
Because of the iron curtain and the lack of our personal contacts with 
western colleagues, it was impossible for us to participate in international 
meetings and conferences, many of the most important scientific journals 
became available in our institutes and university libraries only with a several 
months delay ~ but this only in Moscow, St. Petersburg (then Leningrad) 
and a few other major cities. And our main journals with a similar delay 
became translated into English and distributed through the world by the 
American Physical Society. 

There were several active theoretical groups in the Soviet Union in that 
period - usually called “schools” - and labeled by the name of their leader: 
L. D. Landau, I. E. Tamm, N. N. Bogolyubov. The most active in quantum 
many body theory was the Landau school. I myself belonged to  the theo- 
retical group of the P. N. Lebedev Institute, and so to the Tamm school. 
However, from the very beginning of my scientific activity I participated 
regularly (like my supervisor V. L. Ginzburg) also in the Landau seminar. 

‘Based on a talk presented at the conference “Progress in Nonequilibrium Green’s Func- 
tions, Dresden, Germany, 19.-22. August 2002” 
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Several of my friends were from the closest L. D. Landau circle. So I shared 
many of their views and preferences. In particular, the fascination by the 
Feynman-Dyson diagram technique (we used the word diagrams instead 
of graphs). Certainly, we knew about its equivalence to  the alternative 
approach due to J. Schwinger. Landau himself was perfect, even a virtu- 
oso in using the whole arsenal of mathematical physics methods, however, 
primarily as a tool for analyzing and solving real physical problems. I sup- 
pose he appreciated the diagram technique - he also used this term - as a 
highly general, regular and logical way, perfectly adapted, besides all that ,  
for describing real physical phenomena and processes. In the whole collec- 
tion of volumes of the famous Landau and Lifshits course of Theoretical 
Physics just that  approach is used to present both - quantum field theory 
and quantum many body theory, as in the books ’ and as well. For me, 
as probably for many others, the diagram technique is more than just a 
method for doing calculations. Because of its symbolical but very spec- 
tacular presentation in terms of graphs it is more like the way of thinking 
about physical processes and theoretical approximations. 

This rather personal remark is meant to say that the following consid- 
erations should not be regarded as a comprehensive review of the subject. 
Inevitably I shall speak mainly about the activity related to the diagram 
technique in many body theory, which I knew better. Some alternative ap- 
proaches, including the one based on Bogolyubov’s idea of decoupling the 
infinite set of equations for GF’s of successively increasing particle num- 
ber by approximating higher order GF’s in terms of those of lower order, 
were reviewed in 3 - 7 .  Also, as our Workshop is about the NGF’s, only 
a very short list of some previous works on the many body ground state 
and the thermodynamic equilibrium state (Matsubara) GF’s is presented 
below (and only Soviet ~ the Western, I suppose, are known much better). 
I mainly intend to give an impression of the starting level at the beginning 
of 1960’s. 

Probably the first paper on GF’s in many body systems in Russian jour- 
nals was that of Bonch-Bruevich 7, discussing the general concept of G F  
in the ground state, including the relation of the zeros of G-’ (p, E )  to the 
particle energy levels. The systematic studies of the interacting electron- 
phonon system in metals at T = 0 in terms of GF’s was started by Migdal 
and Galitskii *7’  resulting, in particular, in the Migdal theorem about the 
absence of the coupling constant renormalization by the e-ph interaction. 
Galitskii lo calculated also the energy spectrum and ground state energy 
of a low density degenerate Fermi gas with short range interaction. Essen- 
tial was the work of Belyaev ’’ who has modified the standard diagram 
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technique in order to describe degenerate systems of bosons. Here for the 
first time “anomalous” GF’s were introduced, accounting for the macro- 
scopic coherency in the system. Similar pair coherency functions for Fermi 
systems, introduced by Gor’kov 12,  became crucial for describing super- 
conductivity within the diagram technique. Using this Gor’kov’s technique 
Abrikosov, Gor’kov, and Khalatnikov were able to develop a theory for 
the majority of superconductivity related phenomena, including the elec- 
tromagnetic response ‘ 1 1 3 .  Important for the whole quantum many body 
theory is the result of Landau himself about the analytical properties of 
GF’s in the complex frequency plane, including spectral representations, 
valid for any system in thermodynamic equilibrium 14. He has applied also 
the diagram technique to justify his Fermi liquid theory and clarify the mi- 
croscopic nature of its basic notions, including the quasiparticle scattering 
amplitude 15. 

In the following year (1959) the breakthrough occured in the theory of 
Matsubara’s (temperature) GF’s. Abrikosov, Gor’kov, and Dzyaloshinskii 
l6 and Fradkin l7 derived the periodic boundary conditions and were able to 
introduce the Fourier representation in terms of discrete frequencies, which 
has made the diagram technique on the imaginary time (temperature) axis 
an effective tool for calculating any thermodynamic equilibrium parameter 
of many body systems. These authors have also pointed out the possibility 
of finding the real time GF’s under thermodynamic equilibrium conditions 
by means of analytical continuation from the discrete set of Matsubara 
frequencies to the real frequency axis. In all the above mentioned papers 
mainly the Feynman causal function G, (2, 2’) was discussed, as the stan- 
dard diagram technique exists just for this function. In the same year Bo- 
golyubov and Tyablikov ’* discussed the possibility of describing the many 
body system in terms of retarded G(‘) (z, z’) and advanced G(a) (z, z‘) func- 
tions, using the infinite hierarchy of coupled equations for the GF’s with 
increasing number of particles. 

In the beginning of 1960’s the interest in the field shifted to kinetic 
(transport) phenomena. Initially the focus was on linear response. In clas- 
sical many body theory kinetics is described usually in the framework of 
Boltzmann’s equation for the particle distribution function in the phase 
space. In quantum theory the description is based on evolution of the 
density matrix according to the Schrodinger equation. The closest quan- 
tum analogue to the distribution function is the density matrix in the so 
called Wigner representation. Under quasiclassical conditions the Wigner 
density matrix can be reduced to the classical distribution function and, 
corresponding quantum equation, to the usual Boltzmann equation. This 
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is the standard way of introducing quantum corrections to  the Boltzmann 
equation (see e.g. 19). Real time GF’s are a kind of generalization of the 
density matrix, reducing to the latter at coinciding time arguments. So, 
already in the relation of the two-particle GF and the Bethe-Salpeter 
equation to the linearized (weak field) Boltzmann equation was indicated. 
The next important step in that direction was done by Konstantinov and 
Perel’ ‘ O .  Expressing the linear correction to  the single-particle density ma- 
trix in terms of the retarded density-density correlator and introducing for 
its calculation some special version of the diagram technique on the complex 
time contour they were able to derive the generalized Boltzmann equation, 
capable in principle to account for quantum corrections up to  any desired 
order in the interaction. Another approach to the same linear response 
problem was based on the analytic continuation of Matsubara’s GF’s onto 
the real frequency axis as suggested in 16J7. Formally the response function 
is the retarded self-energy of the field propagator in the medium. Eliash- 
berg 21i22 under quasiclassical conditions - external field, slowly varying in 
space and time - analyzed the analytical structure of the two particle scat- 
tering vertex in the complex frequency plane and so was able to continue 
the Bethe-Salpeter type equation to real frequencies, resulting in the gen- 
eralized quantum Boltzmann equation for the Fermi liquid. Later Gor’kov 
and Eliashberg 2 3 1 2 4  extended that method to the nonlinear regime for the 
particular case of superconductors in strong space-time dependent fields. 
Dzyaloshinskii 25 has found a regular way of continuing each Matsubara- 
Feynman graph to the real frequency in terms of spectral functions. Graphs 
become different depending on the time sequence ordering of different inter- 
action vertices, resulting in an exponential increase of the number of graphs 
in higher orders of the perturbation theory. Generally the linear response 
problem was solved by these works. 

My interest in the NGFs problem started in the very beginning of 1964 
and was motivated purely aesthetically. The Feynman graph technique 
seemed to  me so natural and logical that it was hard to believe that its 
applicability is restricted to an important but very special class of states 
- ground state or thermodynamic equilibrium. So the program was most 
simple and straightforward: to follow step by step the original Feynman- 
Dyson derivation, checking at what step it becomes invalid for an arbitrary 
state and then trying to overcome the arising difficulties, staying as close 
as possible to the original formulation. The first evident difference is that 
an arbitrary state of a many body system is described in terms of the 
density matrix ,3 while it was a pure ground state (vacuum) (0) in the 
original procedure. However the time evolution for both is defined by the 



8 

Schrodinger equation, which for the density matrix is 

.a@ 
at 2- = [fi,@] fi = fir&) + f i i n t  

Unlike the original case, f i 0  may be time dependent because of the presence 
of external fields. That, however, did not create any essential difficulties. 
Following the usual procedure of adiabatic switching of the interaction (not 
external fields, which are switched on realistically, not adiabatically!), in the 
interaction representation one gets 

@(t)  = S( t ,  -m)@(-m)St(t, -m) 

instead of usual 9(t) = S( t , -oo )Qo ,  with the standard definition of the 
S-matrix 

Here, T is the usual time ordering operator along the integration path 
in the direction of integration, i.e. from lower to the upper limit. The 
average value of any physical quantity operator 2o(t) (in the interaction 
representation) is then 

L(t)  = Tr { i o ( t ) @ ( t ) }  = Tr { sy t ,  -m)io(t)S(t ,  -m)@(-m)} (1) 

(cyclic permutation under the Tr symbol is used). This formula means the 
transition to the Heisenberg representation of time-dependent operators 
averaged over a time-independent density matrix of non-interacting fields 
(because of adiabatic switching of the interaction). In the absence of inter- 
action and external fields the density matrix was taken to be b(-m) = GOT 

- corresponding to the thermodynamic equilibrium for free particles. 
At the next step the original procedure breaks down. This step for the 

vacuum (ground) state usually is substituting S(m, t )  instead of St(,, -m), 
justified by the so called “vacuum stability condition”, which reads as: un- 
der adiabatic transformation the non-degenerate ground state can trans- 
form only into itself, possibly multiplied by an (unessential) phase factor. 
Then 

St@, -00) = S(-00, t )  = S(-m, t )S( t ,  m)S(oo,t) = S(-m, m)S(m, t ) .  
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Acting on the vacuum, the first factor on the r.h.s. of this relation is exactly 

the inverse of that phase factor - a c-number (S),’ = (0 IS(co, --03)10) . 
So the well-known formula appears 

-1 

L(t)  = (S),l . (0 p ($00, - 0 O ) .  Lo(t))  10).  

However, for an arbitrary non-equilibrium state created by an external 
(possibly time-dependent) field, the stability condition cannot be generally 
valid. So one is forced to proceed with the unchanged formula (1). But 
then the contour ordering comes automatically. Accounting for the opposite 
time ordering in S and S t  the formula (1) can be written as 

where, C is the contour propagating from -00 to time t and then back to 
-00, Tc is ordering operator and SC - the S-matrix along this contour. 
If not under the time ordering symbol together with some other operator 
&,(t), then Sc = 1, which means identical absence of all vacuum loops in 
this technique*. In order to extend all the integrals over the whole time 
axis, one can insert into (2) one more factor - the operator identically 
equal to unity - S(t,co)S(m,t). It does not change anything. However, 
the contour C propagates now from --co to 00 and back to -00, which 
is much more convenient. It should be noted that both branches of the 
contour propagate along the real time axis. Any references to the complex 
time plane were eliminated from this consideration because of usually non- 
analytical time dependence of external fields (switching). Formulas similar 
to (2) hold for averaged products of any number of operators, including 
field operators related, in general, to  different times. These are real time 
NGF’s. Depending on the positions of the times on different branches of the 
contour they correspond to different time ordering of operators, as times 
on the reverse branch are oppositely ordered and are always “later” than 
any time on the direct branch; e.g. for the single particle G F  four different 
functions exist: 

*Strictly speaking the contour is optional in this derivation. As Pitaevskii has shown, 
presenting this technique in the volume “Physical Kinetics” of the Landau and Lifshits 
course on Theoretical Physics, one can get all the same results, considering a perturbation 
series directly in formula (1) and taking into account opposite ordering in S and St. Then 
these two factors play the role of two contour branches. The contour, however, seems 
more spectacular. 
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Here ? is the reverse time ordering operator, and (...)OT denotes averaging 
over POT.  Together these four functions compose into the single contour 
ordered GF  G c ( z , ~ ‘ ) .  

Now, evidently, the usual diagram technique follows from perturbative 
representation of (2) and all Feynman rules are valid with only one ex- 
ception: GF’s are defined along the whole contour and all time integrals 
become extended along the whole contour. We can consider f indices of the 
contour branches as matrix indices. Then the 4 GF’s (3) are components of 
a 2 x 2 matrix and multiplication of those matrices accounts for summing 
up contributions of different contour branches. All time integrals extend 
only along one real time axis from -00 to 00. However, those correspond- 
ing to  the matrix index “-”, should be taken with a “-” sign to account 
for the reverse direction of integration. Now the difference to  the usual 
Feynman diagram technique is that to  each line of the graph corresponds 
the GF’s matrix (3) and to connect 3 or 4 such matrices in each interaction 
point, the elementary vertex T& or y$ is introduced being equal to  +1, if 
all indices are +, -1, if all indices are -, and 0 otherwise. Similar contour 
ordered GF matrices were used also by J. Schwinger in his earlier paper 26 

about the Brownian motion of the harmonic quantum oscillator driven by 
two external forces - one regular (arbitrary function of time) and another, 
stochastic, defined in terms of its correlators ( LLtherm~~ta t l ’ ) .  

Starting from that point the contour may be forgotten: the whole in- 
formation, which it carried, is now accounted for by the structure of G F  
matrices. Only one real physical time remains, propagating from --oo to  00. 
Moreover, matrices themselves may be transformed by any canonical trans- 
formation, resulting in another equivalent description of the same system. 
Then the matrix indices cease to be related to contour branches. Therefore 
instead o f f  indices usual 1,2 should be used. The canonical transformation 
freedom can be used to reduce the number of acting GFs, as only two of 
them are linearly independent. In particular, the simple transformation was 
found transforming (3) into the usually called “triangular” representation 
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Here, the retarded Gg)(z, x') and advanced GP)(z, d) GF's are defined as 

Gr ) ( z ,  d) = -i @(t - t ' )  T ) ~ ( X ) ,  $b(d)] ) = [Gg)(z', z)] * 
T- OT 

and 

with the upper sign for Bosons and the lower for Fermions. In these for- 
mulae, $0 (.) denotes the field operators in the interaction representation, 

[$O(.),$iC.')]* = $0(4$b(Z') zk &')$0(4.  

The triangular representation has a few evident advantages. It is min- 
imal - the number of nonzero matrix elements cannot be reduced further 
by canonical transformation. 

(1) It is explicitly time symmetric (like Feynman's Gcausal in vacuum) 
- retarded and advanced functions enter symmetrically. This is 
despite the existence of the time arrow, which is accounted for by 
the relative positions of elements of the GF matrix. 

(2) It is symmetric in emission and absorption processes. For fermions 
it is explicitly "charge symmetric", i.e. (anti)symmetric in electrons 
and holes - iFo(p,t' = t )  = (1 - 2n,) is positive for empty states 
and negative for occupied. 

(3) The functions G('3a) ( 2 , ~ ' )  satisfy the universal initial condition 

G('ia)(z,z')ltt=t = +5(r - r') 

even after complete renormalization, then they are defined in terms 
of Heisenberg operators. The renormalized function F at coincident 
time arguments reduces to  the single particle density matrix 

i F ( z ,  d ) l t /= t  = S(r - r') f 2p(r,r'; t ) .  

In that sense one can say, that F ( z , d )  is the generalized distribution 
function while G('>") (z, 2') describe essentially the renormalized particle 
dynamics. After renormalization the GF matrix is defined by the matrix 
Dyson equation 

G(z, d) = Go(%,  z') + 

G(')(z, d) = Gg)(z, 2') + 

G o ( % ,  y)2(y, y')G(y', z')dydy' 

Gg)(z, y>C,(y, y')G(')(g', ~ ' ) d y d y '  

ss 
which in triangular representation reduces to two equations 
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and 

Note that the self energy matrix 9 is defined in terms of GF 
matrices as the sum of all exactly the same graphs as in the 
vacuum field theory or the ground state many body theory. 

In the triangular representation 

Those were the main results in 27 ,  published in 1964. 
In the year 1999, G. Baym in his talk at the opening session of the Con- 

ference “Kadanoff-Baym Equations - Progress and Perspectives for Many- 
body Physics” in my absence mentioned that paper. “The method” (round 
trip contour. L.K.) “was then used by Leonid Keldysh in the Soviet Union, 
described first in his 1964 paper 27. Our book was translated into Russian 
in the same year 28 but Keldysh did not refer to i t . .  . ” t .  Evidently, such a 
sentence is intended to  create the impression that some method and may 
be also results of 27 were adopted from 28.  This statement, extremely un- 
friendly, being published in 29 needs a reply, especially now, after 38 years, 
when hardly anybody would check carefully, what was really written in 

tTo be correct that  whole text (pp. 28-29) is reproduced below, except for a few lines 
about J. Schwinger’s style: 

“A crucial ingredient in the derivation of Boltzmann equations was the use of Green’s 
functions defined on the round-trip contour along the real axis. The method was invented 
by Schwinger and presented in his lectures on Brownian motion at the Brandeis summer 
school in 1960, where I became familiar with it. Although the lectures were unpublished, 
Schwinger did write up his ideas in his paper Brownian motion of a Quantum Oscillator. 

The round trip technique was also employed in the context of quantum electrodynamics 
in 1961-62 by Kalayana T .  Mahanthappa, a fellow Schwinger graduate student at Harvard 
and Pradip Bakshi, a slightly later student of Schwinger’s. Actually, Robert Mills (of 
Yang-Mills), while at  the University of Birmingham in 1962, wrote but did not publish 
a lovely set of notes on round-trip Greens functions techniques, which formed the basis 
for his later book. He refers in these notes to  Schwinger’s 1961 paper and remarks 
that,  ‘The present work, some of which has, I believe, been duplicated independently 
by Baym and Kadanoff, following the methods of Martin and Schwinger, makes use of 
the thermodynamic Wick’s theorem of Matsubara and Thouless, and others, with the 
integration contour in the complex time plane distorted to  include the real axes.’ The 
method then was used by Leonid Keldysh in the Soviet Union, described first in his 1964 
paper. Our book was translated into Russian in the same year, but Keldysh did not 
refer to  it, writing rather, ‘Our diagram technique will be close to  Mills’ technique for 
equilibrium systems’, citing Mills’ notes. Schwinger’s influence was widely felt.” 
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so old papers. First of all, on the last page of the Russian edition of 28 

among other typographical information two dates are indicated: “submit- 
ted for production 04.07.1964” and “signed for printing 05.10.1964” (still 
not printed). The paper 27 was published in the October 1964 issue of 
JETP and was submitted in April 1964. It is hard to imagine how I could 
refer to this translated version. Sure, however, all that about that Russian 
edition does not matter. The original version of 28 was published two years 
earlier and, if it in fact contained all or important parts of the results of 
27,  then 27 would be deprived of any significance, no matter have I seen 28 

or not. Therefore, one should look what is the overlap, if any, of 27 and 
28.  That corresponds more closely to the subject of our Workshop - about 
NGF’s. So about the method. I was following, as explained above, the 
standard Feynman-Dyson method with perturbative expansion, S-matrix, 
time ordering etc. The authors of 28 used directly Heisenberg’s equations of 
motion, which the authors themselves oppose to “... an alternative scheme, 
based upon an expansion of G in a power series. . . ” (Ref. 28 p. 191, and fur- 
ther about perturbative series, but only equilibrium Matsubara’s.). More 
important, however, is that their method is based completely on the ana- 
lytic continuation of Matsubara’s equations from the imaginary time axis 
to the real one, while in 27 all the derivation is done on the real time axis 
in order to get results applicable to experimentally realistic external fields, 
which are always exactly zero before some switch-on time. So it was im- 
possible for me to use any detail of the method of 28. However, may be 
speaking about “the method” G. Baym meant contour ordering and 2 x 2 
GF  matrices. In that case the story becomes even more amusing. There 
is no contour ordering, no 2 x 2 GF matrices and even no reference (!) to 
Schwinger’s paper 26 or to  his 1960 lectures in the book 28 ,  neither in text 
nor in the reference list. In the year 1999, G. Baym considers Schwinger’s 
idea about GFs contour orderingt as “The crucial ingredient in the deriva- 

$The crucial step is just the contour ordering of GF’s. Not the contour itself, which 
was used already in Ref. 20. To map two time arguments of GF each onto one of 
contour branches and later to arrange them into a 2 X 2 matrix, at least 4 functions 
are necessary, as it was done in both 26 and ”. No matter that only 2 functions are 
linearly independent ~ one needs to know which place should be ascribed to each of the 
linear combinations. That could not be done, and was not done, in 28 operating with 
only two functions - G> and G<.  The Fig. 5 in 29 , p. 26 illustrates well “the method” 
of G. Baym. It is announced as “The succession of contours in deriving the generalized 
Boltzmann equation”. Plots a) and b) with all integrals along the Matsubara’s imaginary 
time segment correspond indeed to the procedure, described in 2 8 .  Then in the plot 
c) the deformation to the “real time round trip contour” is presented. But there is 
nothing like that in ’*. Any idea about the contour, even the word “contour” is absent. 
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tion of Boltzmann equation.. .”. However, in the year 1962, two years after 
his listening to Schwinger’s lectures and a year after publishing 2 6 ,  he con- 
sidered it as not worth mentioning in the book entitled Quantum Statistical 
Mechanics. 

The major difference between the Kadanoff-Baym equations 28 and the 
matrix Dyson equation derived in 27 is the algorithm of self energy cal- 
culation in terms of GF’s. In 27 it is the standard and absolutely regular 
Feynman diagram technique with GF  matrices. In 28, self energies are 
defined as two analytic components of Matsubara’s self energy in the com- 
plex time plane, used, however, on the real time axis. No other regular 
algorithm of self energy calculation is presented. So, strictly speaking, cor- 
responding to  that definition procedure must be the analytic continuation 
of Matsubara’s self energy functions from the imaginary time axis to  the 
real times for solving Kadanoff-Baym equations and then analytic continu- 
ation of GF’s from the real time axis to imaginary times for calculating self 
energies. In terms of analytic functions G< and G> each of Matsubara’s 
graphs of the n-th order transforms into - n! graphs, differing by the time 
sequence of different interaction vertices. That makes the perturbation the- 
ory much more cumbersome, much like the old Schrodinger perturbation 
theory, strictly speaking non-renormalizable. Probably that is the reason 
why in 28 self energies are calculated only up to  the second order in the in- 
teraction. Calculation in this approximation does not contain time integrals 
- self energies are proportional to GF products and do not need separate 
analytic continuation. The only attempt to go beyond that approximation 
and introduce the scattering amplitude instead of the interaction potential 
(chapter 13) is restricted to the equilibrium case. Sure, now there exists the 
possibility to  calculate self energies directly on the real time axis - in terms 
of real time GF matrices, which calculates the whole 2-matrix including 
C< and C>.  However, there was nothing like that in the book 28. 

To summarize that part of my talk, I believe that the paper ” solved 
that problem which was announced in the title of that article: “Diagram 
Technique for Nonequilibrium Processes”, which is applicable also to many 
body systems in equilibrium or in the ground state. And nothing of the 
methods developed in 28 was used.§ 

Equations (8-27) - the Kadanoff-Baym equations - contain usual (not contour) integrals 
along the real time axis. All integrals in the preceding formula are along imaginary 
Matsubara’s segment. Analytic continuation is made without any contour. Performing 
an analytic continuation does not require the contour. Using the contour does not require 
the analytic continuation, as it was done in both 26 and 27.  

§As the only overlap of 27 and 28 one may regard the derivation of the Boltzmann 
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Another old problem, only mentioned in my paper is that of initial con- 
ditions, i.e. the description of a many body system, which at some fixed 
time t o  was in some arbitrary fixed state i o .  I shall say only a few words 
about some early papers in that direction. To my knowledge the first so- 
lution was presented by Hall 30. He has shown that the diagram technique 
becomes modified by including new elements ~ all the initial correlators 
contained in i30 , become build in graphs as independent (multi-particle) 
vertexes. Hall’s technique was essentially developed by Kukharenko and 
Tikhodeev 31 by a renormalization procedure accounting for the decay of 
initial correlations and slow time evolution of basic parameters, like distri- 
bution functions and its higher self correlators, from their initial values at to 
to following current time t ,  and so derived generalized Boltzmann equation 
and a set of transport equations for fluctuation correlations. 

My point of view is that in many, may be the majority, realistic cases 
initial conditions result from some evolution or external conditions, which 
both - prehistory and external conditions - can, or should, be included in 
the consideration, reducing the problem to the evolution from the far past, 
which is already forgotten. Indeed, as Fanchenko 32 has shown, the prob- 
lem of arbitrary initial conditions can be always reduced to the evolution, 
starting from equilibrium at t + --co by including in the Hamiltonian some 
perturbation I?, resulting in the evolution from ~ O T  at t + --co to  60 at 
t = t o .  So the problem reduces to the diagram technique in terms of usual 
GF  matrices, with substitution, however, of complicated vertices from I?’ 
instead of initial correlation blocks of Hall’s technique. In physically real- 
istic cases &’ hardly can be very complicated. 
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