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Abstract. This set of lectures describes the physics of moment foonatihe basic physics of the
Kondo effect and the development of a coherent heavy eledtril in the dense Kondo lattice. The
last lecture discusses the open problem of quantum citti¢galheavy electron systems.
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1. LOCAL MOMENT FORMATION

1.1. Introduction

The last two decades have seen a growth of interest in “diraogrelated electron
systems”: materials where the electron interaction ersrdominate the electron kinetic
energies, becoming so large that they qualitatively ti@mnsthe physics of the medium.
[

Examples of strongly correlated systems include

« Cuprate superconductorf, [5] where interactions amomgstrens in localized 3d-
shells form an antiferromagnetic Mott insulator, which eleyps high temperature
superconductivity when doped.

« Heavy electron compounds, where localized magnetic masrfenined by rare
earth or actinide ions transform the metal in which they armersed, generating
quasiparticles with masses in excess of 1000 bare electasses[]1]

« Fractional Quantum Hall systems, where the interactiotwdxn electrons in the
lowest Landau level of a semi-conductor heterojunctionegate a new electron
fluid, described by the Laughlin ground-state, with quasdifractional Hall con-
stant and quasiparticles with fractional charge and sicgiq42]

+ “Quantum Dots”, which are tiny pools of electrons in semigdoctors that act as
artificial atoms. As the gate voltage is changed, the Coulosplilsion between
electrons in the dot leads to the so-called “Coulomb Bloekadthereby electrons
can be added one by one to the quantum dpt. [3]

Strongly interacting materials develop “emergent” praoisr properties which re-
quire a new languagé[4] and new intellectual building b&&dr their understanding.
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FIGURE 1. Depicting localized 4, 5f and 31 atomic wavefunctions.

This chapter will illustrate and discuss one area of strpegtrelated electron physics
in which localized magnetic moments form the basic drivioigé of strong correlation.
When electrons localize, they can form objects whose lowggnexcitations involve
spin degrees of moment. In the simplest case, such “lochlizggnetic moments” are
represented by a single, neutral spin operator

~ h.,

S= 20
whered denotes the Pauli matrices of the localized electron. libedlmoments de-
velop within highly localized atomic wavefunctions. The sheeverely localized wave-
functions in nature occur inside the partially filled 4hell of rare earth compounds
(Fig. ) such as ceriunC) or Ytterbium {¥ b). Local moment formation also occurs
in the localized 5 levels of actinide atoms as uranium and the slightly more gt
ized 3 levels of first row transition metals(Fif. 1). Localized memis are the origin
of magnetism in insulators, and in metals their interactatn the mobile charge car-
riers profoundly changes the nature of the metallic staaeavinechanism known as the
“Kondo effect”.

In the past decade, the physics of local moment formationales reappeared in

connection with quantum dots, where it gives rise to the @il blockade phenomenon
and the non-equilibrium Kondo effect.



1.2. Anderson’s Model of Local Moment Formation

Though the concept of localized moments was employed inghHiest applications of
quantum theory to condensed mdftex theoretical understanding of theechanisnof
moment formation did not develop until the early sixties gntexperimentalists began
to systematically study impurities in metdls.

In the early 1960s, Clogston, Mathias and collaborafprskigiwed that when small
concentrations; of magnetic ions, such as iron are added to a metallic hastdavelop
a Curie component to the magnetic susceptibilty

MZ

=Nigp M? = g5HgI(I +1), ()

X
indicating the formation of a local moment. However, thealonoment does not always
develop, depending on the metallic host in which the magnen was embedded.
For example, iron dissolved at 1% concentration in pMkedoes not develop a local
moment, but in the alloyNb, ,Moy a local moment develops for > 0.4, rising to
2.21g abovex = 0.9. What is the underlying physics behind this phenomenon?

Anderson[B] was the first to identify interactions betweecalized electrons as the
driving force for local moment formation. Earlier work byi€del[9] and Blandir[10]
had already identified part of the essential physics of looainents with the develop-
ment of resonant bound-states. Anderson now includediictiens to this picture. Much
of the basic physics can be understood by considering aatézbatom with a localized
S= 1/2 atomic state which we shall refer to as a localized “d-stadteisolation, the
atomic bound state is stable and can be modeled in terms nfkedevel of energy,
and a Coulomb interaction

U =3 [ a0l wRPuE)R @)

whereV (X —X) = €2 /411e,|X — x| is the Coulomb potential.
The Anderson model for a localized impurity atom is given by

H

atomic

—
H =Hc+Hp+Hq+Hy (3)

whereH, = E; 5 5y, describes an isolated atomic d-state of endfgyand occu-
pancyny, in the “up” and “down” stateH; = UﬁdTﬁOI l is the inter-atomic interaction

1 Landau and Néel invoked the notion of the localized momerhéir 1932 papers on antiferromag-
netism, and in 1933, Kramers used this idea again in his yhafanagnetic superexchange.

2 It was not until the sixties that materials physicist cowdtrol the concentration of magnetic impurities
in the parts per million range required for the study of indiial impurities. Such control of purity evolved
during the 1950s, with the development of new techniquedet:for semiconductor physics, such as zone
refining.



between the up and down d-electrons. The term

_ t
He = ZSRC RGCRO
describes the dispersion of electrons in the conductionndgeh surrounds the ion,

Wherech creates an electron of momentdmspln o and energye,. When the ion
is embedded within a metal, the energy of the d-state is c&gtmwnh band-electron

states, and the term :
O

describes the hybridization that then takes place with dmelaction electron sea, where
d', describes the creation of a d-electron. The matrix elemétheionic potential
between a plane wave conduction state and the d-orbital is

H

Y, = (kolVjd'o’) = [ dre ¥ (1)9i(7) 8- @

where () is the wavefunction of the localized orbital ang,(r) is the ionic poten-
tial. This matrix element will have the same symmetry asalealized orbital- a matter of
some importance for real d-states, or f-st§tesowever, for the discussion that follows,

the detaileck dependence of this object can essentially be ignored .
Let us first focus on the atomic part of H,

Hatomic=Hg +Hy = Ey Z I’A]da +U NgtNg) -
o]

The four states of this ion are

|d§> E(di) =2E,+U
|d°) E(d”) =0 (6)
dt 1) |d*t]) E(d') =Ey.

To obtain a magnetic doublet as the ground-state, the ¢éxcitanergies out of the
doublet state must be greater than zero, i.e
E(d®) -E(@)=E;+U>0 = E +U/2>-U/2
Ed)-EdH)=-E;>0 = U/2>E,+U/2 (7)

so that for
U/2>|E;+U/2,

3 A direct calculation shows that
V(K) :4m*'/r2drj|(kr)V(r)Rr(r) (1=2) )

is the overlap of the radial wavefunctioRs (r) of the d-state and the= 2 partial wave state of the
conduction electron, with the ionic potential.
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FIGURE 2. Phase diagram for Anderson Impurity Model in the Atomic Ltimi

the isolated ion has a doubly degenerate magnetic groatel-sis illustrated ifj 2. We
see that provided the Coulomb interactidnis large enough compared with the level
spacing, the ground-state of the ion becomes magnetic. -Eixeithtion spectrum of the
ion will involve two sharp levels, one at energy, the other at energl +U .

Suppose this ion is embedded in a metal: the free electrotincom is then pulled
downwards by the work function of the metal so that now thewl energy is degen-
erate with conduction electron energy levels. In this situtawe expect the d-level to
hybridize with the conduction electron states, broadetiiegsharp d-level into a reso-
nance with a width = A(E;), whereA(¢g) is given by Fermi's Golden Rule.

Afg) =) V(K)[23(g, — ) = MN(e)V2(e) (8)
k

whereN(¢g) = zRé(e_k, — £) is the electron density of states (per spin). In the disomssi

that follows, let us assume that over the energy width of #somanceV (¢) and
N(g) ~ N(0) are essentially constant.

When this hybridization is small compared with we expect the ground-states of
the ion to be essentially that of the atomic limit. For weateraction strengtiJ the
hybridization with the conduction sea will produce a singlkeesonance of widti
centered arouné,. In Anderson’s model for moment formation, when> Uc ~ 1A
the single resonance splits into two, so that for ladge- U, there are two d-resonances
centered aroundt; and E; + U, as shown in Fig[]3. To illustrate the calculations
that lead to this conclusion, let us use a Feynman diagranoagpip. We shall treat
H, = Hix +Hy as a perturbation to the non-interacting part of the Hamiéo to be
H =H,+H,. The Green’s functions of the bare d-electron and condu@&iectron are
then denoted by

N G GOk icn) = fion — g
> Gg = [(iwn) —Eg ™

whilst the Feynman diagrams for the hybridization and theraction terms are then
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FIGURE 3. lllustrating how the d-electron resonance splits to forra@al moment. AYJ < 1A, single
half-filled resonance. BY > mA, up and down components of the resonance are split by anyederg
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Quite generally, the propagator for the d-electrons cantitgen
Gyo (W) = [w—Ey—Zy,(w)] (10)

whereZ ; (w) is the the self-energy of the d-electron with spirWe delineate between
“up” and “down”, anticipating Anderson’s broken symmetrgsdription of a local
moment as a resonance immersed in a self-consistentlyndetat Weiss field. The
density of states associated with the d-resonance is detealrby the imaginary part of
the d-Green function:

Pyy (W) = 7—1TImGd0(w—i5). (11)



The Anderson model for local moment formation is equivaterthe Hartree approxi-
mation to the d-electron self-energy, denoted by

S

Zgo(w) = 2, (w)+ Uny 4

The first term in this expression derives from the hybridaaof the d-electrons with the
conduction sea. Notice that the d-state fluctuates intk-slates of the conduction sea,
so that there is a sum ovkinsideZ, (w). The second term is the Hartree approximation
to the interaction self energy. We can identify the fermiood here as the occupancy of
the —o d-state, so that

Gdo(w) = [(,()— (Ed +U nd—o) o zl<w)]71 (12)

so the Hartree approximation is equivalent to replaéipg- E,, = E;+Un, _,. The
hybridization part of the self energy is

. V(K)[2
B8 =3
Kk K

Notice that since A(x+id) = P(1/x) £imd(x), it follows thatimX,(w=+id) = FA(w),
so the imaginary part of this quantity has a discontinuibnglthe real axis equal to the
hybridization width. Using[{8), you can verify that we cananiewrite this as

de 713, V(K23 (5, — ¢)

Zi(w+10) = 1T w—€—i0
B de Ag)
B /Fa)—e—ié (13)

Typically A(€) will only vary substantially on energies of order the bandhvj so that
over the width of the resonance we can repla¢e) — A. Moreover, for a broad band
of width D, the real part oE(w) ~ £A(0)In[(w—D)/(w-+ D)] is of orderw/D and can
be ignored, or absorbed into into a small renormalizatioB pfThis allows us to make
the replacement

2 (w=£id) = FiAsgrd (24)
so that L
Gyp(w—i0) = A (14)
do ) (w—Ey, —iD)

The density of states described by the Green-function israritpian centered around

energyk,
A

w—Ey, )2 +4%

pdo(w) = %ImGda(w_ i5) = (



moreover, the occupancy of the d-state is given by the dgattn at zero temperature
IS
0
Yo = Jomdwny () (15)
1 1 Ng—
= Zcot” ( ¢ ")

This equation defines Anderson’s mean-field thepiy.is convenient to introduce an
occupancyny = 3 ¢ Ny, and magnetizatioM = ny, —ny , so thatn,, = Z(ng+oM)
(o = +1). The mean-field equation for the occupancy and magnietizate then

cot- (Ed-l-U/Z(nd —aM))
o=+1

R Sl

(16)

Eq+U/2(ng— 0M))

M =5 O'COtl( A

o=+1

=

To find the critical size of the interaction strength wher®@@al moment develops, set
M — 0" (replacing the second equation by its derivative WM., which gives

2 E,+Ucn,/2
nd — 7_TCOt1<d—|—TCd/)
1= 72_2 E1U /2\ 2 (17)
+uUn
(5

which can be written parametrically as

Eﬁ% - A<c+7—2T(1—nd)(1+c2)>
U = mA(14c?) (18)

wherec = cot % . The critical curve described by these equations is showigirfd-

From the mean-field equations, it is easily seen thanfoe 1, when the d-levels
are half filled, the critical valu&; = A. This enables us to qualitatively understand
the experimentally observed formation of local moments eWHilute magnetic ions
are dissolved into a metallic host, the formation of a locanment is dependent on
whether the ratidJ /A is larger than, or smaller than zero. When iron is dissolved i
pure niobium, the failure of the moment to form reflects ttghler density of states and
larger value ofA in this alloy. When iron is dissolved in molybdenum, the lowensity
of states causds > U, and local moments form[][7]

4 The quantityd, = cot ! (Edw%) is actually the phase shift for scattering an electron off dkh

resonance (see exercise), and the identjty= %60 is a particular realization of the “Friedel sum rule”,

which relates the charge bound in an atomic potential to tinelrer of nodes= 5 %") introduced into
the scattering state wavefunction.



1.2.1. The Coulomb Blockade

A modern context for the physics of local moments is founchimitguantum dots.
A quantum dot is a tiny electron pool in a doped semi-condustoall enough so that
the electron states inside the dot are quantized, loossgmbling the electronic states
of an atom. Unlike a conventional atom, the separation oktaetronic states is of the
order of milli-electron volts, rather than volts. The oJepmsition of the quantum dot
energy levels can be changed by applying a gate voltage tdahét is then possible
to pass a small current through the dot by placing it betwesernd¢ads. The differential
conductanc& = dl /dV is directly proportional to the density of state&w) inside the
dotG O p(0). Experimentally, when G is measured as a function of gateagely, the
differential conductance is observed to develop a peristtigcture, with a period of a
few milli-electron volts. [[B]

This phenomenon is known as the “Coulomb blockade” and itlteérom precisely
the same physics that is responsible for moment formatiosindple model for a
quantum dot considers it as a sequence of single partigtslavenergies, , interacting
via a single Coulomb potentill, according to the model

U
Haor = 3 (8 =), + 5N(N=1) (19)

wheren, _is the occupancy of the spm state of the level,N =73, n, isthe total
number of electrons in the dot aMJ the gate voltage. This is a simple generalization
of th:zsingle atom part of the Anderson model. Notice thattgacitance of the dot is
C=¢e/U.

Provided thatU is far greater than the energy separation of the individenalk,
U>> g, —¢,, the energy difference between thelectron anch+ 1 electron state
of the dot is given byE(n+ 1) — E(n) = nU — e\,. As the gate voltage is raised, the
quantum dot fills each level sequentially, as illustratedFig. @, and where\y = U,
the n-th level becomes degenerate with the Fermi energy df kemd. At this point,
electrons can pass coherently through the resonance gigmd¢o a sharp peak in the
conductance. At maximum conductance, the transmissiomediettion of electrons is
unitary, and the conductance of the quantum dot will reaalbatantial fraction of the
quantum of conductance?/h per spin. A simple calculation of the zero-temperature
conductance through a single non-interacting resonanggl@d symmetrically to two
leads gives

2¢? N?

h (E, —eVy)2+42

where the factor of two derives from two spin channels. Attéirtemperatures, the
resonance becomes broadened by thermal excitation effgatsy

_2& df(e— evg) N?
Gle%, ) /d ( ) (E, —€)2+A2

Glevy) = (20)
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FIGURE 4. Variation of zero bias conductan@e= dI /dV with gate voltage in a quantum dot. Coulomb
interactions mean that for each additional electron in thtettie energy to add one electron increases by
U. When the charge on the dot is integral, the Coulomb intenadtlocks the addition of electrons and
the conductance is suppressed. When the energy to add ameliscdegenerate with the Fermi energy
of the leads, unitary transmission occurs, and for symmtads G = 2€?/h.

where f(¢) = 1/(€¢ 4+ 1) is the Fermi function. When interactions are included, we
must sum over the n-levels, giving (See Kig. 4.)

_2& df(e— e\/g) A?
e, T) /d ( ) (NU — )2+ A?

The effect of field on these results is interesting. When tinalmer of electrons in
the dot is even, the quantum dot is in a singlet state. Whemnuh&er of electrons is
odd, the quantum dot forms a local moment. In a magnetic fieenergy of the odd-
electron dot is reduced, whereas the energy of the even spis dnchanged, with the
result that at low temperatures

E(2n+1)—E(2n) = 2nU—pugB
E(2n+2)—E(2n+1) (2n+1)U + B (21)



so that the voltages of the odd and even numbered peaks intldectance develop an
alternating field dependence.

It is remarkable that the physics of moment formation and‘@mulomb blockade”
operate in both artificial mesoscopic devices and natucatyirring magnetic ions.

1.3. Exercises

1. By expanding a plane wave state in terms of spherical haigso

(FK) = é”=4n;i'j|<kr> i (K)Y,n(F)

show that the overlap between a stafe with wavefunction(X|y) = R(r)Y,,,(f) with a
plane wave is given by (k) = (k|V|@) =V (K)Y, (k) where

V (k) = 4! /drr2V(r)R(r)j|(kr) 22)

2. (i) Show thatd = cot™? (%) is the scattering phase shift for scattering off a resonant
level at positiorE;.
(i) Show that the energy of states in the continuum is stiiftg an amount-Agd(g)/m,
wherelg is the separation of states in the continuum.
(iif) Show that the increase in density of states is giverdldy dE = p,(E). (See chap-
ter 3.)
3. Derive the formula[(20) for the conductance of a singlésisal resonance.

2. THE KONDO EFFECT

Although Anderson’s mean-field theory provided a mechari@mnmoment formation,
it raised many new questions. One of its inadequacies i®flthe magnetic moment is
regarded as a broken symmetry order parameter. Broken siyynisipossible when the
object that breaks the symmmetry involves a macroscopidbeunf degrees of freedom,
but here, we are dealing with a single spin. There will alwbgsa certain quantum
mechanical amplitude for the spin to flip between an up andndoewnfiguration. This
tunneling rater ~! defines a temperature scale

-
kBTK—;

called the Kondo temperature, which sets the dividing liesveen local moment behav-
ior, where the spin is free, and the low temperature limiterelthe spin becomes highly
correlated with the surrounding electrons. Experimept#iis temperature marks the
low temperature limit of a Curie susceptibility. The physhy which the local moment
disappears or “quenches” at low temperatures is closellagoas to the physics of
quark confinement and it is named the “Kondo effect” aftertapanese physicist Jun
Kondo. [11]



The Kondo effect has a wide range of manifestations in coselématter physics:
not only does it govern the quenching of magnetic momentdens metal, but it also
is responsible for the formation of heavy fermion metalsgemhthe local moments
transform into composite quasiparticles with masses samstin excess of a thousand
bare electron massgs.]J12] Recently, the Kondo effect tsastzen observed to take
place in quantum dots that carry a local moment. (Typicallgrgum dots with an odd
number of electrons)[][3]

In this section we will first derive the Kondo model from the dianson model, and
then discuss the properties of this model in the languageeofdnormalization group .

2.1. Adiabaticity

Let us discuss some of the properties of the Anderson modelatemperatures
using the idea of adiabaticity. We suppose that the interadtetween electrons in the
Anderson model is increased continuously to valdes > A, whilst maintaining the
occupancy of the d-state equal to umigy= 1. The requirement that, = 1 ensures that
the d-electron density of states is particle-hole symmgtrnich implies thaE = 0 and
2'(0)=0.

WhenU >> A, we expect that the d-electron spectral funcign= %ImGd(a)— i0)
will contain two peaks atv = +U /2. Since the total spectral weight integrates to unity,
Jdwp(w) = 1, we expect that the weight under each of these peaks is>apmtely
1/2. Remarkably, as we shall now see, the spectral functien-atO is unchanged by
the process of increasing the interaction strength andirsmegual to its non-interacting
value

1
py(w=0) = A

This means that the d-spectral function must contain a wgreak, of vanishingly small
spectral weighZ << 1, height% and hence widtl\* = ZA << A. This peak in the
d-spectral function is associated with the Kondo effectl isrknown as the Abrikosov-
Suhl, or the “Kondo” resonance. Let us see how this comestasoa consequence of
adiabaticity. For a single magnetic ion, we expect thatberactions between electrons
can be increased continuously, without any risk of insitds, so that the excitations of
the strongly interacting case remain in one-to-one comedence with the excitations
of the non-interacting cadé = 0, forming a “local Fermi liquid”.
In this local Fermi liquid, one can divide the d-electronfsslergy into two

components- the first derived from hybridization, the selcd@rived from interactions:

Z(w—id) = iA+Z(w—id)
S(w—id) = (1-Z Hw+iAw? (23)

The “wavefunction” renormalizatio# is less than unity. The quadratic energy depen-
dence o, (w) ~ w? follows from the quadratic energy dependence of the phaaseesp
for producing particle-hole pairs. Using this result, tbeni of the d-electron propagator



pd (00)‘
ZA
Kondo
resonanc\e\
1A
_U/2 U2 o

FIGURE 5. “Kondo resonance” in the d-spectral function. At lakgdor the particle hole-symmetric
case wherey = 1, the d-spectral function contains two peaks alzout +U /2, both of weight approx-
imately 1/2. However, since the spectral function is constrained by élguirement thagh,(w = 0) = %,

the spectral function must preserve a narrow peak of fixeghtgbut vanishingly small weighzt << 1.

for n, at low energies is

1

w—iA—-7,(w)
Z
T w—iZA—iO(w?). (24)

Gy(w—id) =

This corresponds to a renormalized resonance of reduceghtvei 1, renormalized
width ZA. One of the remarkable results of this line of reasoninghésdiscovery that

d-spectral weight
1 . 1

Py(w~0) = I—TImGd(a)— 10)| 0= A
is independent of the strength Of This result, first discovered by Langrgth[13] guar-
antees a peak in the d-spectral function at low energies attenhow largé) becomes.
Since we also expect a peak in the d-spectral function arourd+U /2, this line of
reasoning suggests that the structure of the d-spectretifumat largeJ, contains three
peaks.



2.2. Schrieffer-Wolff transformation

If a local moment forms within an atom, the object left behimd pure quantum top-
a quantum mechanical object with purely spin degrees ofltneef]

These spin degrees of freedom do interact with the surrognclhnduction sea. In
particular virtual charge fluctuations, in which an elenthwiefly migrates off, or onto
the ion lead to spin-exchange between the local moment andahduction sea. This
induces an antiferromagnetic interaction between thd locanent and the conduction
electrons. To see this consider the two possible spin exghprocesses

e +d « d®—e+dl  AE ~U+E,
e +d < e+e —e+d  AE ~—E, (25)

The first process passes via a doubly occupied singlet d;statit can only take place
if the incoming conduction electron and d-electron are inwual S= 0O state. In the
second process, in order that the conduction electron dandize with the d-state, it has
to arrive and depart in a state with precisely the same dtarymmetry. This means
that the intermediate state formed in the second process meuspatially symmetric,
and must therefore be a spin-antisymmetric sin§let0 state. From these arguments,
we see that spin exchange only takes place in the singlenehdowering the energy
of the singlet configurations by an amount of order

1 1
~ V2| 4 = 2
J [AEl—i_AEJ (26)
1 1
- [—Ed+Ed+U] @7

whereV is the size of the hybridization matrix element near the Feumnface. If we
introduce the electron spin density opera@(fﬂ) = %Zk.k' chaﬁchk,B, whereN is the
number of sites in the lattice, then we expect that the eWfeatteraction induced by the
virtual charge fluctuations will have the form

Herr =JS(0) - §

where §d is the spin of the localized moment. Notice that the sign Jofis
antiferromagnetic This kind of heuristic argument was ventured in Andersqés
per on local moment formation in 1961. The antiferromagngign in this interaction
was quite unexpected, for it had been tacitly assumed bydhmerainity that exchange

5 In the simplest version of the Anderson model, the local munieaS= 1/2, but in more realistic
atoms much large moments can be produced. For example,croelé a CeriunCe** ion atom lives
in a 4f1 state. Here spin-orbit coupling combines orbital and spiguéar momentum into a total angular
momentj =1 —1/2=5/2. The Cerium ion that forms thus has a spia 5/2 with a spin degeneracy
of 2j +1 = 6. In multi-electron atoms, the situation can become stdrencomplex, involving Hund’s
coupling between atoms.



forces would induce a ferromagnetic interaction betweenctinduction sea and local
moments. This seemingly innocuous sign difference has deepequences for the
physics of local moments at low temperatures, as we shalhgbe next section.

Let us now carry out the transformation a little more cafgfulsing the method of
canonical transformations introduced by Schrieffer andff{fd] [5]. The Schrieffer-
Wolff transformation is very close to the idea of the rendinaion group and will
help set up our renormalization group discussion. When al lomment forms, the
hybridization with the conduction sea induces virtual gesffuctuations. It is therefore
useful to consider dividing the Hamiltonian into two terms

H=H+A7
whereA is an expansion parameter. Here,

HL
Hl = Hband+ Hatomic= o

0
Hy
is diagonal in the low energgi! (H.) and the high energy? or d° (Hy) subspaces,
whereas the hybridization term

+ 0 |VvT
JO

provides the off-diagonal matrix elements between thesestvibspaces. The idea of the
Schrieffer Wolff transformation is to carry out a canonit@nsformation that returns
the Hamiltonian to block-diagonal form, as follows:

Ho[AVT] ¢ [H
e[

Hy 0
This is a “renormalized” Hamiltonian, and the block-diagbpart of this matrixd* =
P_H’P_ in the low energy subspace providesaffectiveHamiltonian for the low energy
physics and low temperature thermodynamics. If wékseteS, whereS= —S' is anti-
hermitian and expand S in a power series

S=AS +A%S,+...,
then expanding[(28) using the identé)Be " = B+ [A,B] + 2 [A, [A, BJ].....

Y

0 } . (28)

€°(Hy+A7)e 5= Hy+A (¥ +[S;, Hy]) +A° (%[Sl, [SpHI+ (8, 7]+ [sz,Hﬂ) +...

so that to leading order
S, Hy| =7, (29)
and to second order

&S(H, + A ¥)e S = H, + A2 (%[sl,v/] +[52,H1]) o



Since[S,, 7] is block-diagonal, we can satisfy {28 ) to second order byirgwy S, =0,
so that to this order, the renormalized Hamiltonian hasdh@ f(settingh = 1)

H* =H +Hy
where 1
Hine = EPL[S_D”’/] P+

is an interaction term induced by virtual fluctuations ine thigh-energy manifold.
Writing
0| _gf
S— [ _S}
s| O

and substituting intd (29), we obtaih= —sH_+Hs. Now since(H, ), = E;d,,, and
(Hy) . = E&' 8, are diagonal, it follows that

Vab t Vi
Sab EH 2 EL, —S ab — EL aEH’ (30)
From (30), we obtain

;
v Vo, Vi Vao
H L__EH
E)\ Eb E)\

1 4 1
(Hint)ab = 2(V s+5'V) g, = EAZ
€[H)

Some important points about this result

« We recognize this result as a simple generalization of skooder perturbation
theory which encompasses off-diagonal matrix elements.

« H;; can also be written

1

Hine = Q[T(Ea) +T(E,)]

whereT is given by
o Py
T(E) = PL”//E A 4
Tan(E) BT (31)
b p—
Wl =2 [

is the leading order expression for the scattering T-matdyced by scattering off
V. We can thus relate.
by a Feynman diagram, illustrated in Hig. 6.

« If the separation of the low and high energy subspaces ig,ldhgn the energy
denominators in the above expression will not depend omiitialiand final states
a andb, so that this expression can be simplified to the form

;
N VAIENY,

==
" A&y BB,

int 10 @ scattering amplitude, and schematically represent it
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FIGURE 6. T-matrix representation of interaction induced by intéigiaout high-energy degrees of
freedom

whereAE, = E}' — E" is the excitation energy in the high energy subspace labeled
by A, and the projectoP, = > @bl |a)(al .

If we apply this method to the Anderson model, we have two@gargy subspaces,
with excitation energieAE (d* — d°) = —E,; andAE(d! — d?) = E4+U, so that the
renormalized interaction is

dl4+e —d? dl—d%+e-
e 5 oy | Tt Varieg) (0o (g
" ko'Ko’ Eq+U —E4

Using the identityd,, 8.4+ O, O.q = 20,49, We may cast the renormalized Hamilto-
nian in the form

— t 5 3 !
Hyi = > KwCua9%p S+H
ka K
di4e —d? dled+e
—— ~ =

. 1 1
Jk7k, = Vk,Vk{ E, +U + “E, } (32)
where -
g _ ot [ %8B
§=dy > dB’ (nOI =1) (33)

where we have replacey} = 1 in the low energy subspace. Apart from a constant, the

second term 1 1 1
H =—-Z= ; VieVie l7+—} ch Cy
2\ %0 E,+U  Eg] “9%°

is a residual potential scattering term off the local momdinis term vanishes for
the particle-hole symmetric cagg, = —(E, +U) and will be dropped, since it does
not involve the internal dynamics of the local moment. Sumnirag, the effect of the
high-frequency valence fluctuations is to induce an amtfaagnetic coupling between
the local spin density of the conduction electrons and thallmoment:

o 1%




This is the infamous “Kondo model”. For many purposes,Kkldependence of the cou-
pling constant can be dropped. In this case, the Kondo ictieracan be written

Hye = JWT(0)8W(0) - S, whereyy, (0) = ﬁ s ¢, IS the electron operator at the origin

and ¢/ (0)dy(0) is the spin density at the origin. In this simplified form, tkendo
model takes the deceptively simple form

Hint
i,

N\

H— Zsch Crg +IWT(0)FW(0)-§,. (35)

In other words, there is a simple point-interaction betwienspin density of the metal
at the origin and the local moment. Notice how all referercthe fermionic character
of the d-electrons has gone, and in their place,3s-al/2 spin operator. The fermionic
representatior] (B3) of the spin operator proves to be vegfulim the case where the
Kondo effect takes place.

2.3. Renormalization concept

To make further progress, we need to make use of the concephofmalization.
In a general sense, physics occurs on several widely spaeggyescales in condensed
matter systems. We would like to distill the essential @ffexf the high energy atomic
physics at electron volt scales on the low energy physicsibivoit scales without
getting caught up in the fine details. An essential tool fa tésk is the “renormalization
group”. [18,[1y {1B[ 19]

The concept of the renormalization group permits us to descomplex condensed
matter systems using simple models that reproduce onletaeant low energy physics
of the system. The idea here is that only certain gross featfrthe high energy physics
are relevant to the low energy excitations. The continuanslf of model Hamiltonians
with the same low energy excitation spectrum constitutewd/arsality class” of models.
(Fig. [1) Suppose we parameterize each model HamiltoHidn) by its cutoff energy
scale D, the energy of the largest excitations. The scaling proeedvolves rescaling
the cutoffD — D’ = D/b whereb > 1, integrating out the excitatiors € [D’,D] to
obtain an effective HamiltoniaHi  for the remaining low-energy degrees of freedom.
The energy scales are then rescaled to obtain aHEd) = bH, Generically, the
Hamiltonian will have the block-diagonal form

o=

T
o V—} (36)

Hy,

whereH, andH,, act on states in the low-energy and high-energy subspagesatvely,
andV andVT provide the matrix elements between them. The high energyeds



SCALING THEORY

Microscopic Model

Anderson Model

E E +U A >> Ef,Ef+U

U= OO Anderson Model

|Ef|</\<< Ef +U

Kondo Model

TK << A<< |E[ |, |Ef+|

Tk

FIGURE 7. Scaling concept. Low energy model Hamiltonians are obthinem the detailed original
model by integrating out the high energy degrees of freeddraach stage, the physics described by the
model spans a successively lower frequency window in thiéagian spectrum.

of freedom may be “integrated ouff’by carrying out a canonical transformation and
projecting out the low-energy componetht

Hy

H(D) — UH((D)U' = [ 5

0
—] )

By rescaling .
H(D') = bH_ (38)

one arrives at a new Hamiltonian describing the physics enréduced scale. The
transformation fronH (D) to H(D') is referred to as a “renormalization group” (RG)
transformation. This term was coined long ago, even thobghtriansformation does
not form a real group, since there is no inverse transfoonaikepeated application of
the RG procedure leads to a family of Hamiltoniah@). By taking the limitb — 1,

6 The term “integrating out” is originally derived from thethantegral formulation of the renormalization
group, in which high energy degrees of freedom are removedtbgrating over these variables inside
the path integral.



these Hamiltonians evolve continuously with Typically, H will contain a series of
dimensionless coupling constadig } which denote the strength of various interaction
terms in the Hamiltonian. The evolution of these couplingstants with cut-off is given
by a scaling equation, so that for the simplest case

09
55 = Bi({g))

A negativef3 function denotes a “relevahtoupling constant which grows as the cut-
off is reduced. A positivg8 function denotes an “irrelevahtoupling constant which
diminishes as the cut-off is reduced. There are two typeseaitehat can occur in such
a scaling procedure (Fif] 8):

« i) A crossoverWhen the cut-off energy scale becomes smaller than the charac-
teristic energy scale of a particular class of high freqyenxcitations, then at lower
energies, these excitations may only occur via a virtuatgse. To accommodate
this change, the Hamiltonian changes its structure, aicguadditional terms that
simulate the effect of the high frequency virtual fluctuaiocon the low energy
physics. The passage from the Anderson to the Kondo modelegsample of one
such cross-over. In the renormalization group treatmenhefAnderson model,
when the band-width of the conduction electrons becomediesntizan the energy
to produce a valence fluctuation, a cross-over takes plaeghich real charge fluc-
tuations are eliminated, and the physics at all lower ensogyes is described by
the Kondo model.

« i) Fixed Point If the cut-off energy scale drops below the lowest energlesc
in the problem, then there are no further changes to occuneénHamiltonian,
which will now remain invariant under the scaling procedig@that thg3 function
of all remaining parameters in the Hamiltonian must vanidtjs “Fixed Point
Hamiltonian”describes the essence of the low energy physics.

2.4. “Poor Man” Scaling

We shall now apply the scaling concept to the Kondo models Tdas originally
carried out by Anderson and Yuval using a method formulatetthé time, rather than
energy domain. The method presented here follows AndessdPdor Man’s” scaling
approach, in which the evolution of the coupling constamliswed as the band-width
of the conduction sea is reduced. The Kondo model is written

H = Z &L koG THY
le J<D
HO = JD) 5 cMaBuptep S (39)
l&l-feg|<D

where the density of conduction electron stgtés) is taken to be constant. The Poor
Man'’s renormalization procedure follows the evolutionJoD) that results from reduc-
ing D by progressively integrating out the electron states aetlge of the conduction



band. In the Poor Man’s procedure, the band-width is notatedcto its original size
after each renormalization, which avoids the need to reabzmthe electron operators
so that instead of Eq[_ (B8} (D’) =

To carry out the renormalization procedure, we integratetio@ high-energy spin
fluctuations using the t-matrix formulation for the indudateractionH. ., derived in
the last section. Formally, the induced interaction is gig

int’

. Tan(Ba) + Tap(Bp)]

5
[H (|)|-| (l)]
AE\H E—E}
where the energy of stat&) lies in the ranggD’, D]. There are two possible intermedi-
ate states that can be produced by the actidthbfon a one-electron state: (1) either the

electron state is scattered directly, or (Il) a virtual &lec hole-pair is created in the in-
termediate state. In process (l), the T-matrix can be reptes by the Feynman diagram

5H|nt

where

for which the T-matrix for scattering into a high energy élen state is

1

)
T (E) E— Ek//

kKBa';kao

} 3%(0%0°) 4, ($9) 416

s,,e[D—6D7D} l

J?pdD [E f D} (0%0°) 54 (S'S) 14 (40)

Q

In process (Il),

the formation of a particle-hole pair involves a conductaactron line that crosses
itself, leading to a negative sign. Notice how the spin ofmesaof the conduction sea
and antiferromagnet reverse their relative order in predkesso that the T-matrix for
scattering into a high-energy hole-state is given by

1

KBo':kao — _
B 6 el E)ZD+5D] —(&+ & — &)

T(E)

32(0°0%) 3, (SS) 516



= —J%poD {Eflt)} (aaab)ﬁa(SaSb)a,a (41)

where we have assumed that the energjeand¢,, are negligible compared witD.
Adding (Eq.[4D) and (Eq. #1) gives

- . J?pdD
Miboao = T +T" ==L (0% 0%, &'
J2pdD . -

= =5 O3S0 (42)

°

Y

In this way we see that the virtual emission of a high energgtebn and hole generates
an antiferromagnetic correction to the original Kondo douypconstant

oD

D

High frequency spin fluctuations thusitiscreerthe antiferrromagnetic interaction. If
we introduce the coupling constamt pJ, we see that it satisfies

J(D') = J(D) +23%p

g B 2 3
5D B(9) = —29°+0(g°).

This is an example of a negati@efunction: a signature of an interaction which is weak
at high frequencies, but which grows as the energy scalalises. The local moment
coupled to the conduction sea is said to be asymptoticaly ffhe solution to this
scaling equation is

N Jo
90) = =26, nd/D7 (43)

and if we introduce the scale

1
T =Dexp|—5— 44
K p[ 290} (44)
we see that this can be written
1
(AN
W)= o

This is an example of a running coupling constant- a coupimgstant whose strength
depends on the scale at which it is measured. (Se¢]Fig. 8).

Were we to take this equation literally, we would say thgaliverges at the scale
D’ = Ty. This interpretation is too literal, because the aboveisgaquation has only
been calculated to ordey, nevertheless, this result does show us that the Kondo
interaction can only be treated perturbatively at energyesclarge compared with the
Kondo temperature. We also see that once we have writteroth@ing constant in terms
of the Kondo temperature, all reference to the originalafienergy scale vanishes from
the expression. This cut-off independence of the problean iadication that the physics
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FIGURE 8. Schematic illustration of renormalization group flow fronrepulsive “weak coupling”
fixed point, via a crossover to an attractive “strong cougliixed point.

of the Kondo problem does not depend on the high energy detiihe model: there is
only one relevant energy scale, the Kondo temperature.

It is possible to extend the above leading order renorntadizaalculation to higher
order ing. To do this requires a more systematic method of calculdtigber order
scattering effects. One tool that is particularly usefulthis respect, is to use the
Abrikosov pseudo-fermion representation of the spin,ingit

é:d*(g) d
aZaBB

ng = 1 (45)

This has the advantage that the spin operator, which doesatisty Wick’s theorem, is
now factorized in terms of conventional fermions. Unfodtely, the second constraint
is required to enforce the condition tH&t= 3/4. This constraint proves very awkward
for the development of a Feynman diagram approach. One veandrthis problem, is
to use the Popov trick, whereby the d-electron is associattda complex chemical
potential
T

H=—in
The partition function of the Hamiltonian is written as arcanstrained trace over the
conduction and pseudofermion Fock spaces,

7 —Tr [efB(HJrin%(ndfl))] (46)

Now since the Hamiltonian conserveg we can divide this trace up into contributions
from thed®, d! andd? subspaces, as follows:

Z =€d™?7(d%) 4 z(dY) + e "2Z(d?)

But sinceS, = 0 in thed?andd® subspace<Z(d®) = Z(d?) so that the contributions to
the partition function from these two unwanted subspacastxcancel. You can test
this method by applying it to a free spin in a magnetic fielde(exercise)

By calculating the higher order diagrams shown ir{fig 9 , itiaightforward, though
laborious to show that the beta-function to org@is given by

Jdg 02, o3 4
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FIGURE 9. Diagrams contributing to the third-order term in the betaction. A “crossed” propagator
line indicates that the contribution from high-energy @lees with energieg, | € [D — 6D, D] is taken
from this line.

/ N

One can integrate this equation to obtain
D’) 9 dg 1 /9 [ 1 1 ]
In{ =5 | = =—= [ dg|5+=+0(1
( D Jo :B (g/> 2 Yo J g/2 g/ ( )

A better estimate of the temperatufg where the system scales to strong coupling is
obtained by settin®’ = T, andg = 1 in this equation, which gives

T\ 1 1

where for convenience, we have absorbed a fag@rinto the cut-off, writingD =
D./3. Thus,
T, = D\/2g06 % (49)

up to a constant factor. The square-root pre-factdiins often dropped in qualitative
discussion, but it is important for more quantitative conmgzan.

2.5. Universality and the resistance minimum

Provided the Kondo temperature is far smaller than the tfutheen at low energies
it is the only scale governing the physics of the Kondo effEot this reason, we expect
all physical quantities to be expressed in terms of univéusations involving the ratio
of the temperature or field to the Kondo scale. For exampéethtd susceptibility

1 T
XM = 7F () (50)

and the resistance 1 1 T
;(T) = T_og(ﬂ) (51)

both display universal behavior.



We can confirm the existence of universality by examiningéhproperties in the
weak coupling limit, wherd >> T, . Here, we find

(T) = 2m?pS(S+1)n,  (S= %)
X(T) = h[1-23p]

wheren; is the density of impurities. Scaling implies that at lowemperaturesp —
Jp+2(3p)?In2, so that to next leading order we expect

+T) = n2TS(s+ 1) +2030)m R (52)
X(T) = b |1-20p—4(p)In2 +0((3p)%) (53)

results that are confirmed from second-order perturbaheory. The first result was

obtained by Jun Kondo. Kondo was looking for a consequenteecdntiferromagnetic

interaction predicted by the Anderson model, so he comptitectlectron scattering

rate to third order in the magnetic coupling. The logarithhick appears in the electron
scattering rate means that as the temperature is loweredatd at which electrons
scatter off magnetic impurities rises. It is this phenometiat gives rise to the famous
Kondo “resistance minimum” .

Since we know the form of,., we can use this result to deduce that the weak coupling
limit of the scaling forms. If we take equatioh [48), and es@ the cut-off by the
temperaturdd — T, and replacey, by the running coupling constagy — g(T), we
obtain

1
T) = 54
o 2n () +In2g(T) &4
which we may iterate to obtain
29(T) = 1 In(In(T/TK)). (55)

= +
EOMETICY
Using this expression to make the replacendgnt- g(T) in (53) and [58), we obtain

n; 1 1In(In(T/Ty))
X(T) = E[ T In(T/T) 2 Inz(T/T:) +] (50)

1 B nS(S+1) 1 In(In(T/Ty))
M =n 20 Inz(T/TK)+ In3(T/T:) +]

(57)

From the second result, we see that the electron scattaatadhas the scale-invariant
form

n;
;(T) = Eg(T/TK)' (58)



where¥(x) is a universal function. The pre-factor in the electron tecatg rate is
essentially the Fermi energy of the electron gas: it is theitamy scattering” rate,
the maximum possible scattering rate that is obtained wineglectron experiences a
resonantrt/2 scattering phase shift. From this result, we see that atlatieszero, the
electron scattering rate will rise to the vall%l(aT) = %54(0), indicating that at strong

coupling, the scattering rate is of the same order as thamyrstattering limit. We shall
now see how this same result comes naturally out of a strongliog analysis.

2.6. Strong Coupling: Noziéres Fermi Liquid Picture of the Kondo
Ground-state

The weak-coupling analysis tells us that at scales of ofgetiondo temperature,
the Kondo coupling constarg scales to a value of ord@(1). Although perturbative
renormalization group methods can not go past this pointdefson and Yuval pointed
out that it is not unreasonable to suppose that the Kondolioguponstant scales
to a fixed point where it is large compared to the conductiattebn band-width
D. This assumption is the simplest possibility and if truemiéans that the strong-
coupling limit is an attractive fixed point, being stable enthe renormalization group.
Anderson and Yuval conjectured that the Kondo singlet wdnddparamagnetic, with
a temperature independent magnetic susceptibility andwensal linear specific heat
given byC, = yKTT—K at low temperatures.

The first controlled treatment of this cross-over regime wasied out by Wilson
using a numerical renormalization group method. Wilsonimerical renormalization
method was able to confirm the conjectured renormalizatioth@ Kondo coupling
constant to infinity. This limitis called the “strong coupdj” limit of the Kondo problem.
Wilson carried out an analysis of the strong-coupling ljraitd was able to show that
the specific heat would be a linear function of temperatike,d Fermi liquid. Wilson
showed that the linear specific heat could be written in aarsa form

& = 37’;2
0.4128+0.002
S T (59)

Wilson also compared the ratio between the magnetic subdiptand the linear
specific heat with the corresponding value in a non-inte@rgaystem, computing

XX x (Mg
W= vy y (3(ua>2) =2 (50)

within the accuracy of the numerical calculation.

Remarkably, the second result of Wilson’s can be re-denigdg an exceptionally
elegant set of arguments due to Nozigrgs[19] that leads ¢aalicit form for the strong
coupling fixed point Hamiltonian. Nozieres began by consiggan electron in a one-
dimensional chain as illustrated in F[g] 10. The Hamiltorfiar this situation is
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FIGURE 10. lllustrating the strong-coupling limit of the Kondo model

Hiattice = —t % j+1)cs()) +H.cl +JCTa(O>5aECE(O> '§d- (61)

Noziéres argued that the strong coupling fixed point will beatibed by the situation
J >>t. In this limit, the kinetic energy of the electrons in the daran be treated as a
perturbation to the Kondo singlet. The local moment coufres electron at the origin,
forming a “Kondo singlet” denoted by

G - 62

IGS = f<|m> [ 41)) (62)
where the thick arrow refers to the spin state of the local ernand the thin arrow
refers to the spin state of the electron at site 0. Any elecivbich migrates from site
1 to site O will automatically break this singlet state, irasits energy by 3/4. This
will have the effect of excludinglectrons (or holes) from the origin. The fixed point
Hamiltonian must then take the form

H ttice = —t Z j+1)cy(j)+H.c] +weak interaction (63)

where the second-term refers to the weak-interactionciediin the conduction sea by
virtual fluctuations onto site 0. If the wavefunction of dtens far from the impurity
has the formy(x) ~ sin(kzx), wherek; is the Fermi momentum, then the exclusion of
electrons from site 1 has the effect of phase-shifting teetedn wavefunctions by one
the lattice spacing, so that nowy(x) ~ sin(k-x— &) whered = k-a. But if there is one
electron per site, then(2k-a/(2m)) = 1 by the Luttinger sum rule, so thigt = 11/(2a)
and hence the Kondo singlet acts as a spinless, elastiesegttenter with scattering
phase shift

0=r/2 (64)

The appearance a¥ = 1/2 could also be deduced by appealing to the Friedel sum
rule, which states that the number of bound-electrons abthgnetic impurity site is



205";;1 = 25/m, so thatd = /2. By considering virtual fluctuations of electrons
between site 1 and 0, Noziéres argued that the induced atitamaat site 1 must take

the form
t4
Hine ~ 33NNy (65)

because fourth order hopping processes lower the enerdyedimgly occupied state,
but they do not occur for the doubly occupied state. This igulsive interaction
amongst the conduction electrons, and it is known to be aimargperator under the
renormalization group, leading to the conclusion that ffecéve Hamiltonian describes
a weakly interacting “local” Fermi liquid.

Nozieres formulated this local Fermi liquid in the languagfean occupancy-
dependent phase shift. Suppose kbrescattering state has occupangy, then the the
ground-state energy will be a functional of these occugstei{n, ; }|. The differential
of this quantity with respect to occupancies definghase shifas follows

oE Ae

The first term is just the energy of an unscattered conducétactron, while
o({ny 1 &) is the scattering phase shift of the Fermi liquid. This phsisiét can
be expanded .

S({Nyg} &) = E‘i_a(ek_“)"f‘q)zénk,fa (67)
where the term with coefficier® describes the interaction between opposite spin states
of the Fermi liquid. Noziéres argued that when the chemiogmtial of the conduction
sea is changed, the occupancy of the localidexdiate will not change, which implies
that the phase shift is invariant under changeg.itNow under a shifdu, the change
in the occupancy, on, . — dup, so that changing the chemical potential modifies the
phase shift by an amount

Ad = (a+Pp)Au=0 (68)

so thata = —p®. We are now in a position to calculate the impurity contribatto
the magnetic susceptibility and specific heat. First noa¢ tie density of quasiparticle
states is given by

dN 100 o
P—E—PO‘F]—T%—PO‘FE (69)
so that the low temperature specific heat is givel€py= (V;,, + ¥%) where
k3 a
”_2<?T)E (70)

where the prefactor “2” is derived from the spin up and spid bands. Now in a
magnetic field, the impurity magnetization is given by

M=t (71)
T T



Since the Fermi energies of the up and down quasiparticteshgited tce , — & — 0B,
we havey, dn, , = 0pB, so that the phase-shift at the Fermi surface in the up and dow
scattering channels becomes

m
O = > +016£F0+(D(Zénka

= 7—2T+ aoB—-®poB

I8

= E +200B (72)
so that the presence of the interaction term doutilessize of the change in the phase
shift due to a magnetic field. The impurity magnetizatiomtbecomes

20
M. =xB=2 (?) uzB (73)

where we have reinstated the magnetic moment of the elecktos is twice the value
expected for a “rigid” resonance, and it means that the Wilstio is

_ XiT°kg _

W
¥i3(Hg)?

2 (74)

2.7. Experimental observation of Kondo effect in real materals and
guantum dots

Experimentally, there is now a wealth of observations tlaficm our understanding
of the single impurity Kondo effect. Here is a brief itemipat of some of the most
important observations. (Fig.]11.)

+ Aresistance minimum appears when local moments develomatarial. For ex-
ample, inNb, _,Moy alloys, a local moment develops for- 0.4, and the resistance
is seen to develop a minimum beyond this pdint.[20, 21]

- Universality seen in the specific h&gj = %F (T/T,) of metals doped with dilute
concentrations of impurities. Thus the specific heaCaf- Fe (iron impurities
in copper) can be superimposed on the specific he@uof Cr, with a suitable
rescaling of the temperature scale] [£3, 23]

« Universality is observed in the differential conductanéejoantum dot$[35] 26]
and spin-fluctuation resistivity of metals with a dilute centration of
impurities.[2#] Actually, both properties are dependent the same thermal
average of the imaginary part of the scattering T-matrix

p = ni%/dw (—%) 2Im[T(w)]

G = %/dw <—%) mpIlm[T (w)]. (75)
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FIGURE 11. (a) Sketch of resistance minimumiho,Nb, _, (b) Sketch of excess resistivity associated
with scattering from an impurity spin. Right hand-scaldfatential conductivity of a quantum dot.

Putting npfdw(—(‘,’—L) ImT (w) = t(w/T,, T/Tx), we see that both properties
have the form

2né
p= M HT/TY)
6 - Zurm (76)

wheret(T /Ty ) is a universal function. This result is born out by experitnen



2.8. Exercises

1. Generalize the scaling equations to the anisotropic Komodel with an anisotropic
interaction

l&dl,|€,a=(xy,2)

and show that the scaling equations take the form

3J
5 |nab = —23,J.p +0(33),

where anda, b, c) are a cyclic permutation dk,y,z). Show that in the special case where
Jy=Jy=J,, the scaling equations become

J,

_ 3
dol[']D = —23J,p+0(3%,
z _ 2 3

so thatd? — J? = constant. Draw the corresponding scaling diagram.

2. Consider the symmetric Anderson model, with a symmetiudsstructure at half filling.
In this model, thed® andd? states are degenerate and there is the possibility of agetar
Kondo effect” when the interactiod is negative. Show that under the “particle-hole”
transformation

Gi = G G—d
¢, — —C d——d (79)

the positivdd model is transformed to the negativemodel. Show that the spin operators
of the local moment are transformed into Nambu “isospin afpes” which describe the
charge and pair degrees of freedom of the d-state. Use #nisfarmation to argue that
when U is negative, a charged Kondo effect will occur at dyauaalf-filling involving
quantum fluctuations between the degenedétendd? configurations.

3. What happens to the Schrieffer-Wolff transformation hie infinite U limit? Rederive
the Schrieffer-Wolff transformation for an N-fold degeater version of the infinite U
Anderson model. This is actually valid for Ce and Yb ions.

4. Rederive the Nozieres Fermi liquid picture for an SU (N)eleerate Kondo model. Explain
why this picture is relevant for magnetic rare earth ionssagCe’t orY b**.

5. Check the Popov trick works for a magnetic moment in anreatefield. Derive the
partition function for a spin in a magnetic field using thisthual.

6. Use the Popov trick to calculate the T-matrix diagramdHerleading Kondo renormaliza-
tion diagramatically.

3. HEAVY FERMIONS

Although the single impurity Kondo problem was essentialijved by the early sev-
enties, it took a further decade before the physics commuvas ready to accept the
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FIGURE 12. lllustrating how the polarization of spin around a magnetipurity gives rise to Friedel
oscillations and induces an RKKY interaction between thiesp

notion that the same phenomenon could occur within a detiseelanvironment. This
resistance to change was rooted in a number of popular masptions about the spin
physics and the Kondo effect.

At the beginning of the seventies, it was well known that laoagnetic moments
severely suppress superconductivity, so that typicafigwepercent is all that is required
to destroy the superconductivity. Conventional superactidity is largely immune
to the effects of non-magnetic disordgbut highly sensitive to magnetic impurities,
which destroy the time-reversal symmetry necessary foawewpairing. The arrival
of a new class of superconducting material containing danse/s of local moments
took the physics community completely by surprise. Indekd,first observations of
superconductivity irJ Be 5, made in 1973[[37] were dismissed as an artifact and had
to await a further ten years before they were revisited antheoed as heavy fermion
superconductivity[[3§, 29]

Normally, local moment systems develop antiferromagnetaer at low tempera-
tures. When a magnetic moment is introduced into a metaditéas Friedel oscillations
in the spin density around the magnetic ion, given by

(M(x)) = —=Ix(X=%)(S(X))

wherel is the strength of the Kondo coupling and

X0 = 3 x(@e¥
q

f(e) - T(g o)
x@ = 2 (80)
% 8R+q_ &

is the the non-local susceptibility of the metal. If a sectywhl moment is introduced
at locationy, then it couples tgM(X)) giving rise to a long-range magnetic interaction

7 Anderson argued in his “dirty superconductor theorem” ®@86 superconductivity involves pairing
of electrons in states that are the time-reverse transféion® another. Non-magnetic disorder does not
break time reversal symmetry, and so the one particle eigissof a dirty system can still be grouped
into time-reverse pairs from which s-wave pairs can be coottd. For this reason, s-wave pairing is
largely unaffected by non-magnetic disorder.



called the “RKKY”[B0] interactionf]
Jrkky(X—X)
T T E &
Hriky = —J°X (X—X) S(x) - S(X). (81)

The sharp discontinuity in the occupancies at the Fermasarproduces slowly decay-
ing Friedel oscillations in the RKKY interaction given by

cos X r
Jrkky(r) ~ —32P7|kljg (82)

where p is the conduction electron density of states anid the distance from the
impurity, so the RKKY interaction oscillates in sign, dederg on the distance between
impurities. The approximate size of the RKKY interactiomgigen byEg .y ~ J2p.

Normally, the oscillatory nature of this magnetic interaetfavors the development
of antiferromagnetism. In alloys containing a dilute camtcation of magnetic transi-
tion metal ions, the RKKY interaction gives rise to a frusdh glassy magnetic state
known as a spin glass in which the magnetic moments freeaeaifiked, but random
orientation. In dense systems, the RKKY interaction tyjbycgives rise to an ordered
antiferromagnetic state with a Néel temperaffje- Jp.

In 1976 Andres, Ott and Graebner discovered the heavy fermietalCeAlL. [B1]
This metal has the following features:

« A Curie susceptibilityy = ~ T at high temperatures.

+ A paramagnetic spin susceptibiligy~ constantat low temperatures.

« A linear specific heat capacity, = yT, wherey ~ 160amJ/mol/K? is approxi-
mately 1600 times larger than in a conventional metal.

« A guadratic temperature dependence of the low temperadsistivity p = po +
AT?

Andres, Ott and Grabner pointed out that the low tempergitoperties are those of
a Fermi liquid but one in which the effective masses of the quasipartetesapprox-
imately 1000 larger than the bare electron mass. The Feguidliexpressions for the
magnetic susceptibility and the linear specific heat coefficignare

_ 2 N*(0)
2
v = Do (83)

whereN*(0) = %N(O) is the renormalized density of states &jds the spin-dependent
part of the s-wave interaction between quasiparticles.tWbald be the origin of this
huge mass renormalization? Like other Cerium heavy fermiaterials, the Cerium
atoms in this metal are in @e** (4f1) configuration, and because they are spin-orbit

8 hamed after Ruderman, Kittel, Kasuya and Yosida
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FIGURE 13. (a) Single impurity Kondo effect builds a single fermionéwél into the conduction sea,
which gives rise to a resonance in the conduction electrasitjeof states (b) Lattice Kondo effect builds
a fermionic resonance into the conduction sea in each ulitldee elastic scattering off this lattice of
resonances leads to formation of a heavy electron band dthii; .

coupled, they form huge local moments with a spidef 5/2. In their paper, Andres,
Ott and Graebner suggested that a lattice version of the &effdct might be responsi-
ble.

This discovery prompted Sebastian Doni@ch[32] to propbaethe origin of these
heavy electrons derived from a dense version of the Kon@eetoniach proposed that
heavy electron systems should be modeled by the “Kondiaédttamiltonian” where a
dense array of local moments interact with the conductianBer a Kondo lattice with
spin 1/2 local moments, the Kondo lattice Hamiltonipr[33] takess fitrm

=
—

_ t g . (9 i(K—K)-R.
H_kz‘sRcRGCRGJrJZSJ cEa(z)chme' j (84)
g

Doniach argued that there are two scales in the Kondo lattieeKondo temperaturg
andEgryky, given by

T = DeY/2®
Erkky = J°P (85)

WhenJp is small, thenEgyy >> Ty, and an antiferromagnetic state is formed, but
when the Kondo temperature is larger than the RKKY inteoacsicale T, >> Egy vy,
Doniach argued that a dense Kondo lattice ground-stateriseft in which each site
resonantly scatters electrons. Bloch’s theorem then @ssthiat the resonant elastic
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FIGURE 14. Doniach diagram, illustrating the antiferromagnetic regj whereTl, < Tgyky and the
heavy fermion regime, wherg, > Tpky- Experiment has told us in recent times that the transition
between these two regimes is a quantum critical point. Thectgfe Fermi temperature of the heavy
Fermi liquid is indicated as a solid line. Circumstantiapesmental evidence suggests that this scale
drops to zero at the antiferromagnetic quantum criticahppdiut this is still a matter of controversy.

scattering at each site will form a highly renormalized hafdvidth ~ T,.. By contrast
to the single impurity Kondo effect, in the heavy electromgd of the Kondo lattice the
strong elastic scattering at each site acts in a coherembfasand does not give rise
to a resistance. For this reason, as the heavy electronfstats, the resistance of the
system drops towards zero. One of the fascinating aspetie ¢fondo lattice concerns
the Luttinger sum rule. This aspect was first discussed inildey Martin[38], who
pointed out that the Kondo model can be regarded as the oésultabatically increasing
the interaction strengtd in the Anderson model, whilst preserving the valence of the
magnetic ion. During this process, one expects sum rules podserved. In the impurity,
the scattering phase shift at the Fermi energy counts théeuof localized electrons,
according to the Friedel sum rule

% _ ne=1

& TT

This sum rule survives to largd, and reappears as the constraint on the scattering
phase shift created by the Abrikosov Suhl resonance. Inattied, the corresponding
sum rule is the Luttinger sum rule, which states that the Feurface volume counts
the number of electrons, which at smidllis just the number of localized (4f, 5f or 3d)
and conduction electrons. Whehbecomes large, number of localized electrons is now
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FIGURE 15. Development of coherence in heavy fermion systems. ResistaCe,_, LayCug after
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the number of spins, so that

TEs
2(27_[)3 =Ne+ nSpinS

This sum rule is thought to hold for the Kondo lattice Hamilm, independently of the
origin of the localized moments. Such a sum rule would wask eixkample, even if the
spins in the model were derived from nuclear spins, provitiedkondo temperature
were large enough to guarantee a paramagnetic state.

Experimentally, there is a great deal of support for the alqmeture. It is possible,
for example, to examine the effect of progressively indreathe concentration dfe
in the non-magnetic hosaCu,.([I5 ) At dilute concentrations, the resistivity rises to a
maximum at low temperatures. At dense concentrations gistivity shows the same
high temperature behavior, but at low temperatures cohbereetween the sites leads to
a dramatic drop in the resistivity. The thermodynamics efdiense and dilute system
are essentially identical, but the transport propertispldy the effects of coherence.

There are also indications that the Fermi surface of heaggtrein systems does
have the volume which counts both spins and conductionrelestderived from Fermi
surface studies[ [bZ, b3]

3.1. Some difficulties to overcome.

The Doniach scenario for heavy fermion development is guaedomparison of en-
ergy scales: it does not tell us how the heavy fermion phaskey from the antiferro-
magnet. There were two early objections to Doniach’s idea:

- Size of the Kondo temperatuig. Simple estimates of the value & required for
heavy electron behavior give a valdp ~ 1. Yet in the Anderson modelp ~ 1
would imply a mixed valent situation, with no local momentrf@tion.



« Exhaustion paradox. The naive picture of the Kondo modegimes that the local
momentis screened by conduction electrons within an emmargyeT,; of the Fermi
energy. The number of conduction electrons in this rangé @aer T, /D << 1
per unit cell, wherd® is the band-width of the conduction electrons, suggeshiag t
there are not enough conduction electrons to screen thienmraents.

The resolution of these two issues are quite intriguing.

3.1.1. Enhancement of the Kondo temperature by spin degener

The resolution of the first issue has its origins in the larg@-®rbit coupling of
the rare earth or actinide ions in heavy electron systems piotects the orbital
angular momentum against quenching by the crystal fieldse arth and actinide ions
consequently display a large total angular momentum degeyl = 2j + 1, which has
the effect of dramatically enhancing the Kondo temperafila&e for example the case
of the Cerium ion, where thef4 electron is spin-orbit coupled into a state wjte- 5/2,
giving a spin degeneracy of = 2j + 1 = 6. Ytterbium heavy fermion materials involve
theY b: 4113 configuration, which has an angular momentjum7/2, orN = 8.

To take account of these large spin degeneracies, we neezh&valize the Kondo
model. This was done in the mid-sixties by Coqgblin and Séfengf3]. Coqgblin and
Schrieffer considered a degenerate version of the infuhigenderson model in which
the spin component of the electrons runs fremto j,

_ T 1. 1. T 0 1.
H_%ekc oo+ Er YT 0) .o\+kév[c o FO(f .o|+H.c.].

Here the conduction electron states are also labeled byisghices that run from-j

to j. This is because the spin-orbit coupledtates couple to partial wave states of the
conduction electrons in which the orbital and spin angulam@antum are combined into
a state of definitg. Suppos¢Ra) represents a plane wave of momentkjrthen one can
construct a state of definite orbital angular momentusy integrating the plane wave
with a spherical harmonic, as follows:

kimo) = [ S ko) (R

When spin orbit interactions are strong, one must work wigiagial wave of definite
|, obtained by combining these states in the following lirmanbinations. Thus for the
casej =1 +1/2 (relevant for Ytterbium ions), we have

| +om+ 1 o
kmp= 5 /22, 2
2\ a1 2

An electron creation operator is constructed in a similay.wihis construction is
unfortunately, not simultaneously possible at more thansite.

).

N Q



WhenE; << 0, the valence of the ion approaches unity and— 1. In this limit,

one can integrate out the virtual fluctuation = f%+ e~ via a Schrieffer Wolff
transformation. This leads to the Coqgblin Schrieffer model

HCS: ZEkCTkGCkG-i-J z CTkBCk/C{rCfB’ (07a7B € [_17 J])
o kK, apB

wherel =V?/|E, | is the induced antiferromagnetic interaction strengttis Fiteraction

is understood as the result of virtual charge fluctuatiotestime O state,f1 = f0+e~.
The spin indices run from-j to j, and we have introduced the notation

FaﬁzszafE::|f1:a)(f1:B|

Notice that the charg® = n; of the f —electron, normally taken to be unity, is conserved

by the spin-exchange interaction in this Hamiltonian.
To get an idea of how the Kondo effect is modified by the largeyetheracy, consider
the renormalization of the interaction, which is given bg thagram

S

D
= J+NﬁpM(BJ (86)

( where the cross on the intermediate conduction electiate stdicates that all states
with energy|g, | € [D’,D] are integrate over). From this result, we see @) =

dg(D)/dInD = —N¢?, whereg = Jp has anN— fold enhancement, derived from the
N intermediate hole states. A more extensive calculatiomstibat the beta function to

third order takes the form
B(g) = —Ng+Ng’. (87)
This then leads to the Kondo temperature

Zl-

T = D(NJp) Nm}

so that large degeneracy enhances the Kondo temperatuhe iexponential factor.
By contrast, the RKKY interaction strength is given By, ~ J%p, and it does not
involve anyN fold enhancement factors, thus in systems with large spyemeracy,
the enhancement of the Kondo temperature favors the fowmafi the heavy fermion
ground-state.

In practice, rare-earth ions are exposed to the crystakfigidheir host, which splits
the N = 2j + 1 fold degeneracy into many multiplets. Even in this case, ldige
degeneracy is helpful, because the crystal field split8rsgriall compared with the band-
width. At energiedD’ large compared with the crystal field splittifg, D’ >> Ty, the
physics is that of ai fold degenerate ion, whereas at ener@ésmall compared with
the crystal field splitting, the physics is typically thataoKramers doublet, i.e.

exp)|



1,
Jg N& (D>>Ty)
oinD { —2¢? (D << TX) (88)

from which we see that at low energy scales, the leading osfermalization ofj is

given by
1 1 D Tx)
= ——NIn 2In
a(D’) G (Tx) <D’

where the first logarithm describes the high energy scrgemnith spin degenerach,
and the second logarithm describes the low-energy scrgewith spin degeneracy 2.
This expression is- 0 whenD’ ~ T¢, the Kondo temperature, so that

1 D Tx
O0=——NIn{| = 2In
%o (TX) (TK)

from which we deduce that the renormalized Kondo tempegdtas the fornj[34]

1\ /D\21
T = DeXp(_ZJop) <?X) .

Here the first term is the expression for the Kondo tempegadfia spin ¥2 Kondo
model. The second term captures the enhancement of the Kengmerature coming
from the renormalization effects at scales larger than tystal field splitting. Suppose
Tx ~ 100K, andD ~ 100K, andN = 6, then the enhancement factor is order 100. This
effect enhances the Kondo temperature of rare earth heawyoie systems to values
that are indeed, up to a hundred times bigger than thosensiti@n metal systems. This

is the simple reason why heavy fermion behavior is rare insition metal systems.
[B] In short- spin-orbit coupling, even in the presence ystal fields, substantially
enhances the Kondo temperature.

3.1.2. The exhaustion problem

At temperatured <T,, a local moment is “screened” by conduction electrons. What
does this actually mean? The conventional view of the KoffidaEnterprets it in terms
of the formation of a “magnetic screening cloud” around tieal moment. According to
the screening cloud picture, the electrons which magrtisereen each local moment
are confined within an energy range of order~ T, around the Fermi surface, giving
rise to a spatially extended screening cloud of dimenbiewg /T, ~ a%' whereais a

lattice constant ang. is the Fermi temperature. In a typical heavy fermion systens,



length would extend over hundreds of lattice constantss Teads to the following two
dilemmas

1. It suggests that when the density of magnetic ions is grahtinp ~ 1/13, the
screening clouds will interfere. Experimentally no sucteiference is observed,
and features of single ion Kondo behavior are seen at mudtehgnsities.

2. " The exhaustion paradox” The number of “screening”etats per unit cell within
energy Ty of the Fermi surface roughly, /W, whereW is the bandwidth, so
there would never be enough low energy electrons to screensedarray of local
moments.

In this lecture | shall argue that the screening cloud pectof the Kondo effect
is conceptually incorrect. Although the Kondo effect doegolve a binding of lo-
cal moments to electrons, the binding process takes plaweebep the local moment
and high energy electronsspanning decades of energy from the Kondo temperature
up to the band-width. (Fid. [L6) | shall argue that the key ptyysf the Kondo ef-
fect, both in the dilute impurity and dense Kondo latticejoines the formation of a
composite heavy fermioformed by binding electrons on logarithmically large eryerg
scales out to the band-width. These new electronic séageigjected into the conduction
electron sea near the Fermi energy. For a single impurity)élads to a single isolated
resonance. In the lattice, the presence of a new multipléerofionic states at each
site leads to the formation of a coherent heavy electron batidan expanded Fermi
surface. (716)

3.2. Large N Approach

We shall now solve the Kondo model, both the single impuritgd ghe lattice, in
the largeN limit. In the early eighties, Andersdn[i39] pointed out thiaé large spin
degeneraci = 2 + 1 furnishes a small parametefN which might be used to develop
a controlled expansion about the linhk — c. Anderson’s observation immediately
provided a new tool for examining the heavy fermion probl¢ne: so called “largeN
expansion”.[[40].

The basic idea behind the larbjeexpansion, is to take a limit where every term in the
Hamiltonian grows extensively witN. In this limit, quantum fluctuations in intensive
variables, such as the electron density, become smallesraatler, scaling as/N, and
in this sense,

1

N
behaves as an effective Planck’s constant for the theotlyidisense, a large expansion
is a semi-classical treatment of the quantum mechanicé$tetad of expanding around
h= 0, one can obtain new, non trivial results by expanding aldha non trivial solvable
limit % = 0. For the Kondo model, we are lucky, because the importaydips of the
Kondo effect is already captured by the lafgdéimit as we shall now see.

Nh_eff
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FIGURE 16. Contrasting (a) the “screening cloud” picture of the Konffea with (b) the composite
fermion picture. In (a), low energy electrons form the Korsitoglet, leading to the exhaustion problem.
In (b) the composite heavy electron is a highly localizedrzbstate between local moments and high
energy electrons which injects new electronic states inéoconduction sea at the chemical potential.
Hybridization of these states with conduction electrormlpces a singlet ground-state, forming a Kondo
resonance in the single impurity, and a coherent heavyreleband in the Kondo lattice.

Our model for a Kondo lattice or an ensemble of Kondo impesitocalized at sites

jis
H = ZSRCTRUCRU+ Z H, (1) (89)
ko ]
where P
Hy (1) = T ap(DW' (1) Wa (1)

is the interaction Hamiltonian between the local moment@uction sea. Here, the
spin of the local moment at sifeis represented using pseudo-fermions

and

creates an electron localized at sjte



There are a number of technical points about this model tad ho be discussed:

« The spherical cow approximation For simplicity, we assume that electrons have
a spin degeneradi = 2] + 1. This is a theorists’ idealization- a “spherical cow
approximation” which can only be strictly justified for a gla impurity. Neverthe-
less, the basic properties of this toy model allow us to wstded how the Kondo
effect works in a Kondo lattice. With aN-fold conduction electron degeneracy, it
is clear that the Kinetic energy will grow &(N).

- Scaling the interaction. Now the interaction part of the Hamiltonid, (j) in-
volves two sums over the spin variables, giving rise to ardaution that scales as
O(N?). To ensure that the interaction energy grows extensivelly Mj we need to
scale the coupling constant@$1/N).

« Constraint n; = Q. Irreducible representations of the rotation group SU @) r
quire that the number of —electrons at a given site is constrained to equal to
n; = Q. In the largeN limit, it is sufficient to apply this constraint on the aver-
age(n;) = Q, though at finiteN a time dependent Lagrange multiplier coupled
to the differencen; — Q is required to enforce the constraint dynamically. With
f—electrons, the spin operatofg, = fTafb provide an irreduciblentisymmet-
ric representation o8U(N) that is described by column Young Tableau wih
boxes. AN is made large, we need to ensure that Q/N remains fixed, so that
Q ~ O(N) is an extensive variable. Thus, for instance, if we are @sted ilN = 2,
this corresponds tg=n; /N = 1. We may obtain insight into this case by consid-

ering the largeN limit with g=1/2.

The next step in the largd limit is to carry out a “Hubbard Stratonovich” transfor-
mation on the interaction. We first write

H(1) = _% (W'iati6) (MiaWia)

with a summation convention on the spin indices. We now famahis[45[4b] as

. . AY
H(0) = BV 0T =V, (o) + (oo ) VN

This is an exact transformation, provided the hybridizatiariables/;(1) are regarded
as fluctuating variables inside a path integral, so formally

H [V,A]]] (90)

where

HIV.A] = Y g e+ 3 (HIV;, i1+ Ang (1) - Q). (91)
ko ]



is exact. In this expressiorZ[V,A] denotes a path integral over all possible time-
dependences df; andA;(7), andT denotes time ordering. The important point for
our discussion here however, is that in the lakgkmit, the Hamiltonian entering into
this path integral grows extensively will so that we may write the partition function
in the form

z = /.@[V,A]Tr[Texp[—N/OB%[V,A]] (92)

whereJZ|V,A| = %H [V,A] ~ O(1) is an intensive variable ilN. The appearance of a
large factomN in the exponential means that this path integral becomesrdded by its
saddle points in the largg limit- i.e, if we choose

V] — Vo, )\J — Ao
where the saddle point valugs and A, are chosen so that

2InZ[V,A] _ 0InZ|V,A]

=0
dv VJ :VO7Aj :)\0 aA V] :Vo7)\j :)\0

then in the largeN limit,
Z = Tre PHNoAd

In this way, we have converted the problem to a mean-fieldyheowhich the fluctuat-
ing variablesy;(7) andA; () are replaced by their saddle-point values. Our mean-field
Hamiltonian is then

v VoVo
Hyet = ZSRCTRUCRGJFJZG (ijawjaVO—l-VoqujijB +Aoijafja) +Nn< : —Aoq) ,
ko )

where n is the number of sites in the lattice. We shall novgitate the use of this mean-
field theory in two cases- the Kondo impurity, and the Kondtida. In the former, there
is just one site; in the latter, translational invariancenps us to se‘l&/j =\, at every
site, and for convenience we shall choose this value to be rea

3.3. Mean-field theory of the Kondo impurity

3.3.1. Diagonalization of MF Hamiltonian

The Kondo effect is at heart, the formation of a many bodymasce. To understand
this phenomenon at its conceptually simplest, we begin tighimpurity model. We
shall begin by writing down the mean-field Hamiltonian foriagée Kondo ion

NV?2

H= gechkockg-i— ZV[CTKU fo+ floGol +A S Nee —AQ+ 5 (99
(o) g g



By making a mean-field approximation, we have reduced théleno to one of a
self-consistently determined resonant level model. Naypsse we diagonalize this
Hamiltonian, writing it in the form

NV?2

yo

where the “quasiparticle operatore’y, are related via a unitary transformation to the

original operators

commutinga',, with H, we obtain
H, a',s] =E,a' (96)
Expanding the right and left-hand side pf]|(96) in termd of) @&d [9B), we obtain,

(Ey—g)ay—VB = 0
—Vgak-%(Ey—)\)B =0 (97)

Solving for a, using the first equation, and substituting into the seconghéon, we

obtain
ve 0 98
E,— A — =
Y ZEV_SK (99)

We could have equally well obtained these eigenvalue egusby noting the electron
eigenvaluesE, must correspond to the poles of the f-Green funct'@lp(Ey)*l =0,

where from an earlier subsection,

V2
GiHw) = [w—)\ - Z -y (99)
Either way, the one-particle excitation energigamust satisfy
E,=A+ Z Vo (100)
Ey—&

The solutions of this eigenvalue equation are illustrateglgically in Fig. [1J7). Suppose
the energies of the conduction sea are given by MealB&crete values

sk:(k-l—%)Ae, ke {-M,...,M—-1}

Suppose we restrict our attention to the particle-hole g#dsen the f-state is exactly
half filled, i.e. whenQ = N/2. In this situationA = 0. We see that one solution to the
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FIGURE 17. (a)Graphical solution of the equatign= — zky\f—i, for eight equally spaced conduction

electron energies. Notice how the introduction of a new llestiate ay = 0 displaces electron band-states

both up and down in energy. In this way, the Kondo effect it§e@w bound-state fermion states into the
conduction sea. (b) Energy dependence of the scatterirepsheéft.

eigenvalue equation correspond€sto= 0. The original band-electron energies are now
displaced to both lower and higher energies, forming a bdr2Mb+ 1 eigenvalues.
Clearly, the effect of the hybridization is to inject one nfasmionic eigenstate into the

band. Notice however, that the electron states are dispRgametrically either-side of
the new bound-state &, = 0.



Each new eigenvalue is shifted relative to the original emtidn electron energy by
an amount of ordef\¢. Let us write

2%

E,=¢& —Ae—Y
y =& —Re_

whered € [0, 1] is called the “phase shift”. Substituting this into the eig&lue equation,

we obtain
y+M V2

E,=A+ Z —
Y
n=y+1-M As(n_%)

Now if M is large, we can replace the sum over states in the abovei@uoust an
unbounded sum

M s

Nn—=—co (n — %)
so that the phase shift is given By = 6(E,), where

TpV2

tand|e] = 3 e

where we have replacgn = A—ls as the density of conduction electron states. This can
also be written

5(e) =tan! [)\%} =ImIn[A +iA—¢] (101)
whereA = mpV? is the width of the resonant level induced by the Kondo effidctice
that forA =0, 8 = /2 at the Fermi energy.

« The phase shift varies frod= 0 atE, = —» to 6 = matE, = », passing through
0 = 11/2 at the Fermi energy.

« An extra state has been insertetb the band, squeezing the original electron states
both down and up in energy to accommodate the additionad:sstdtes beneath
the Fermi sea are pushed downwards, whereas states abdverthieenergy are
pushed upwards. From the relation

JAY:S
E,=¢&,——9d(E
YT T (Ey)

we deduce that

de Ae dd(E)
dE = YTwaE



B 1 d5(E)
= T aE (102)

wherep = 1/Ac is the density of states in the continuum. The new densityatés
p*(E)is given byp*(E)dE = pde, so that

p"(E) =p(0) 4o =P+ A(E) (103)

where
1dé(E) 1 A

(B =74 “nE- A @

corresponds to the enhancement of the conduction electnasitgt of states due to
injection of resonant bound-state.

(104)

3.3.2. Minimization of Free energy

With these results, let us now calculate the Free energy andnme it to self-
consistently evaluat® andA. The Free energy is given by

Nv2

F:—NTZInl-I—e e/ — .

(105)

In the continuum limit, where — 0, we can use the relaticE;, = sy—As% to write

~Tin[l+eP®] = —Tln[1+e—ﬁ(fv—A€%)]
—>F0
= —T'“[1+eﬂsy]—A_;5(8y)f<€y) (106)

wheref (x) = 1/(ef*+ 1) is the Fermi function. The first term i (706) is the Free eperg
associated with a state in the continuum. The second teutsdéom the displacement
of continuum states due to the injection of a resonance @a@ontinuum. Inserting this
result into [10p), we obtain

NV2
2
- N/ _AQ+ NV (107)

The shift in the Free energy due to the Kondo effect is then

NA
:_N/ )iming — & ~AQ+ 13 (108)



where we have introducefl= A +iA. This integral can be done at finite temperature,
but for simplicity, let us carry it out atl = 0, when the Fermi function is just at step
function, f (x) = 6(—x). This gives

N {—¢€]q0 NA
AE = T—Tlm[(z—e)ln[TMD—)\QJrﬁp
N Z D NA

~ Nimfzin {@]_Dm H}_Amﬁp (109)

where we have expandé¢d+D)In [D—:Z} — DIn [%} +{ InD to obtain the second line.

We can further simplify this expression by noting that

NA

—)\Q—I-Hp:—%lm [zln [e—p—lﬁi"QH (110)

whereq = Q/N. With this simplification, the shift in the ground-state egedue to the
Kondo effect is

AE:%Im[ZIn[ ¢ M (111)

eTe™
where we have dropped the constant term and introduced thédd@mperaturd, =
De . The stationary poirdE/d{ = 0 is given by

Te VA2 + N2

{=A+id=T,e™ {tan(nm -

>|>

Notice that

« The phase shifd = mg is the same in each spin scattering channel, reflecting
the singlet nature of the ground state. The relationshipiéen the filling of the

resonance and the phase sQift= 5 5—;; = N% is nothing more than Friedel's sum
rule.

« The energy is stationary with respect to small variatioms andA. It is only a local
minimum once the conditiodE/dA, corresponding to the constraifit,) = Q, or

A =Acot(mq) is imposed. It is instructive to study the energy for the sdezase
q= % A = 0 which is physically closest to th&= 1/2, N = 2 case. In this case,
the energy takes the simplified form

AE = %[Aln [%M (112)

Plotted as a function o¥, this is the classic “Mexican Hat” potential, with a
minimum wheredE /dV = 0 atA = rip|V |2 = Ty (Fig. [I3)
« According to [10RB), the enhancement of the density of sttédse Fermi energy is

A

p*(0) = P‘f‘m



| sin(m)
= p+ T (113)

per spin channel. When the temperature is changed or a magaket introduced,
one can neglect changesirandA, since the Free energy is stationary. This implies
thatin the largeN limit, the susceptibility and linear specific heat are thoks&non-
interacting resonance of width The change in linear specific hedi,, = AyT and
the change in the paramagnetic susceptibdliyyare given by

_ [NmPKE _ [Nm?k3] sin(m)
i [ 3 }p‘(m_{ 38} T
. . 2 . . 2 .
Ay = [NJ(J+1;(9“B) }pi(o):[NJ(J"i‘l;(g“B) }SI?T(TT) (114)

Notice how it is the Kondo temperature that determines thke sif these two
guantities. The dimensionless “Wilson” ratio of these twatities is

[ (mg? bx
W_[Q%VKH4JAV_1

At finite N, fluctuations in the mean-field theory can no longer be ighoféese
fluctuations induce interactioremongst the quasiparticles, and the Wilson ratio
becomes

1

W=_—"_.
-4
The dimensionless Wilson ratio of a large variety of heawcebn materials lies

remarkably close to this value.

3.4. Gauge invariance and the composite nature of thé—electron

We now discuss the nature of tlie-electron. In particular, we shall discuss how

« the f—electron is actually a composite object, formed from thelinig of high-
energy conduction electrons to the local moment.

« although the broken symmetry associated with the lafgeean-field theory does
not persist to finiteN, the phase stiffness associated with the mean-field theory
continues to finiteN. This phase stiffness is responsible for the charge of the
compositef electron.

3.4.1. Composite nature of the heawydiectron
Let us begin by discussing the composite structure offthelectron. In real mate-

rials, the Kondo effect we have described involves spinséat from localized f- or
d-electrons. Though it is tempting to associate the congdsielectron in the Kondo



effect with the thef —electron locked inside the local moment, we should also lvear
mind that the Kondo effect could have occurred equally wethwa nuclearspin! Nu-
clear spins do couple antiferromagnetically with a conigunotlectron, but the coupling
Is far too small for an observable nuclear Kondo effect. Mindess, we could conduct a
thought experiment where a nuclear spin is coupled to cdiauelectrons via a strong
antiferromagnetic coupling. In this case, a resonant batat® would also form from
the nuclear spin. The composite bound-state formed in tel&effect clearly does not
depend on the origin of the spin partaking in the Kondo effect

There are some useful analogies between the formation afotigositef —electron
in the Kondo problem and the formation of Cooper pairs in stgeductivity, which
we shall try to draw upon. One of the best examples of a cortgpbsund-state is the
Cooper pair. Inside a superconductor, pairs of electrohs\eeas composite bosonic
particles. One of the signatures of pair formation, is tloe tlaat Cooper pairs of electron
operators behave as a single composite at low energies,

W, (0P, (X) = F (x—X)

The Cooper pair operator is a boson, and it behaves as a candrabause the Cooper
pairs condense. The Cooper pair wavefunction is extrenxégneed in space, extending
out to distances of ordef ~ v /Tc. A similar phenomenon takes place in the Kondo
effect, but here the bound-state igexmionand it does not condense For the Kondo
effect the fermionic compositeg - S(x))aﬁ W (x) behaves as a single charged electron
operator. The analogy between superconductivity and thed&ceffect involves the
temporal correlation between spin-flips of the conductiea and spin-flips of the local
moment, so that at low energies

B SOIW () ~ A1) Fo(t).

The functionA(t —t’) is the analog of the Cooper pair wavefunction, and it extends
to timest, ~h/Ty.

To see this in a more detailed fashion, consider how thedotem term behaves. In
the path integral we factorize the interaction as follows

_J 7t t vV
Hy = WM aga —V (w Bfﬁ> + <f Ewﬁ)v+NT
By comparing these two terms, we see that the composite m€r§ﬁ(j)wa(j) be-

haves as a single fermi field:

1 vV
N asOa0) = () 1500

Evidently, a localized conduction electron is bound to asw of the local moment
at the same site, creating a new indepentEmionic excitation. The correlated action
of adding a conduction electron with a simultaneous spindlithe local moment at
the same site creates a compos$iteelectron




It is worth noting that this fermionic object only hybridezeith conduction electrons at
a single point: it is thus locah space.

Let us now try to decompose the composite fermion in term$efalectrons that
contribute to the bound-state amplitude. We start by wgitime local moment in the
fermionic representatiof,

1 1 1
Nraﬁwa:—ﬁ al.Uaf _>—_< al.Ua>

where we have replaced the bilinear product between theuotioth andf —electron
by its expectation value. We can evaluate this “bound-statplitude” from the corre-
sponding Green-function

_\?:%“TB%) _ /d‘*’f( )ImGLpf(a)—ic‘S)

1 1

N Vo/f [Zw g —i0 w— |A] (115)

where we have chosen the half-filled c&3E\N = 1/2, A = 0. In the large band-width
limit, the main contribution to this integral is obtained bgglecting the principal part
of the conduction electron propagatof{ — g, —i6) — imd(w — &), so that

1 £
N<fT3lIJ,3> = Zf(ek) <$|%Tkﬂz> (116)

From this expression, we can see that the contribution ofengistate in the Fermi sea
to the bound-state amplitude is given by

1, . £,
N<f sGp) = f(&) (m)

This function decays with the inverse of the energy, righttouhe band-width. Indeed,
if we break-down the contribution to the overall bound-stanplitude, we see that each
decade of energy counts equally. Let us take 0 and divide the band on a logarithmic
scale inton equal parts, where the ratio of the lower and upper energges iL, then

Vo 0 —£ D 1
0 oV __® V. =
J P O/Dds g2rp2 P O/A dge

D/s D/t D/s"| de
D/s /52 D/s" A €
9 Important and subtle point: The emergence of a compositaifer does not depend on a fermionic

representation of the spin. The fermionic representatotite spin is simply the most convenient because
it naturally furnishes us with an operator in the theory tlegiresents the composite bound-state.




Ds™"
= pVp¢Ins+iIns+...Ins+In A (117)

This demonstrates that the composite bound-state invaleztrons spread out over
decades of energy out to the band-width. If we complete ttegyral, we find that

\ D 1
joszOInZ:A:De =Ty

as expected from the minimization of the energy. Another efgyresenting this discus-
sion, is to write the composite bound-state in the time-dapees

1 / /
N aﬁ( MW (t) — At —t) o () (118)

where now 1
At —t) = S (f O w(t))

This is the direct analog of Cooper pair bound-state wawtfan, except that the
relevant variable is time, rather than space. If one evatutite functior\(t) at a finite

t, we find that
t _t f Sk ( 5 ) e*ifk(tft/)
Z +A2

Heuristically, the finite time cuts off the energy integrako the Fermi surface at an
energy of orden/t, so that

PVoln (BY)  (t <<h/Ty)
At N{ pVoln <%> (t >>h/Ty)

emphasizing the fact that the Kondo effect involves a cati@h between the spin-flips
of the conduction sea and the local moment over decades efdaales from the the
inverse band-width up to the Kondo timgeT, .

From these discussions, we see that the Kondo effect is

« entirely localized in space.
+ extremely non-local in time and energy.

This picture of the Kondo effect as a temporal, rather thapadial bound-state is vital
if we are to understand the extension of the Kondo effect fiteersingle impurity to the
lattice.

3.4.2. Gauge invariance and the charge of theefectron

One of the interesting points to emerge from the mean-fi@drthis that the energy of
mean-field theory does not depend on the phase of the boateashplitud®/ = |V|e°.



This is analogous to the gauge invariance in supercondiygtwhich derives from
the conservation of the total electronic charge. Here, gangariance arises because
there are no charge fluctuations at the site of the local mgragiact encoded by the
conservation of the total f-chargg Let us look at the full Lagrangian for the-electron
and interaction term

L = f5([ig—A)fe—H,
VvV

Ho = V(wTafa) (f aWa)V—f—NT (119)

This is invariant under the “Read-Newns[46] transforroati

f — fe?,
vV — Vé(p (86— 0+0),
o0

AH)\—i—at

(120)
where the last relation arises from a consideration of thiggavariance of the dynamic
part f7(id, — A)f of the Lagrangian. Now i/ (t) = [V (t)|€°®, whereV(t) is real,
Read and Newns observed that by making the gauge clpdige- —0(t), the resulting

= |V|€(@+9 = |v| is real. In this way, once the Kondo effect takes place thespha
ofV IV|€® is dynamically absorbed into the constraint fidld effectivelyA = 6,¢
represents the phase precession rate of the hybridizaéth fihe absorption of the
phase of an order parameter into a dynamical gauge field isdctie “Anderson
Higgs ” mechanism[J47] By this mechanism, once the Kondeatftakes placey
behaves as a real, and hence neutral object under gaugttnaations, this in turn
implies that the composite—electron has to transform under real electromagnetic gauge
transformations, in other words the Anderson Higgs efietité Kondo problem endows
the compositd —electron with charge.

There is a paradox here, for in the Kondo effect, there cama#igtbe no true broken
symmetry, since we are dealing with a system where the nuaitbecal degrees of free-
dom is finite. Neverthelesthe phase does develop a stiffness- a stiffness against vari-
ation in time, and the order parameter consequently deseétdimite range correlations
in time. There is a direct analogy between the spatial ph#feess of a superconductor
and the temporal phase stiffness in the Kondo effect. Inrsgpeluctivity, the energy
depends on spatial derivatives of the phase

2

ps(D<p 2eh)2 = 20 ps

A
( where we have sét= 1.) Gauge invariance links this stiffness to the mass of the
photon field, which generates the Meissner effect; the se/equared penetration depth
is directly proportional to the phase stiffness. In an agails fashion, in the Kondo
effect, the energy depends on temporal derivatives of tlasglnd the phase stiffness



FIGURE 18. “Mexican Hat Potential” which determines minimum of Freergy, and self-consistently
determines the width of the Kondo resonance. The Free ewasghays this form provided the constraint
OF /0A = (n;) — Q= 0isimposed.

is [9

o)
ED ?(p(atfp)z

For a Kondo lattice, there is one independent Kondo phasedohn spin site, and
the independent conservation@fat each site guarantees that there is no spatial phase
stiffness associated witlp. The temporal phase stiffness leads to a slow logarithmic
growth in the phase -phase correlation functions, whichumm teads to power-law
temporal correlations in the order paramaté¢r ):

(50(1)30(T)) ~ S In(T 7). V(TV()) e OO0 (7 7y~

Zl-

In this respect, the Kondo ground-state resembles a twordiioeal superconductor,
or a one dimensional metal: it is critical but has no true lomgge order. As in the

10 Note that becausk ~ ¢ ¢, the phase stiffness is given py, = 02F /922



TABLE 1. Parallels between Superconductivity and the Kondaeffect .

Superconductivity Kondo effect

Bound State Y0P, (X) =F(x=X) | (Cyp -§(t’))wB (1) =At—t")fu (t')

Bosonic Fermionic
Characteristic energy To = wHe Y% T, = D/Jpe 1/
Energy range contributing E e [T, wp] E € [Tk, D]
to bound state
Extended in space time
Conserved Quantity Total electron charge Charge of local moment
Long Range Order LROd > 2 Powerlaw in time

Powerlaw in spacd < 2

Phase stiffness Ps Py
Consequences of Meissner effect Formation of charged
Phase stiffness heavy electron
(Anderson- Higgs) 23353 = Ne+ N
Quantity related )Tlg 0 ps o =P,
to phase stiffness

superconductor, the development of phase stiffness iagokal physics. When we make
a gauge transformation of the electromagnetic field,

e(D(x,t) - eq)<X,t)—|—dta<X,t),
eA(x,t) — eA(xt)+DOa,



Yx) — @(x)e 9y (121)

Because of the Anderson - Higgs effect, the hybridizatiores and the only way
to keeplL, invariant under the above transformation, is by gauge toamsng the
f —electron and the constraint field

fo(j) — folj)e @b
A — A+oa (122)

( Notice howA transforms in exactly the same way as the poteptta)

The non-trivial transformation of thé—electron under electromagnetic gauge trans-
formations confirm that it has acquired a charge. Rigidityhaf Kondo phase is thus
intimately related to the formation of a composite chargadiion. The gauge invariant
form for the energy dependence of the Kondo effect on the Kqithsep must then be

Po
2

From the coefficient ofp?, we see that the Kondo cloud has an intrinsic capacitance
C = é’p, (E ~ C®?/2). But since the energy can also be written; )?/2C ~ U*n% /2

we see that the stiffness of the Kondo phase can also be assbeiith an interaction
between thd —electrons of strengtt *, where

1

EU (dtq;_eq))z

3.5. Mean-field theory of the Kondo Lattice

3.5.1. Diagonalization of the Hamiltonian

We can now make the bold jump from the single impurity prohlémthe lattice.
Most of the methods described in the last subsection gepensdry naturally from the
impurity to the lattice: the main difficulty is to understatigd underlying physics. The
mean-field Hamiltonian for the lattide]4{8,149] takes thenfor

— VoV,
Huet :kZSRCTROCRO-i-JZa <ijal,UjaV0+Vol,UTjBfm +20fT 4 fja) +. 4N < ‘3 ° —)\oq) ,
(o) I

where_/" is the number of sites in the lattice. Notice, before we bgbiat the composite
f-state at each site of the lattice is entirely local, in thgbridization occurs at one site
only. Were the composite f-state to be in any way non-localweuld expect that the
hybridization of one f-state would involve conduction ¢teas at different sites. We
begin by rewriting the mean field Hamiltonian in momentumcgpas follows

_ toogt g Vo (% VoVo
HMFT_R_Z(CRa’fRU) (v'f) ,\0)( 0)+‘/VN< 3 M
g

fEa




where
Z fT R ﬁ

is the Fourier transform of thé—electron field. The absence &f dependence in
the hybridization is evident that each compositeelectron is spatially local. This
Hamiltonian can be diagonalized in the form

OQ)

E. VoVo
_ t ot k &
HMFT—RZ<3RG,bRU)< 0+ ER )( Z)+Nn< 3
= _

where aTk and ka are linear combinations cxka and fT _+ playing the role of
“quasiparticle operators” of the theory and the momentu.ate&tlgenvalueE = of this
Hamiltonian are determined by the condition

g Vo
oafea (% ©)] o

1
Gtho | (52" ol
B, = 5= 5 + Vo (123)

which gives

are the energies of the upper and lower bands. The dispelssmnibed by these energies
is shown in Fig[ 19 . A number of points can be made about tsjsatsion:

+ We see that the Kondo effect injeatew fermionic states into the original con-
duction band. Hybridization between the heavy electrotestand the conduction
electrons builds an upper and lower Fermi band separatedhypadization gap”
of width Ag = Eg(+) — Eg(—), such that energies in the range

Eg(—)< E < )\0+Eg(+)
Eg(£) = Aot Yo (124)
D+
are forbidden. Here:D_ are the top and bottom of the conduction band. In the
special case wherg, = 0, corresponding to half filling, a Kondmsulator is
formed.

« The effective mass of the Fermi surface has the oppositetsitgre original con-
duction sea from which it is built, so naively, the Hall carstshould change sign
when coherence develops.

« The Fermi surface volume expanitlsresponse to the presence of the new heavy
electron bands. The new Fermi surface volume now countsotiaé number of
particles. To see this note that

Ntot z nk)\g nf + nC>
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FIGURE 19. (a) Dispersion produced by the injection of a composite femnto the conduction sea.
(b) Renormalized density of states, showing “hybridizatimp” @\g). (c) Transformation of the Fermi
surface from a light electron Fermi surface into a heavy éhdike Fermi surface.

wheren,, - = aTkA oo i.s the number operator for the quasiparticles apnis the
total number of conduction electrons. This means

V,
Niot = NL; =Q+nc.

(2r

This expansion of the Fermi surface is a direct manifestatibthe creation of
new states by the Kondo effect. It is perhaps worth stregbiagthese new states
would form, even if the local moments were nuclear in origmother words, it is
only the rotational degrees of freedom of the local momérasdre needed to form
heavy electron bound-states with the conduction electrons

The Free energy of this system is then

_ pE, Y
N——T_k%h’][l-i—e ki}—l—e/V(T_Aq)



Let us discuss the ground-state eneigy;the T — 0O limit of this expression. We can
write this in the form

Eo [ ,_ . vV
N _/_oodEp (E)E+ (T—Aq)
where we have introduced the density of heavy electron stateE) = zRi5<E -

E(*)). Now the relationship between the energy of the heavy eestE) and the
energy of the conduction electrorg {s given by
VvV
E=¢+ g

so that the density of heavy electron states related to theéumion electron density of
statesp by

coode Y,
P (E)—Pd—E—P(1+ m) (125)

The originally flat conduction electron density of statesdsv replaced by a “hy-
bridization gap”, flanked by two sharp peaks of width appmadely 770V ?2 ~ Ty With
this information, we can carry out the integral over the giges, to obtain

Ec D% (° _ - E vV
N T+/_DdEpVV<E—_/\)2+ 5 Ad
Dp A D VvV
_'TT_EmQE)+CT_A®
D?p A, [Ty

where we have assumed that the upper band is empty, and tkee band is partially
1
filled, and sefl, = De 3 as before. If we impose the constraint

oF
o5 = (M) —Q=0 (127)
we obtain
2 _g=0
m 47
so that the ground-state energy can be written
Eob A Ae
— = —| . 12
Nns 1T n (anK) (128)

Let us pause for a moment to consider this energy functionalitatively. The Free
energy surface has the form of the “Mexican Hat” at low terapges. The minimum
of this functional will then determine a family of saddle povaluesv = V,e?, where



0 can have any value. If we differentiate the ground-stateggneith respect to&/2, we

obtain
ozlln( Aez) (129)
mo A\ Ty
or
A= %C'TK (130)

confirming thatA ~ Ty .

3.5.2. Composite Nature of the heavy quasiparticle in thedédattice.

We now turn to discuss the nature of the heavy quasiparticlédse Kondo lattice.
Clearly, at an operational level, the compoditeelectrons are formed in the same way
as in the impurity model, but at each site, i.e

N aai:005a0 — (3 ) 1000

This composite object admixes with conduction electrona aingle site- site j. The
bound-state amplitude in this expression can be written
Vo 1
J N
To evaluate the contributions to this sum, it is useful toigethat the condition
JE/0V = 0 can be written

(FT5wg) (131)

10E Vo 1,
Nov, — 2= 3PN
A 0 E
= 7%/ ey (132)

where we have use@ (J26) to evaluate the derivative. Frostisee that we can write

Vo o [0 1 A
3 - _VO/_DdEp<E—)\+(E—)\)2)
= —\ppln {)\—Dﬂ (133)

It is clear that as in the impurity, the composite-electrons in the Kondo lattice
are formed fromhigh energyelectron states all the way out to the bandwidth. In a
similar fashion to the impurity, each decadkenergy betwee, andD contributes
equally to the overall bound-state amplitudibe above expression only differs from the
corresponding impurity expressidn (115) at low energieswsng that low energy elec-
trons play a comparatively unimportant role in forming tlenposite heavy electron. It




is this feature that permits a dense array of composite ersnio co-exist throughout
the crystal lattice.

These composité—electrons admix with the conduction electrons to producesa
electron band with a density of states given py [125),

ey de VE
P©=pge =P (1 g h )
which, settinge = 0 and using[(137) and (130), becomes

(o= s 9y 9
p<0>—p+A—p+TK

at the Fermi energy. The mass enhancement of the heavyogigdsrthen

m :1+ﬁN£

m pPTx Ty

This large factor in the effective mass enhancement can bauak as 1000 in the most
severely renormalized heavy electron systems.

3.5.3. Consequences of mass renormalization

The effective mass enhancement of heavy electrons candslgiobserved in a wide
range of experimental quantities including

» The large renormalization of the linear specific heat caefiiky/ ~ rnﬁ*yand Pauli
susceptibilityx* ~ M x.

« The quadratic temperature (“ A") coefficient of the resigyivAt low temperatures
the resistivity of a Fermi liquid has a quadratic tempemtdependencey ~

2 N\ 2 , , .
Po+AT?, whereA ~ (%) ~ (ﬂ) ~ y? is related to the density of three-particle

m

excitations. The approximate constancy of the ratig? in heavy fermion systems
is known as the “Kadowaki-Woods” relation.]50]

« The renormalization of the effective mass as measured byAdhgasurements of
heavy electron Fermi surfacds][$1] 532, 53]

» The appearance of a heavy quasiparticle Drude feature iindgeency dependent
optical conductivityo (w). (See discussion below).

The optical conductivity of heavy fermion metals deservascgl discussion. Ac-
cording to the f-sum rule, the total integrated optical agstabity is determined by the

plasma frequency
/md—wa(w)—f _r(ne
o T 12 m
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FIGURE 20. Separation of the optical sum rule in a heavy fermion systgma high energy “inter-
band” component of weightt, ~ ne?/mand a low energy Drude peak of weight~ ne’/mv.

wheren is the density of electrong] In the absence of local moments, this is the total
spectral weight inside the Drude peak of the optical condiigt

What happens to this spectral weight when the heavy elefitriohforms? Whilst we
expect this sum rule to be preserved, we also expect a nevsifspréicle” Drude peak

to form in which
/ dwo(w mne =f m
= oo = iy
In other words, we expect the total spectral weight to divigkeinto a tiny “heavy
fermion” Drude peak, of total weigHt,, where

o(w) = ﬁ L

m* (%) 1—iw

11 The f-sum rule is a statement about the instantaneous, drtiime diamagnetic response of the metal.

At short timesd j/dt = (n€?/m)E, so the high frequency limit of the conductivityds w) = ”52 l . But
using the Kramers Kronig relation
"dx  g(X)
o(w) = / _——

ImTX—w—id

1 " dx
- 5-iw./?0(x)

so that the short-time diamagnetic response implies thefrsile.

at large frequencies,



is split off by an energy of ordéf ~ , /T, D from an “inter-band” component associated
with excitations between the lower and upper Kondo bap§sfg] This second term
carries the bulk- f; of the spectral weight. (Fig. 0 ).

Simple calculations, based on the Kubo formula confirm thisidexpectatior],[96,
B4] showing that the relationship between the originalxafian rate of the conduction
sea and the heavy electron relaxation rates

() t=—(n" (134)

Notice that this means that the residual resistivity

m* m

Po= & = ner

is unaffected by the effects of mass renormalization. Tarstee understood by observ-
ing that the heavy electron Fermi velocity is also renorpealiby the effective mass,
VE = 23, so that the mean-free path of the heavy electron quasifearis unaffected by
the Kondo effect.

" =VET" = VT

This is yet one more reminder that the Kondo effect is locapace, yet non-local in
time.

These basic features- the formation of a narrow Drude peadt,the presence
of a hybridization gap, have been seen in optical measursnan heavy electron

systemd[95] 34, $7]

3.6. Summary

In this lecture we have presented Doniach’s argument tleaetthancement of the
Kondo temperature over and above the characteristic RKKYnma#c interaction energy
between spins leads to the formation of a heavy electronngkstate. This enhance-
ment is thought to be generated by the large spin degensraiciare earth, or actinide
ions. A simple mean-field theory of the Kondo model and Koratthide, which ignores
the RKKY interactions, provides a unified picture of heavgatlons and the Kondo
effect. The essential physics involves composite quasgiaformation between high
energy conduction band electrons and local moments. TBis paysical effect is local
in space, but non-local in time. Certain analogies can lbelstvretween Cooper pair for-
mation, and the formation of the heavy electron bound-statgarticular, the charge on
the f —electron can be seen as a direct consequence of the tempasa gtiffness of the
Kondo bound-state. This bound-state hybridizes with cotidn electrons- producing a
single isolated resonance in a Kondo impurity, and an ergitermalized Fermi surface
in the Kondo lattice.

3.7. Exercises



1. (a) Directly confirm the Read-Newns gauge transformafi@@).
(b) Directly calculate the “phase stiffnesg, = —% of the largeN Kondo model and

show that afl = 0.
5 N <sin(nq)>
¢ Tk '

2. (a) Introduce a simple relaxation time into the conduc&tectron propagator, writing

V2
ith— A

—

G(k,iwn) ! =iy +isgnan) /2T +

(135)
Show that the poles of this Greens function occur at

where
L, m
"= —T1
m

is the renormalized elastic scattering time.
(b) The Kubo formula for the optical conductivity of an isgpic one-band system is

(V)= _¥ Vﬁni(vV)

where we have used th¢ fold spin degeneracy, arffd(v) is the analytic extension
of
N(ive) =T 'Y G(K,icn) |G(K,icon-+ivn) — Gl(K,icam) |
m

where in our caseG(R, ian) is the conduction electron propagator. Usifig [135), and
approximating the momentum sum by an integral over enefgywshat the low
frequency conductivity of the large Kondo lattice is given by

_né 1
IGIGEET)

a(v)

4. QUANTUM CRITICALITY IN HEAVY ELECTRON SYSTEMS

4.1. Introduction

This section provides a brief introduction to the unsolveabtem of quantum crit-
icality in heavy fermion materials. Many of the ideas sumzed here are the result
of collaborations, and much of the material in this sect®published in review form.
[67, [1I06,[10)7] Heavy electron materials lie on the verge ofjmedic instability. In the
discussion of the last section, we ignored magnetism angs&ad on the dense Kondo
effect. What happens when they are pushed to the very edgaghetic instability?
Such a question was first posed in the context of itinerantweidgorder in a pioneering
work by John Hertz, almost thirty years ago. Hertz concluithed a metallic system at



the edge of magnetic instability would develop a new kindrafaal behavior- quantum
critical behavior.

A quantum critical point (QCP) is a zero-temperature ingtgtbetween two phases
of matter where quantum fluctuations develop long rangeetairons in both space and
time[58]. At a finite temperature critical point, the criidong-wavelength fluctuations
of the order parameter do not involve quantum mechanicss iEhbecause thermal
fluctuations destroy the coherence of quantum fluctuatiartgyee-scales longer than

=

T~ T’ (136)
The great revolution in our understanding of critical phmeoaa which occured in the
1970s involved many tools borrowed from relativistic fiehegory, but the physics was
entirely classical.

Experimental developments of the past decade have brouggw awareness of the
importance of quantum critical points in condensed matigsies. These special points
exert a profound influence on the finite temperature propei a material. Materi-
als close to quantum criticality develop a new excitationure, they display novel
thermodynamic, transport and magnetic behavior. Theytese marked a predeliction
towards the development of new kinds of order, such as anotsuperconductivity.
A dramatic example is provided by the cuprate supercondsidBy doping with holes,
these materials pass through one or more quantum phasgitragisrom an insulator
to a metal with a spin gap at low doping, and at higher dopingcaisd QPT appears
to occur when the spin gap clos¢s][59] (Higl 21) The singulractions induced by
quantum criticality are thought to the driving force for bahe high temperature super-
conductivity and the anomalous metallic state above thegap temperaturé*.[60]

Heavy Fermion materials offer a unique opportunity to stagyantum criticality
under controlled conditions. By the application of pressuloping and most recently,
magnetic field, these materials can be tuned through a guwaatitical point from a
metallic antiferromagnet into a paramagnet (fid. 22). kinthe cuprate metals, here
the paramagnetic phase is a well characterized Fermi |i@did62,[6B] with heavy
Landau quasiparticles, or “heavy electrons”. A centralpprty of these quasiparticles,
is the existence of a finite overla@™ between a single quasiparticle state, denoted
by |gp~) and the state formed by adding a single electron to the grstatd, denoted
by |e7) = c', ,|0). This quantity is closely related to the ratig/m* of the electron to
guasiparticle mass,

2. M (137)
m*

A wide body of evidence suggests tmat/m diverges at a heavy fermion QCP, indicat-

ing that

Z=|(e"|ap")

Z—0 (P—FR).

The state which forms above the QCP is referred to as a “nomiFFer “singular Fermi
liquid”. [64), B3, [6T,[68[ 6] By what mechanism does this krdawn in the Landau
guasiparticle occur?

Table. 1. Selected Heavy Fermion compounds with quantum dital points.
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FIGURE 21. Schematic phase diagram for cuprate superconductorsistwgation of possible quan-
tum critical points. One of these QCP may be responsibldi®anomalous normal state which develops
above the pseudogap scale.
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FIGURE 22. lllustration of quantum critical physics in heavy fermioretals. As criticality is ap-
proached from either side of the transition, the tempeeasealeT? on which Fermi liquid behavior
breaks down goes to zero. A key challenge is to charactdrezaew class of universal excitations which
develops abové?.

* New data[7B[ 45] show a stronger divergence at lower tenes

4.2. Properties of the Heavy Fermion Quantum Critical Point

There is a growing list of heavy fermion systems that havenltered to an antifer-
romagnetic QCP by the application of pressure or by dopiabl€l'l.). These materials
display many common properties

« Fermi liquid behavior in the paramagnet, as indicated by the emergence of a
guadratic temperature dependence in the resistivity inaffyigoach to the QPT
p = po+AT? [BZ,[87] at ever lower temperatures.

« Divergent A coefficient in resistivity at the QCP. In a typical Fermi liquid th&

2 N\ 2 )
coefficient in the resistivity is proportional 1/1T*) ~ (mﬁ) , WhereTg is the
F



Fermi temperature. Support for the divergence of the effechass is provided
by the observation that the quadratic coefficidnof the resistivity grows, and
apparantly diverges at the quantum critical pgift[79].

Divergent specific heatat the QCP, with an asymptotic logarithmic temperature
dependence,

_G(M _Q, [To
y(T) = RT T, log T + Y, (138)
whereR s the gas constant, and experiment&ly: 0.4, suggesting that the Fermi
temperature vanishes and the quasiparticle effectiveesatgerge
m*
T —0 — 139
F — U, m — 00 ( )
at the QCP. The above expression has been written in a formevthe character-
istic energyT, enters both inside the logarithm and in the prefactor. Tlaeeea
number of materials where this one-parameter form holds wi= 0, suggest-
ing a new kind of universality where no normal component @ Hermi surface
survives at the QCH [B8]
Quasi-linear resistivity
p OTHE, (140)

at the QCP witte in the range G- 0.6. In critical Y bRRSi, , Ge,, p T over three
decade$[69].

Non-Curie spin susceptibilities
X HT)=Xo " +cT? (141)

with a < 1 observed in criticaCeCy;_,Auk (x=0.1),YbRRBSIi, ,Ge (x=0.1) and
CeNiGe,.

E/T andH/T Scaling.In critical CeCy_,Au, andY bRBSi,_, Ge, the differential
magnetic susceptibilitdM /dH exhibitsH /T scaling,

(dM/dH) ! = xg 1 +cTagH/T], (142)

wherea ~ 0.75. Neutron measuremerjtg[72] sh&wT scaling[8P[J0] in the dy-
namical spin susceptiblity of critic&@eCy_, Auy, throughout the Brillouin zone,
parameterized in the form

X 19, w) = T3 (E/T) + X, X(q) (143)

F[x] O (1—ix)2. Scaling behavior with a single anomalous exponent in the
momentum-independent component of the dynamical spireptibdity suggests

an emergence dbcalmagnetic moments which awgitically correlated in timet

the quantum critical poinfi[72].



4.3. Universality

Usually, the physics of a metal above its Fermi temperatepedds on the detailed
chemistry and band-structure of the material: it is nonergal. However, if the renor-
malized Fermi temperaturg(P) can be tuned to become arbitrarily small compared
with the characteristic scales of the material as one appesaa QCP, we expect that
the “high energy” physicabovethe Fermi temperaturg’ is itself, universal

Quantum critical behavior implies a divergence of the lomgjahce and long-time
correlations in the material. Finite temperatures intasdihe cutoff timescale

h
Tt =—— 144
beyond which coherent quantum processes are dephasedimatiiectuations. Renor-
malization group principlep[®1] imply that the quantuntical physics has an upper-
critical dimensiord,. Ford < dy, T becomes thecorrelation timer of the systenf[92],
so frequency dependent correlation functions and resgfonstons take the form

Flw,T)= %f(a)ﬁ) = %f(h_w/kBT). (145)

leading toE /T scaling[9B]. By contrast, fod > d, the correlation time is sensitive to
the details of the short-distance interactions betweertitieal modes, and in general
-1 OTYP, (b > 0). ThusE/T scaling with a non-trivial exponent strongly suggests
that the underlying physics of the heavy fermion quanturticali point is governed by
universal physics witlal, > 3.

4.4. Failure of the Spin Density Wave picture

The standard model of the heavy fermion QCP assumes theerom-kquid behavior
derives from Bragg diffraction of the electrons off a quantaritical spin density wave
(QSDW)[01,[94[ 95, 96]. The virtual emission of these softtiiations,

e =e€ +spin fluctuation (146)
generates a retarded interaction

Xx(9,w)

-
7 N\

2 Xo _
(Q-Q)2+¢& 2~

Ver(d,w) =9 (147)

between the electrons, whexéq, w) is the dynamical spin susceptibility of the collec-
tive modes. The damping termi w/rQ of the magnetic fluctuations is derived from the

linear density of particle-hole states in the Fermi sgat and1~1 = I'Q€—2 are the
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FIGURE 23. Quantum spin density wave scenario, where the Fermi surfatés” along lines
separated by the magne€rvector, pinching off into two separate Fermi surface sheets

inverse spin correlation length and correlation timeseespely. In real space,

S
Ve (rw=0)0° g (148)

€ r
is a “modulated ” Yukawa potential whose ran§e~ (P — PC)‘% — oo at the QCP.
Unlike a ferromagnetic QCP, the modulated potential orfigc$ electron quasiparticles
along “hot lines” on the Fermi surface, that are separatethbywave-vectoQ and
satisfyg, = E1Q- At a finite temperature, electrons within a momentum ranggT
are affected by this critical scattering (F[g] 23.). Thiwilis the ability of this singular

potential to generate non Fermi liquid behavior. There hesn ttwo major difficulties
with the (three dimensional) QSDW scenario for the heavynien QCP:

1. No breakdown of the Fermi liquid Away from the hot lines, the Fermi surface
and Landau quasiparticles remain intact at the QCP. Thuspbeific heat and
typical quasiparticle mass do not diverge but exhibit a wealngularityC, /T =
Yo — AVT in the QSDW picturg36].

2. No E/T scaling The quantum critical behavior predicted by this model hanbe
extensively studied[91, P6]. In the interactid; (g, w) the momentum depen-
dence enters with twice the power of the frequency, so

T~ &% (z=2).

In the renormalization group (RG) treatmén}[91] time ceadz space dimensions
so the effective dimensionality3,;; = d+z=d~+2. The upper critical dimension
is set byD;; = 4, ordy = 2[B§], so 3D quantum spin fluctuations will not lead to
E/T scaling. In three dimensions, QSDW theory predicts thatsttede entering
into the energy dependent response functions should ssalé/4 with a non-
universal prefactof[58].



4.5. Towards a new understanding.

In this last lecture, | would like to give you a sense of theaesness of the failure
of the spin density wave scenario and share with you someeohéhv ideas that are
circulating. Some have argued that it may be possible toa@xphe ofE/T scaling
and the logarithmically divergent specific h¢at[97] by segipg that the spin fluctua-
tions form a quasi-two-dimensionapin fluid[81,[9¥], lying at the critical dimension.
Inelastic neutron scattering experiments@eCu_ Auy, (x=0.1) support a kind of re-
duced dimensionality in which the critical scattering imcentrated along linear, rather
than at point-like regions in reciprocal spdce[[72, 97]. Mm@cent datd[98] may support
quasi-2D spin fluctuations at intermediate scaleSeGgNi,,.

The assumption that the spin fluid is two dimensional is harétoncile with the fact
that the developing order is fully three dimensional, anthwhe fact that these systems
exhibit very little dimensional anisotropy. Even if we aptéhese problems, there other
difficulties. First- quasi-two dimensionality can furni&yT scaling, but it does not
drop the theory below its critical dimension, and hence lmasay of accounting for the
anomalous exponents in tBg T scaling.

Finally, there is another more serious difficulty. It haserity become possible to
examine the approach to the heavy electron quantum crtimak through the use of
field tuning[I2,[8b]99]. The materidbRRSi, ,Ge with x = 0.1 lies precisely at a
guantum critical point. By applying a small magnetic fielistsystem is driven back
into the Fermi liquid. As the field is reduced and the systetumed back towards the
quantum critical point, thé coefficient of the resistivity is observed to diverge as

1
Al =
B
Such behavior can be obtained in a two dimensional spin floidetin which the inverse
squared correlation length is assumed to be proportior&l§o2 O B. The same model
predicts a weak dependence of the linear specific heat onetiagield

Yin U Log(1/B)

so that the ratio
An 1
ya  BLog(1/B)

The same experiments also show that the linear specific veagds much more rapidly
with B, asy [ AB, so that the Kadowaki Woods ratio

A/y? = constant (149)

It is difficult to understate the importance of this new résilihe constancy of the
Kadowaki Woods ratio over more than a decadeyimdicates that the momentum
dependence of the scattering amplitudes in the Fermi ligrgdhotradically affected by
the magnetic field, as they would be if the chief mechanisnttfeimass renormalization
were derived from the exchange of soft magnetic fluctuatior@s2D spin fluid. These



new results can only be understood if, in the approach to tlatym critical point,
the Fermi liquid scattering amplitudes remain local, dejeg only on the size of the
renormalized Fermi temperatufg[f9].

K K
\ / ER ER’ Equ -
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k+g A A g s
pd (150)

In the previous chapter, | argued that the effective Fermpterature of the Kondo lattice
measures the “phase stiffness” associated with the ardplito form of a composite
heavy electron, so that

Py~ T

The constancy of the Kadowaki Woods ratio, the lock-steerdignce of botlA and

y?, and the appearance of local features in the spin corrakag the quantum crit-
ical point are all in keeping with the idea that the Kondo badnstate phase stiffness
is going to zeroon the paramagnetic side of the heavy electron quantuncalritioint,
just as the spin-wave stiffnegg, goes to zero on the magnetic side of the same point.
In other words

Py — 0, }quantum bicriticality? (151)
py — O

In other words, the Kondo composite bound-state appeais &t éxactly the same time
magnetic order develops. This strongly suggests to mept#raiaps the heavy electron
quantum critical point might be better understood as a aqunardticritical point, where
two order parameters go to zero at a point.

Traditionally, theories of phase transition are built agonunderlying mean-field
theory. The spin density wave scenario is a consequencenfiaing fluctuations about
the Stoner and Slater view of itinerant magnetism. If thigrapch fails, then perhapsiitis
a sign that we should search for a new kind of mean-field thiodgscribe the quantum
phase transition between antiferromagnetism and the redaggron fluid. There are two
kinds of suggestion that have been considered recently :

« Local quantum criticality. The apparent momentum indegeicée of the localized
critical correlations at the quantum critical po[ni[72Jshad to the suggestion that
the the correct mean-field theory, is one that is local, yi&t flynamical.[Z0OP[ 101,
f[02] Such “dynamical mean-field theorie§”,[103] are thdughasymptotically
exact in infinite dimensions. In this philosophy, the lochygics remains strongly
interacting even in infinite dimensions, but the local chtenof the interactions is
supposed to be stable against finite dimensionality. Tlaa fdrms the basis of a
recent theory by Si et al.

« Traditional RG approach on a new Lagrangian. Rather thandarethe traditional
RG approach first suggested by Heftz,[91] we should contiouembrace the
notion that a Wilsonian approach, where interactions becassak in high enough
dimensions does work for quantum critical points. This apph argues that what



is needed, is a new description of magnetism, and the wayjtles to the Fermi
sea. One idea here, is that at the quantum critical pointh¢lagy electron breaks
up into its spin and charge componelfig.[68]

We now discuss these ideas in more depth.

4.6. Local Quantum Criticality

The momentum-independent scaling term in the inverse dimausceptibility (7)
suggests that the critical behavior associated with theynlieamion QCP contains some
kind of local critical excitation[7R]. One possibility, is that this tdal excitation is the
spin itself, which would then presumably develop a slow pelaw decay[I00[ 101,

[02] L

(S(n)S(1)) = T—)ze (152)

wheree # 0 signals non- Fermi liquid behavior.
Si[[L04] et al. have extensively developed this idea, prompthat thelocal spin
susceptibilityy,,. = qu(q, w)|,,_o diverges at a heavy fermion QCP. Frgm (143),

[ 4 1 _T(d-2)a/2
Xioc(T) /d Yz Ta T (153)
so a divergent local spin susceptibilty requires a spin fliith d < 2. Si et al are thus
motivated to propose that the non-trivial physics of thevigdarmion QCP is driven by
the formation of a two-dimensional spin fluid. Si et al comsidn impurity spin within
an effective medium in which the local Weiss fi¢ldchas a critical power-spectrum (Fig.
P4.)
(H(@)?) = Xp H(w) = o (154)

. | 1
e=1 X _Xo +Apr

FIGURE 24. In the local quantum critical theory, each spin behaves asa moment in a fluctuating
Weiss field. In the theory of Si et al [102], a self-consistsslution can be obtained far= 1 in which

the local susceptibility develops a self-energy with a moersal exponenM (cw) O oo?lﬂ .



wherece is self-consistently evaluated using a dynamical mead-fleory, whereg—
dependence of self-energies is dropped. In principle, tethad solves the dynamical
spin susceptibility of the impurity ~1(w) = x5 (w) +M(w). This, in turn furnishes

a “spin self-energy’'M(w) used to determine the spin susceptibility of the medium
X (6, w) = I(0) +M(w).

Si et al find that a self-consistent solution is obtainedcefer 1, if the spin-self energy
contains a separate power-law dependevi¢ey) ~ w? with an exponentr = 1/pA
which is determined by the density of stapeand band-widtt\ of the bond-strengths in
the two-dimensional spin fluid. Although self-consisteneguires a new power-law in
the spin susceptibility, independent solutions of the intgunodel have not yet shown
that this feature is indeed generated by a critical Weisd.fighis theory nevertheless
raises many interesting questions:

1. Is the requirement of a two dimensional spin fluid consisteith the ultimate
emergence of three dimensional magnetic order. For exardpts the the cubic
(and hence manifestly three dimensional) quantum criticztierial,Celn, display
a divergent specific heat?

2. If the spin-fluids are quasi-two dimensional, do we expeatltimate cross-over to
a three-dimensional QSDW scenario?

3. If a is non-universal, why are the critical exponents @eCy_,Aux and
Y bRRBSI, ,Ge so similar?
4. What stabilizes the local quantum criticality againgeisite couplings?

4.7. ldeas of spin charge separation and supersymmetry.

An alternative possibility, is that the heavy fermion QCR isuly three-dimensional
phenomenon. In this case a different approach is needed-eed to search for a
new class of critical Lagrangian witth, > 3[[L0g]. On general grounds, the existence
of a Fermi liquid in the paramagnetic phase suggests thahéie class of critical
Lagrangians must find expression in terms of the quasipadfields ¢ in the Fermi
liquid- but how do we couple these degrees of freedom to thgneizsm, and how do
we account for the simultaneous loss of the resonant botate-stiffness at the same
time that magnetism develops? The simplest possibility igrite

L= L (W] + Le_y[W, M] +Ly [M]. (155)

wherel. describes the heavy Fermi liquid, far from the magneticabiity, L,, de-
scribes the magnetic excitations that emerge above thgyesealeT? (P).

L-_\y describes the way that the quasiparticles couple to andydeta critical
magnetic modes; it also determines the type of transfoonatiich takes place in the
Fermi surface which occurs at the QCP. This last point fatllb@cause away from the
QCP, magnetic fluctuations can be ignored in the groungsssatthat.,, — 0. In the
paramagnetic phasgyl) = 0 soLg,, — 0, but in the antiferromagnetic phadd) +# 0,



Le (¢ paramagnet
Lett = .
LE[W] 4+ Lem[w, (M) afm.
where the asterisk denotes the finite renormalizationye@from zero-point fluctua-
tions in the magnetization.
If the staggered magnetization is the fundamental crifietd, then we are forced to
couple the magnetic modes directly to the spin density oFtreni liquid

Ly, = gngRqatpR-ﬁlq. (156)
7q

But once the staggered magnetization condenses, thisdeadty back to a static spin
density wave (Fig 23).

An alternative possibility is suggested by the observatianthe magnetism develops
spinorial character in the heavy Fermi liquid. The Luttingem rule[10B] governing the
Fermi surface volum¥ ¢ “ counts” both the electron density andthe number of local
moments per unit cefl,,;,JB8, [37] :

v
2(2—; = Ne+ Ny pins (157)
The appearance of the spin density in the Luttinger sum mfleats the composite
nature of the heavy quasiparticles, formed from boundesthetween local moments
and high energy electron states. Suppose the spinoriaddearof the magnetic degrees
of freedom seen in the paramagaéto manifests itself in the decay modes of the heavy
quasiparticles. This would imply that at the QCP, the stegidjenagnetization factorizes
into a spinorial degree of freedokh(x) = z'(x)&z(x), wherez is a two-component spin
1/2 Bose field. “Spinorial magnetism” affords a direct couglivetween the magnetic
spinorzand the heavy electron quasi-particles via an inner produet the spin indices

=93 (#'_qotho) +H-0 (158)
7q

where conservation of exchange statistics obliges us todate a spinless charge
fermion x. This would imply that the composite heavy electron decays a neutral
“spinon”and a spinless charge e fermigh= s, + x . The critical Lagrangian in this
case would take the form

L=Le[¢]+Le_mW.X.Zd+Lylz ¢]. (159)

We have to be cautious of course, because this is undouliadlpf many alternative
ways we might begin to construct a new class of critical Lagrans. What we do see
quite clearly however, is this line of reasoning leads usito the notion that the break-
up of the heavy fermion QCIPvolves spin-charge separation

Hall constant measurements may provide a good way to didzetmeen the spin
density wave and composite quasiparticle alternativethdriormer, regions around the



hot-line do not contribute to the Hall conductivity, and #tenge in the Hall constant
is expected to evolve as the staggered magnetizftion[@8foBtrast, the composite
fermion scenario leads to a much more rapid evolution: piedithat the density of
spinless fermions is finite at the QCP the Hall constant withp suddenly at the QCP
(671

Mq, (vectorial )
ARy U { O(Ql) (spinorial)

The only available Hall measurement at a QCP to date showaragehn sign takes place
in the close vicinity of the QCP in critic&leCy_,Au, it is not yet clear whether there
is a discontinuity at the transitidn[J]09]. This is clearty@ea where more experimental
input is highly desirable.

Let me end with a few speculations. If we are to construct a otical theory for
the heavy electron quantum critical point, then we will neethe new theoretical ideas.
A new critical theory will require as a first step, a new kindnoéan-field description
that permits us to understand why the magnetism and the Keffelct die at a common
critical point. At present, we do not know how to construct eam-field theory that
contains a heavy electron quantum critical point. One @#tng idea here, may be the
incorporation of supersymmetryrhis is an idea that | have tried to develop, as yet
with only partial success, with my graduate student Johnkithgon and collaborators,
Catherine Pépin and Alexei Tsvelik.]106, 107] At a very edavel, magnetism involves
the manifestation of spin as a bosonic excitation, wheress/yh electron behavior
involves the manifestation of spin as a fermionic objecthd two phenomena share
the same quantum critical point, then is it possible thatsghi@ manifests both types
of behavior at a quantum critical point- in otherwords, thalisplays some kind of
supersymmetry?

It does prove possible to represent both spin and Hubbarchtms in a way that
involves a locally supersymmetric gauge theory, but a nfesd-theory still eludes us
at the current time. We do have an idea about the structurei®friean-field theory,
which | shall briefly mention to you. In this putative meandi¢éheory, we require two
order parameters- one for the formation of the compositeyhekectron corresponding
to the amplitude for composite fermion formatign ~ V and one for the magnetism

(P, ~ (Z5) ~ v/M). Suppose we can integrate out all of the fermions in thertheo
that we are left with an effective theory fqy, and y,, given by a Landau Ginzburg
free energyF [, J,]. Now here’s the remarkable thing- for the two order paransete
share a quantum critical point, then the expansion of the énergy near the QCP must
take the form

(160)

F ~ a(|g,>— |y, |?) +interactions

Whena > 0, we have the heavy electron phase wjth= 0, Y, # 0 but when
a < 0, we have the magnetic phase, wheke# 0, Y, = 0. At a = 0, both order
parameters vanish simultaneously. The two must go to zéhe aame point in the phase
diagram, so they can only come together in the quadratic owation (|, |2 — |@,|?).
This suggests that the negative definite metric

(AL
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FIGURE 25. The heavy fermion QCP may involve a supersymmetric gaugerstny. To understand
the fact that the magnetizatioM] disappears at precisely the same point in the phase diaghame the
amplitude ¥) for the formation of composite fermions goes to zero, wedreespecial symmetry between
the two order parameters. Local moments behave as fermidhs paramagnetic phase, but as bosons in
the antiferromagnet. Does a supersymmetry develop at thetgon critical point and is this responsible
for the “Minkowskii” metric between the two order parameténat is required for them to vanish at the
same point in the phase diagram?

is a symmetry invariant of the quantum critical point. Th@egrance of a minus sign
- a Minkowskii type metric- is required by the phenomenologgt traditional invariant
symmetry groups of a critical point involve a positive metaissociated with a trace over
order parameter combinations. The minus sign would occthefresidual symmetry
between these two order parameters corresponded to syiogieaup. One way for
such minus signs might appear is via the supertrace- anamiasf a supergroup. This
prompts the following conjecture, on which | will end: thhetthe above invariance is a
residue of a supertrace in a supersymmetric Lagrangiaru@ntgm criticality.

4.8. Summary

This section has discussed the origin of the mass divergantiee heavy fermion
quantum critical point, emphasizing that a quantum spirsifygrmvave picture can not
explain the observed properties. The proposal of fundaatigmtew kinds of quantum
critical points has been reviewed. This is clearly an areth & huge potential for
progress both on the experimental, and theoretical front.



4.9. Exercises

. Consider the tree level scaling for the zero temperatwegzHMillis Lagrangian at an
antiferromagnetic quantum critical point

S=S+5 (161)

where

“HK)M(K)M(—kK)

lwl<an k<A deod9k
/ (Zn)d-‘rl

B . . w 2/z
IR (162)
describes the propagation of an overdamped spin fluctuatitninverse susceptibility
x1(k,w) at quantum criticality, with a critical wavevect@). Here we have used the
notationk = (k,w) to denote the wavevector and frequency of a magnetizatiotlemo
The non-linear interaction term in the model takes the form

d(@+)

siu)=u [ (_|-1|4(2n—)d+;> M(Ky)... M(K) ¥ (S k) (163)
=1

J

(a) Derive the tree level scaling that keeps the Kinetic t§nnvariant. First note that
from the kinetic term, the scaling dimension of frequenclws= [k|*>. Show that if
the wavevector and frequency cut-off are rescaled acogtdin

~ N - wo

R=T, &= (164)
then one must rescale .

k = kb, w = Ob* (165)

to keep the form of the Kinetic term invariant. Show that urttiés scaling
Ly [Bl<apk<A gd+lg
Se _ plztd 2)/ 7(27_[)(“_1)( LROM(K)M (k)
so that with scaling B
M(k) = M(k)b~(+d-2)/2

the kinetic energy remains invariant.
(b) Using the tree level scaling derived above, show thairttezaction term transforms

as
SU)—§(UY

where U
U'=eaa

showing that the interaction term scales to zeraiferz > 4, proving thad = 4—z=
2 is the upper-critical dimension for the Hertz-Millis made
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