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Abstract. This set of lectures describes the physics of moment formation, the basic physics of the
Kondo effect and the development of a coherent heavy electron fluid in the dense Kondo lattice. The
last lecture discusses the open problem of quantum criticality in heavy electron systems.
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1. LOCAL MOMENT FORMATION

1.1. Introduction

The last two decades have seen a growth of interest in “strongly correlated electron
systems”: materials where the electron interaction energies dominate the electron kinetic
energies, becoming so large that they qualitatively transform the physics of the medium.
[4]

Examples of strongly correlated systems include

• Cuprate superconductors, [5] where interactions amongst electrons in localized 3d-
shells form an antiferromagnetic Mott insulator, which develops high temperature
superconductivity when doped.

• Heavy electron compounds, where localized magnetic moments formed by rare
earth or actinide ions transform the metal in which they are immersed, generating
quasiparticles with masses in excess of 1000 bare electron masses.[1]

• Fractional Quantum Hall systems, where the interactions between electrons in the
lowest Landau level of a semi-conductor heterojunction generate a new electron
fluid, described by the Laughlin ground-state, with quantized fractional Hall con-
stant and quasiparticles with fractional charge and statistics. [2]

• “Quantum Dots”, which are tiny pools of electrons in semiconductors that act as
artificial atoms. As the gate voltage is changed, the Coulombrepulsion between
electrons in the dot leads to the so-called “Coulomb Blockade”, whereby electrons
can be added one by one to the quantum dot. [3]

Strongly interacting materials develop “emergent” properties: properties which re-
quire a new language[4] and new intellectual building blocks for their understanding.
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FIGURE 1. Depicting localized 4f , 5f and 3d atomic wavefunctions.

This chapter will illustrate and discuss one area of strongly correlated electron physics
in which localized magnetic moments form the basic driving force of strong correlation.
When electrons localize, they can form objects whose low energy excitations involve
spin degrees of moment. In the simplest case, such “localized magnetic moments” are
represented by a single, neutral spin operator

~S=
h̄
2
~σ

where~σ denotes the Pauli matrices of the localized electron. Localized moments de-
velop within highly localized atomic wavefunctions. The most severely localized wave-
functions in nature occur inside the partially filled 4f shell of rare earth compounds
(Fig. 1) such as cerium (Ce) or Ytterbium (Yb). Local moment formation also occurs
in the localized 5f levels of actinide atoms as uranium and the slightly more delocal-
ized 3d levels of first row transition metals(Fig. 1). Localized moments are the origin
of magnetism in insulators, and in metals their interactionwith the mobile charge car-
riers profoundly changes the nature of the metallic state via a mechanism known as the
“Kondo effect”.

In the past decade, the physics of local moment formation hasalso reappeared in
connection with quantum dots, where it gives rise to the Coulomb blockade phenomenon
and the non-equilibrium Kondo effect.



1.2. Anderson’s Model of Local Moment Formation

Though the concept of localized moments was employed in the earliest applications of
quantum theory to condensed matter1, a theoretical understanding of themechanismof
moment formation did not develop until the early sixties, when experimentalists began
to systematically study impurities in metals.2

In the early 1960s, Clogston, Mathias and collaborators[7]showed that when small
concentrationsni of magnetic ions, such as iron are added to a metallic host, they develop
a Curie component to the magnetic susceptibilty

χ = ni
M2

3T
M2 = g2

Jµ2
BJ(J+1), (1)

indicating the formation of a local moment. However, the local moment does not always
develop, depending on the metallic host in which the magnetic ion was embedded.
For example, iron dissolved at 1% concentration in pureNb does not develop a local
moment, but in the alloyNb1−xMox a local moment develops forx > 0.4, rising to
2.2µB abovex = 0.9. What is the underlying physics behind this phenomenon?

Anderson[8] was the first to identify interactions between localized electrons as the
driving force for local moment formation. Earlier work by Friedel[9] and Blandin[10]
had already identified part of the essential physics of localmoments with the develop-
ment of resonant bound-states. Anderson now included interactions to this picture. Much
of the basic physics can be understood by considering an isolated atom with a localized
S= 1/2 atomic state which we shall refer to as a localized “d-state”. In isolation, the
atomic bound state is stable and can be modeled in terms of a single level of energyEd
and a Coulomb interaction

U =
1
2

∫
d3xd3x′V(~x−~x′)|ψ(~x)|2|ψ(~x′)|2, (2)

whereV(~x−~x′) = e2/4πε0|~x−~x′| is the Coulomb potential.
The Anderson model for a localized impurity atom is given by

H = Hc +Hmix+

Hatomic︷ ︸︸ ︷
Hd +HU (3)

whereHd = Ed ∑σ n̂dσ describes an isolated atomic d-state of energyEd and occu-
pancyndσ in the “up” and “down” state.HU = Un̂d↑n̂d↓ is the inter-atomic interaction

1 Landau and Néel invoked the notion of the localized moment intheir 1932 papers on antiferromag-
netism, and in 1933, Kramers used this idea again in his theory of magnetic superexchange.
2 It was not until the sixties that materials physicist could control the concentration of magnetic impurities
in the parts per million range required for the study of individual impurities. Such control of purity evolved
during the 1950s, with the development of new techniques needed for semiconductor physics, such as zone
refining.



between the up and down d-electrons. The term

Hc = ∑
~kσ

ε~kc
†
~kσ

c~kσ

describes the dispersion of electrons in the conduction seawhich surrounds the ion,
wherec†

~kσ
creates an electron of momentum~k, spin σ and energyε~k. When the ion

is embedded within a metal, the energy of the d-state is degenerate with band-electron
states, and the term

Hmix = ∑
jσ

[V~k
c†

kσ dσ +H.c.]

describes the hybridization that then takes place with the conduction electron sea, where
d†

σ describes the creation of a d-electron. The matrix element of the ionic potential
between a plane wave conduction state and the d-orbital is

V~k
= 〈~kσ |V̂|d1σ ′〉 =

∫
d3re−i~k·~rVion(r)ψ(~r)δσσ ′. (4)

whereψ(~r) is the wavefunction of the localized orbital andVion(r) is the ionic poten-
tial.This matrix element will have the same symmetry as the localized orbital- a matter of
some importance for real d-states, or f-states3. However, for the discussion that follows,
the detailed~k dependence of this object can essentially be ignored .

Let us first focus on the atomic part of H,

Hatomic= Hd +HU = Ed ∑
σ

n̂dσ +Und↑nd↓.

The four states of this ion are

|d2〉 E(d2) = 2Ed +U
|d0〉 E(d0) = 0

|d1 ↑〉 |d1 ↓〉 E(d1) = Ed.
(6)

To obtain a magnetic doublet as the ground-state, the excitation energies out of the
doublet state must be greater than zero, i.e

E(d2)−E(d1) = Ed +U > 0 ⇒ Ed +U/2 > −U/2
E(d0)−E(d1) = −Ed > 0 ⇒ U/2 > Ed +U/2 (7)

so that for
U/2 > |Ed +U/2|,

3 A direct calculation shows that

V(k) = 4π i−l
∫

r2dr j l (kr)V(r)RΓ(r) (l = 2) (5)

is the overlap of the radial wavefunctionsRΓ(r) of the d-state and thel = 2 partial wave state of the
conduction electron, with the ionic potential.
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FIGURE 2. Phase diagram for Anderson Impurity Model in the Atomic Limit.

the isolated ion has a doubly degenerate magnetic ground-state, as illustrated in 2. We
see that provided the Coulomb interactionU is large enough compared with the level
spacing, the ground-state of the ion becomes magnetic. The d-excitation spectrum of the
ion will involve two sharp levels, one at energyEd, the other at energyEd +U .

Suppose this ion is embedded in a metal: the free electron continuum is then pulled
downwards by the work function of the metal so that now the d-level energy is degen-
erate with conduction electron energy levels. In this situation we expect the d-level to
hybridize with the conduction electron states, broadeningthe sharp d-level into a reso-
nance with a width∆ = ∆(Ed), where∆(ε) is given by Fermi’s Golden Rule.

∆(ε) = π ∑
~k

|V(~k)|2δ (ε~k− ε) = πN(ε)V2(ε) (8)

whereN(ε) = ∑~k
δ (ε~k− ε) is the electron density of states (per spin). In the discussion

that follows, let us assume that over the energy width of the resonance,V(ε) and
N(ε) ∼ N(0) are essentially constant.

When this hybridization is small compared withU , we expect the ground-states of
the ion to be essentially that of the atomic limit. For weak interaction strengthU the
hybridization with the conduction sea will produce a singled-resonance of width∆
centered aroundEd. In Anderson’s model for moment formation, whenU > Uc ∼ π∆
the single resonance splits into two, so that for largeU ≫Uc, there are two d-resonances
centered aroundEd and Ed + U , as shown in Fig. 3. To illustrate the calculations
that lead to this conclusion, let us use a Feynman diagram approach. We shall treat
HI = Hmix+ HU as a perturbation to the non-interacting part of the Hamiltonian to be
H = Hb+Hd. The Green’s functions of the bare d-electron and conduction electron are
then denoted by

k, iω n G0(k, iωn) = [iωn− εk]
−1

d, σ
G0

d = [(iωn)−Ed]
−1

whilst the Feynman diagrams for the hybridization and the interaction terms are then
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FIGURE 3. Illustrating how the d-electron resonance splits to form a local moment. A)U < π∆, single
half-filled resonance. B)U > π∆, up and down components of the resonance are split by an energy U .

k d
V∗(k)

d k
V(k)

−U −U (9)

Quite generally, the propagator for the d-electrons can be written

Gdσ (ω) = [ω −Ed −Σdσ (ω)]−1 (10)

whereΣdσ (ω) is the the self-energy of the d-electron with spinσ . We delineate between
“up” and “down”, anticipating Anderson’s broken symmetry description of a local
moment as a resonance immersed in a self-consistently determined Weiss field. The
density of states associated with the d-resonance is determined by the imaginary part of
the d-Green function:

ρdσ (ω) =
1
π

ImGdσ (ω − iδ ). (11)



The Anderson model for local moment formation is equivalentto the Hartree approxi-
mation to the d-electron self-energy, denoted by

= +dσΣ   (ω)
k

Σdσ (ω) = Σ1(ω)+ Und−σ

The first term in this expression derives from the hybridization of the d-electrons with the
conduction sea. Notice that the d-state fluctuates into allk-states of the conduction sea,
so that there is a sum overk insideΣ1(ω). The second term is the Hartree approximation
to the interaction self energy. We can identify the fermion loop here as the occupancy of
the−σ d-state, so that

Gdσ (ω) = [ω − (Ed +Und−σ )−Σ1(ω)]−1 (12)

so the Hartree approximation is equivalent to replacingEd → Edσ = Ed +Und,−σ . The
hybridization part of the self energy is

Σ1(ω + iδ ) = ∑
~k

|V(~k)|2
ω − ε~k− iδ

Notice that since 1/(x∓ iδ ) = P(1/x)± iπδ (x), it follows thatImΣd(ω ± iδ ) =∓∆(ω),
so the imaginary part of this quantity has a discontinuity along the real axis equal to the
hybridization width. Using (8), you can verify that we can now rewrite this as

Σ1(ω + iδ ) =

∫
dε
π

π ∑~k
|V(~k)|2δ (ε~k− ε)

ω − ε − iδ
=

∫
dε
π

∆(ε)

ω − ε − iδ
(13)

Typically ∆(ε) will only vary substantially on energies of order the bandwidth, so that
over the width of the resonance we can replace∆(ε) → ∆. Moreover, for a broad band
of width D, the real part ofΣ(ω)∼ 1

π ∆(0) ln[(ω −D)/(ω +D)] is of orderω/D and can
be ignored, or absorbed into into a small renormalization ofEd. This allows us to make
the replacement

Σ1(ω ± iδ ) = ∓i∆sgnδ (24)

so that

Gdσ (ω − iδ ) =
1

(ω −Edσ − i∆)
. (14)

The density of states described by the Green-function is a Lorentzian centered around
energyEdσ :

ρdσ (ω) =
1
π

ImGdσ (ω − iδ ) =
∆

(ω −Edσ )2+∆2 ,



moreover, the occupancy of the d-state is given by the d-occupation at zero temperature
is

ndσ =
∫ 0
−∞ dωρdσ (ω)

= 1
π cot−1

(
Ed+Und−σ

∆

) (15)

This equation defines Anderson’s mean-field theory.4 It is convenient to introduce an
occupancynd = ∑σ ndσ and magnetizationM = nd↑−nd↓, so thatndσ = 1

2(nd + σM)
(σ = ±1). The mean-field equation for the occupancy and magnetization are then

nd =
1
π ∑

σ=±1
cot−1

(
Ed +U/2(nd−σM)

∆

)

M =
1
π ∑

σ=±1
σ cot−1

(
Ed +U/2(nd−σM)

∆

)
(16)

To find the critical size of the interaction strength where a local moment develops, set
M → 0+ (replacing the second equation by its derivative w.r.t.M), which gives

nd =
2
π

cot−1
(

Ed +Ucnd/2

∆

)

1 =
Uc

π∆
1

1+
(

Ed+Und/2
∆

)2 (17)

which can be written parametrically as

Ed +
Uc

2
= ∆

(
c+

π
2

(1−nd)(1+c2)
)

Uc = π∆(1+c2) (18)

wherec≡ cot
(

πnd
2

)
. The critical curve described by these equations is shown in Fig. 3.

From the mean-field equations, it is easily seen that fornd = 1, when the d-levels
are half filled, the critical valueUc = π∆. This enables us to qualitatively understand
the experimentally observed formation of local moments. When dilute magnetic ions
are dissolved into a metallic host, the formation of a local moment is dependent on
whether the ratioU/π∆ is larger than, or smaller than zero. When iron is dissolved in
pure niobium, the failure of the moment to form reflects the higher density of states and
larger value of∆ in this alloy. When iron is dissolved in molybdenum, the lower density
of states causesU > Uc, and local moments form. [7]

4 The quantityδσ = cot−1
(

Ed+Und−σ
∆

)
is actually the phase shift for scattering an electron off the d-

resonance (see exercise), and the identityndσ = 1
π δσ is a particular realization of the “Friedel sum rule”,

which relates the charge bound in an atomic potential to the number of nodes (= ∑σ
δσ
π ) introduced into

the scattering state wavefunction.



1.2.1. The Coulomb Blockade

A modern context for the physics of local moments is found within quantum dots.
A quantum dot is a tiny electron pool in a doped semi-conductor, small enough so that
the electron states inside the dot are quantized, loosely resembling the electronic states
of an atom. Unlike a conventional atom, the separation of theelectronic states is of the
order of milli-electron volts, rather than volts. The overall position of the quantum dot
energy levels can be changed by applying a gate voltage to thedot. It is then possible
to pass a small current through the dot by placing it between two leads. The differential
conductanceG = dI/dV is directly proportional to the density of statesρ(ω) inside the
dotG ∝ ρ(0). Experimentally, when G is measured as a function of gate voltageVg, the
differential conductance is observed to develop a periodicstructure, with a period of a
few milli-electron volts. [3]

This phenomenon is known as the “Coulomb blockade” and it results from precisely
the same physics that is responsible for moment formation. Asimple model for a
quantum dot considers it as a sequence of single particle levels at energiesελ , interacting
via a single Coulomb potentialU , according to the model

Hdot = ∑
λ

(ελ −eVg)nλσ +
U
2

N(N−1) (19)

wherenλσ is the occupancy of the spinσ state of theλ level,N = ∑λσ nλσ is the total
number of electrons in the dot andVg the gate voltage. This is a simple generalization
of the single atom part of the Anderson model. Notice that thecapacitance of the dot is
C = e2/U .

Provided thatU is far greater than the energy separation of the individual levels,
U >> ελ − ελ ′, the energy difference between then electron andn+ 1 electron state
of the dot is given byE(n+ 1)−E(n) = nU −eVg. As the gate voltage is raised, the
quantum dot fills each level sequentially, as illustrated inFig. 4, and wheneVg = U ,
the n-th level becomes degenerate with the Fermi energy of each lead. At this point,
electrons can pass coherently through the resonance givingrise to a sharp peak in the
conductance. At maximum conductance, the transmission andreflection of electrons is
unitary, and the conductance of the quantum dot will reach a substantial fraction of the
quantum of conductance,e2/h per spin. A simple calculation of the zero-temperature
conductance through a single non-interacting resonance coupled symmetrically to two
leads gives

G(eVg) =
2e2

h
∆2

(Eλ −eVg)2+∆2 (20)

where the factor of two derives from two spin channels. At finite temperatures, the
resonance becomes broadened by thermal excitation effects, giving

G(eVg,T) =
2e2

h

∫
dε
(
−d f(ε −eVg)

dε

)
∆2

(Eλ − ε)2+∆2
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FIGURE 4. Variation of zero bias conductanceG= dI/dV with gate voltage in a quantum dot. Coulomb
interactions mean that for each additional electron in the dot, the energy to add one electron increases by
U . When the charge on the dot is integral, the Coulomb interaction blocks the addition of electrons and
the conductance is suppressed. When the energy to add an electron is degenerate with the Fermi energy
of the leads, unitary transmission occurs, and for symmetric leads,G = 2e2/h.

where f (ε) = 1/(eβε + 1) is the Fermi function. When interactions are included, we
must sum over the n-levels, giving (See Fig. 4. )

G(eVg,T) =
2e2

h

∫
dε
(
−d f(ε −eVg)

dε

)
∆2

(nU− ε)2+∆2

The effect of field on these results is interesting. When the number of electrons in
the dot is even, the quantum dot is in a singlet state. When thenumber of electrons is
odd, the quantum dot forms a local moment. In a magnetic field,the energy of the odd-
electron dot is reduced, whereas the energy of the even spin dot is unchanged, with the
result that at low temperatures

E(2n+1)−E(2n) = 2nU−µBB
E(2n+2)−E(2n+1) = (2n+1)U + µBB (21)



so that the voltages of the odd and even numbered peaks in the conductance develop an
alternating field dependence.

It is remarkable that the physics of moment formation and the“Coulomb blockade”
operate in both artificial mesoscopic devices and naturallyoccurring magnetic ions.

1.3. Exercises

1. By expanding a plane wave state in terms of spherical harmonics:

〈~r|~k〉 = ei~k·~r = 4π ∑
l ,m

i l j l (kr)Y∗
lm(k̂)Ylm(r̂)

show that the overlap between a state|ψ〉 with wavefunction〈~x|ψ〉 = R(r)Ylm(r̂) with a
plane wave is given byV(~k) = 〈~k|V|ψ〉 = V(k)Ylm(k̂) where

V(k) = 4π i−l
∫

drr2V(r)R(r) j l(kr) (22)

2. (i) Show thatδ = cot−1
(

Ed
∆

)
is the scattering phase shift for scattering off a resonant

level at positionEd.
(ii) Show that the energy of states in the continuum is shifted by an amount−∆εδ (ε)/π,

where∆ε is the separation of states in the continuum.
(iii) Show that the increase in density of states is given by∂δ/∂E = ρd(E). (See chap-

ter 3.)
3. Derive the formula (20) for the conductance of a single isolated resonance.

2. THE KONDO EFFECT

Although Anderson’s mean-field theory provided a mechanismfor moment formation,
it raised many new questions. One of its inadequacies is thatof the magnetic moment is
regarded as a broken symmetry order parameter. Broken symmetry is possible when the
object that breaks the symmmetry involves a macroscopic number of degrees of freedom,
but here, we are dealing with a single spin. There will alwaysbe a certain quantum
mechanical amplitude for the spin to flip between an up and down configuration. This
tunneling rateτ−1 defines a temperature scale

kBTK =
h̄
τ

called the Kondo temperature, which sets the dividing line between local moment behav-
ior, where the spin is free, and the low temperature limit, where the spin becomes highly
correlated with the surrounding electrons. Experimentally, this temperature marks the
low temperature limit of a Curie susceptibility. The physics by which the local moment
disappears or “quenches” at low temperatures is closely analagous to the physics of
quark confinement and it is named the “Kondo effect” after theJapanese physicist Jun
Kondo. [11]



The Kondo effect has a wide range of manifestations in condensed matter physics:
not only does it govern the quenching of magnetic moments inside a metal, but it also
is responsible for the formation of heavy fermion metals, where the local moments
transform into composite quasiparticles with masses sometimes in excess of a thousand
bare electron masses.[12] Recently, the Kondo effect has also been observed to take
place in quantum dots that carry a local moment. (Typically quantum dots with an odd
number of electrons). [3]

In this section we will first derive the Kondo model from the Anderson model, and
then discuss the properties of this model in the language of the renormalization group .

2.1. Adiabaticity

Let us discuss some of the properties of the Anderson model atlow temperatures
using the idea of adiabaticity. We suppose that the interaction between electrons in the
Anderson model is increased continuously to valuesU >> ∆, whilst maintaining the
occupancy of the d-state equal to unitynd = 1. The requirement thatnd = 1 ensures that
the d-electron density of states is particle-hole symmetric, which implies thatEd = 0 and
Σ′(0) = 0.

WhenU >> ∆, we expect that the d-electron spectral functionρd = 1
π ImGd(ω − iδ )

will contain two peaks atω = ±U/2. Since the total spectral weight integrates to unity,∫
dωρ(ω) = 1, we expect that the weight under each of these peaks is approximately

1/2. Remarkably, as we shall now see, the spectral function atω = 0 is unchanged by
the process of increasing the interaction strength and remains equal to its non-interacting
value

ρd(ω = 0) =
1
∆

This means that the d-spectral function must contain a narrow peak, of vanishingly small
spectral weightZ << 1, height 1

∆ and hence width∆∗ = Z∆ << ∆. This peak in the
d-spectral function is associated with the Kondo effect, and is known as the Abrikosov-
Suhl, or the “Kondo” resonance. Let us see how this comes about as a consequence of
adiabaticity. For a single magnetic ion, we expect that the interactions between electrons
can be increased continuously, without any risk of instabilities, so that the excitations of
the strongly interacting case remain in one-to-one correspondence with the excitations
of the non-interacting caseU = 0, forming a “local Fermi liquid”.

In this local Fermi liquid, one can divide the d-electron self-energy into two
components- the first derived from hybridization, the second derived from interactions:

Σ(ω − iδ ) = i∆+ΣI(ω − iδ )

ΣI (ω − iδ ) = (1−Z−1)ω + iAω2. (23)

The “wavefunction” renormalizationZ is less than unity. The quadratic energy depen-
dence ofΣI(ω) ∼ ω2 follows from the quadratic energy dependence of the phase space
for producing particle-hole pairs. Using this result, the form of the d-electron propagator
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FIGURE 5. “Kondo resonance” in the d-spectral function. At largeU for the particle hole-symmetric
case wherend = 1, the d-spectral function contains two peaks aboutω ∼ ±U/2, both of weight approx-
imately 1/2. However, since the spectral function is constrained by the requirement thatρd(ω = 0) = 1

∆ ,
the spectral function must preserve a narrow peak of fixed height, but vanishingly small weightZ << 1.

for nd at low energies is

Gd(ω − iδ ) =
1

ω − i∆−ΣI (ω)

=
Z

ω − iZ∆− iO(ω2).
(24)

This corresponds to a renormalized resonance of reduced weight Z < 1, renormalized
width Z∆. One of the remarkable results of this line of reasoning, is the discovery that
d-spectral weight

ρd(ω ∼ 0) =
1
π

ImGd(ω − iδ )|ω=0 =
1
∆

is independent of the strength ofU . This result, first discovered by Langreth[13] guar-
antees a peak in the d-spectral function at low energies, no matter how largeU becomes.
Since we also expect a peak in the d-spectral function aroundω ∼ ±U/2, this line of
reasoning suggests that the structure of the d-spectral function at largeU , contains three
peaks.



2.2. Schrieffer-Wolff transformation

If a local moment forms within an atom, the object left behindis a pure quantum top-
a quantum mechanical object with purely spin degrees of freedom.5

These spin degrees of freedom do interact with the surrounding conduction sea. In
particular virtual charge fluctuations, in which an electron briefly migrates off, or onto
the ion lead to spin-exchange between the local moment and the conduction sea. This
induces an antiferromagnetic interaction between the local moment and the conduction
electrons. To see this consider the two possible spin exchange processes

e↑ +d1
↓ ↔ d2 ↔ e↓ +d1

↑ ∆EI ∼U +Ed

e↑ +d1
↓ ↔ e↑ +e↓ ↔ e↓ +d1

↑ ∆EII ∼−Ed (25)

The first process passes via a doubly occupied singlet d-state, so it can only take place
if the incoming conduction electron and d-electron are in a mutual S= 0 state. In the
second process, in order that the conduction electron can hybridize with the d-state, it has
to arrive and depart in a state with precisely the same d- orbital symmetry. This means
that the intermediate state formed in the second process must be spatially symmetric,
and must therefore be a spin-antisymmetric singletS= 0 state. From these arguments,
we see that spin exchange only takes place in the singlet channel, lowering the energy
of the singlet configurations by an amount of order

J ∼ V2
[

1
∆E1

+
1

∆E2

]
(26)

=

[
1

−Ed
+

1
Ed +U

]
(27)

whereV is the size of the hybridization matrix element near the Fermi surface. If we
introduce the electron spin density operator~S(0) = 1

N ∑k,k′ c
†

kα~σαβ ck′β , whereN is the
number of sites in the lattice, then we expect that the effective interaction induced by the
virtual charge fluctuations will have the form

He f f = J~S(0) ·~Sd

where ~Sd is the spin of the localized moment. Notice that the sign ofJ is
antiferromagnetic. This kind of heuristic argument was ventured in Anderson’spa-
per on local moment formation in 1961. The antiferromagnetic sign in this interaction
was quite unexpected, for it had been tacitly assumed by the community that exchange

5 In the simplest version of the Anderson model, the local moment is aS= 1/2, but in more realistic
atoms much large moments can be produced. For example, an electron in a CeriumCe3+ ion atom lives
in a 4f 1 state. Here spin-orbit coupling combines orbital and spin angular momentum into a total angular
moment j = l −1/2 = 5/2. The Cerium ion that forms thus has a spinj = 5/2 with a spin degeneracy
of 2 j + 1 = 6. In multi-electron atoms, the situation can become still more complex, involving Hund’s
coupling between atoms.



forces would induce a ferromagnetic interaction between the conduction sea and local
moments. This seemingly innocuous sign difference has deepconsequences for the
physics of local moments at low temperatures, as we shall seein the next section.

Let us now carry out the transformation a little more carefully, using the method of
canonical transformations introduced by Schrieffer and Wolff[14, 15]. The Schrieffer-
Wolff transformation is very close to the idea of the renormalization group and will
help set up our renormalization group discussion. When a local moment forms, the
hybridization with the conduction sea induces virtual charge fluctuations. It is therefore
useful to consider dividing the Hamiltonian into two terms

H = H1+λV

whereλ is an expansion parameter. Here,

H1 = Hband+Hatomic=

[
HL

0

∣∣∣∣
0

HH

]

is diagonal in the low energyd1 (HL) and the high energyd2 or d0 (HH) subspaces,
whereas the hybridization term

V = Hmix = ∑
jσ

[V~k
c†

kσ dσ +H.c.] =

[
0

V

∣∣∣∣
V†

0

]

provides the off-diagonal matrix elements between these two subspaces. The idea of the
Schrieffer Wolff transformation is to carry out a canonicaltransformation that returns
the Hamiltonian to block-diagonal form, as follows:

U

[
HL

λV

∣∣∣∣
λV†

HH

]
U† =

[
H∗

0

∣∣∣∣
0

H ′

]
. (28)

This is a “renormalized” Hamiltonian, and the block-diagonal part of this matrixH∗ =
PLH ′PL in the low energy subspace provides aneffectiveHamiltonian for the low energy
physics and low temperature thermodynamics. If we setU = eS, whereS= −S† is anti-
hermitian and expand S in a power series

S= λS1+λ 2S2+ . . . ,

then expanding (28) using the identityeABe−A = B+[A,B]+ 1
2! [A, [A,B]] . . .

eS(H1+λV )e−S= H1+λ
(
V +[S1,H1]

)
+λ 2

(
1
2
[S1, [S1,H]]+ [S1,V ]+ [S2,H1]

)
+. . .

so that to leading order
[S1,H1] = −V , (29)

and to second order

eS(H1+λV )e−S = H1+λ 2
(

1
2
[S1,V ]+ [S2,H1]

)
+ . . . .



Since[S1,V ] is block-diagonal, we can satisfy (28 ) to second order by requiring S2 = 0,
so that to this order, the renormalized Hamiltonian has the form (settingλ = 1)

H∗ = HL +Hint

where

Hint =
1
2

PL[S1,V ]PL + . . .

is an interaction term induced by virtual fluctuations into the high-energy manifold.
Writing

S=

[
0

s

∣∣∣∣
−s†

0

]

and substituting into (29), we obtainV = −sHL +HHs. Now since(HL)ab = EL
a δab and

(HH)ab = EH
a δab are diagonal, it follows that

sab =
Vab

EH
a −EL

b

, −s†
ab =

V†
ab

EL
a −EH

b

, . (30)

From (30), we obtain

(Hint)ab = −1
2
(V†s+s†V)ab =

1
2 ∑

λ∈|H〉

[
V†

aλVλb

EL
a −EH

λ
+

V†
aλVλb

EL
b −EH

λ

]

Some important points about this result

• We recognize this result as a simple generalization of second-order perturbation
theory which encompasses off-diagonal matrix elements.

• Hint can also be written

Hint =
1
2
[T(Ea)+T(Eb)]

whereT is given by

T̂(E) = PLV
PH

E−H1
V PL

Tab(E) = ∑
λ∈|H〉

[
V†

aλVλb

E−EH
λ

]
(31)

is the leading order expression for the scattering T-matrixinduced by scattering off
V . We can thus relateHint to a scattering amplitude, and schematically represent it
by a Feynman diagram, illustrated in Fig. 6.

• If the separation of the low and high energy subspaces is large, then the energy
denominators in the above expression will not depend on the initial and final states
a andb, so that this expression can be simplified to the form

Hint = − ∑
λ∈|H〉

V†PλV

∆Eλ
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FIGURE 6. T-matrix representation of interaction induced by integrating out high-energy degrees of
freedom

where∆Eλ = EH
λ −EL is the excitation energy in the high energy subspace labeled

by λ , and the projectorPλ = ∑|a〉∈|λ 〉 |a〉〈a| .

If we apply this method to the Anderson model, we have two high-energy subspaces,
with excitation energies∆E(d1 → d0) = −Ed and∆E(d1 → d2) = Ed +U , so that the
renormalized interaction is

Hint = − ∑
kσ ,k′σ ′

V∗
k′Vk

[
d1+e−↔d2

︷ ︸︸ ︷
(c†

kσ dσ )(d†
σ ′ck′σ ′)

Ed +U
+

d1↔d0+e−︷ ︸︸ ︷
(d†

σ ′ck′σ ′)(c†
kσ dσ )

−Ed

]

Using the identityδabδcd +~σab ·~σcd = 2δadδbc we may cast the renormalized Hamilto-
nian in the form

Hint = ∑
kα,k′β

Jk,k′c
†

kα~σck′β ·~Sd +H ′

Jk,k′ = V∗
k′Vk

[
d1+e−↔d2

︷ ︸︸ ︷
1

Ed +U
+

d1↔d0+e−︷︸︸︷
1

−Ed

]
(32)

where

~Sd ≡ d†
σ

(
~σαβ

2

)
dβ , (nd = 1) (33)

where we have replacednd = 1 in the low energy subspace. Apart from a constant, the
second term

H ′ = −1
2 ∑

k,k′σ
V∗

k′Vk

[
1

Ed +U
+

1
Ed

]
c†

kσ ck′σ

is a residual potential scattering term off the local moment. This term vanishes for
the particle-hole symmetric caseEd = −(Ed +U) and will be dropped, since it does
not involve the internal dynamics of the local moment. Summarizing, the effect of the
high-frequency valence fluctuations is to induce an antiferromagnetic coupling between
the local spin density of the conduction electrons and the local moment:

H = ∑
kσ

εkc
†

kσ ckσ + ∑
k,k′

Jk,k′c
†
kα~σck′β ·~Sd (34)



This is the infamous “Kondo model”. For many purposes, thek dependence of the cou-
pling constant can be dropped. In this case, the Kondo interaction can be written
Hint = Jψ†(0)~σψ(0) ·~Sd, whereψα(0) = 1√

N
∑ckα is the electron operator at the origin

andψ†(0)~σψ(0) is the spin density at the origin. In this simplified form, theKondo
model takes the deceptively simple form

H = ∑
kσ

εkc
†

kσ ckσ +

Hint︷ ︸︸ ︷
Jψ†(0)~σψ(0) ·~Sd . (35)

In other words, there is a simple point-interaction betweenthe spin density of the metal
at the origin and the local moment. Notice how all reference to the fermionic character
of the d-electrons has gone, and in their place, is aS= 1/2 spin operator. The fermionic
representation (33) of the spin operator proves to be very useful in the case where the
Kondo effect takes place.

2.3. Renormalization concept

To make further progress, we need to make use of the concept ofrenormalization.
In a general sense, physics occurs on several widely spaced energy scales in condensed
matter systems. We would like to distill the essential effects of the high energy atomic
physics at electron volt scales on the low energy physics at millivolt scales without
getting caught up in the fine details. An essential tool for this task is the “renormalization
group”. [16, 17, 18, 19]

The concept of the renormalization group permits us to describe complex condensed
matter systems using simple models that reproduce only the relevant low energy physics
of the system. The idea here is that only certain gross features of the high energy physics
are relevant to the low energy excitations. The continuous family of model Hamiltonians
with the same low energy excitation spectrum constitute a “universality class” of models.
(Fig. 7) Suppose we parameterize each model HamiltonianH(D) by its cutoff energy
scale,D, the energy of the largest excitations. The scaling procedure, involves rescaling
the cutoffD → D′ = D/b whereb > 1, integrating out the excitationsE ∈ [D′,D] to
obtain an effective HamiltoniañHLfor the remaining low-energy degrees of freedom.
The energy scales are then rescaled, to obtain a newH(D′) = bH̃L Generically, the
Hamiltonian will have the block-diagonal form

H =

[
HL

V

∣∣∣∣
V†

HH

]
(36)

whereHL andHH act on states in the low-energy and high-energy subspaces respectively,
andV andV† provide the matrix elements between them. The high energy degrees
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FIGURE 7. Scaling concept. Low energy model Hamiltonians are obtained from the detailed original
model by integrating out the high energy degrees of freedom.At each stage, the physics described by the
model spans a successively lower frequency window in the excitation spectrum.

of freedom may be “integrated out”6 by carrying out a canonical transformation and
projecting out the low-energy componentH̃L

H(D) →UH(D)U† =

[
H̃L

0

∣∣∣∣∣
0

H̃H

]
(37)

By rescaling
H(D′) = bH̃L (38)

one arrives at a new Hamiltonian describing the physics on the reduced scale. The
transformation fromH(D) to H(D′) is referred to as a “renormalization group” (RG)
transformation. This term was coined long ago, even though the transformation does
not form a real group, since there is no inverse transformation. Repeated application of
the RG procedure leads to a family of HamiltoniansH(D). By taking the limitb → 1,

6 The term “integrating out” is originally derived from the path integral formulation of the renormalization
group, in which high energy degrees of freedom are removed byintegrating over these variables inside
the path integral.



these Hamiltonians evolve continuously withD. Typically, H will contain a series of
dimensionless coupling constants{gi} which denote the strength of various interaction
terms in the Hamiltonian. The evolution of these coupling constants with cut-off is given
by a scaling equation, so that for the simplest case

∂g j

∂ lnD
= β j({gi})

A negativeβ function denotes a “relevant” coupling constant which grows as the cut-
off is reduced. A positiveβ function denotes an “irrelevant” coupling constant which
diminishes as the cut-off is reduced. There are two types of event that can occur in such
a scaling procedure (Fig. 8):

• i) A crossover. When the cut-off energy scaleD becomes smaller than the charac-
teristic energy scale of a particular class of high frequency excitations, then at lower
energies, these excitations may only occur via a virtual process. To accommodate
this change, the Hamiltonian changes its structure, acquiring additional terms that
simulate the effect of the high frequency virtual fluctuations on the low energy
physics. The passage from the Anderson to the Kondo model is an example of one
such cross-over. In the renormalization group treatment ofthe Anderson model,
when the band-width of the conduction electrons becomes smaller than the energy
to produce a valence fluctuation, a cross-over takes place inwhich real charge fluc-
tuations are eliminated, and the physics at all lower energyscales is described by
the Kondo model.

• ii) Fixed Point. If the cut-off energy scale drops below the lowest energy scale
in the problem, then there are no further changes to occur in the Hamiltonian,
which will now remain invariant under the scaling procedure(so that theβ function
of all remaining parameters in the Hamiltonian must vanish). This “Fixed Point
Hamiltonian”describes the essence of the low energy physics.

2.4. “Poor Man” Scaling

We shall now apply the scaling concept to the Kondo model. This was originally
carried out by Anderson and Yuval using a method formulated in the time, rather than
energy domain. The method presented here follows Anderson’s “ Poor Man’s” scaling
approach, in which the evolution of the coupling constant isfollowed as the band-width
of the conduction sea is reduced. The Kondo model is written

H = ∑
|εk|<D

εkc
†

kσ ckσ +H(I)

H(I) = J(D) ∑
|εk|,|εk′ |<D

c†
kα~σαβ ck′β ·~Sd (39)

where the density of conduction electron statesρ(ε) is taken to be constant. The Poor
Man’s renormalization procedure follows the evolution ofJ(D) that results from reduc-
ing D by progressively integrating out the electron states at theedge of the conduction



band. In the Poor Man’s procedure, the band-width is not rescaled to its original size
after each renormalization, which avoids the need to renormalize the electron operators
so that instead of Eq. (38),H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin
fluctuations using the t-matrix formulation for the inducedinteractionHint , derived in
the last section. Formally, the induced interaction is given by

δH int
ab =

1
2
[Tab(Ea)+Tab(Eb)]

where

Tab(E) = ∑
λ∈|H〉

[
H(I)

aλ
H(I)

λb

E−EH
λ

]

where the energy of state|λ 〉 lies in the range[D′,D]. There are two possible intermedi-
ate states that can be produced by the action ofH(I) on a one-electron state: (I) either the
electron state is scattered directly, or (II) a virtual electron hole-pair is created in the in-
termediate state. In process (I), the T-matrix can be represented by the Feynman diagram

’σ’’σ

k
k’’

σ

λ
α βk’

for which the T-matrix for scattering into a high energy electron state is

T(I)(E)k′βσ ′;kασ = ∑
ε

k′′∈[D−δD,D]

[
1

E− εk′′

]
J2(σaσb)βα(SaSb)σ ′σ

≈ J2ρδD

[
1

E−D

]
(σaσb)βα(SaSb)σ ′σ (40)

In process (II),

kα

’’σ
σ ’σ

βk’

k’’λ

the formation of a particle-hole pair involves a conductionelectron line that crosses
itself, leading to a negative sign. Notice how the spin operators of the conduction sea
and antiferromagnet reverse their relative order in process II, so that the T-matrix for
scattering into a high-energy hole-state is given by

T(II )(E)k′βσ ′;kασ = − ∑
ε

k′′∈[−D,−D+δD]

[
1

E− (εk + εk′ − εk′′)

]
J2(σbσa)βα(SaSb)σ ′σ



= −J2ρδD

[
1

E−D

]
(σaσb)βα(SaSb)σ ′σ (41)

where we have assumed that the energiesεk andεk′ are negligible compared withD.
Adding (Eq. 40) and (Eq. 41) gives

δH int
k′βσ ′;kασ = T̂ I +T II = −J2ρδD

D
[σa,σb]βαSaSb

=
J2ρδD

D
~σβα

~Sσ ′σ . (42)

In this way we see that the virtual emission of a high energy electron and hole generates
an antiferromagnetic correction to the original Kondo coupling constant

J(D′) = J(D)+2J2ρ
δD
D

High frequency spin fluctuations thusantiscreenthe antiferrromagnetic interaction. If
we introduce the coupling constantg = ρJ, we see that it satisfies

∂g
∂ lnD

= β (g) = −2g2 +O(g3).

This is an example of a negativeβ function: a signature of an interaction which is weak
at high frequencies, but which grows as the energy scale is reduced. The local moment
coupled to the conduction sea is said to be asymptotically free. The solution to this
scaling equation is

g(D′) =
go

1−2go ln(D/D′)
(43)

and if we introduce the scale

TK = Dexp

[
− 1

2go

]
(44)

we see that this can be written

2g(D′) =
1

ln(D′/TK)

This is an example of a running coupling constant- a couplingconstant whose strength
depends on the scale at which it is measured. (See Fig. 8).

Were we to take this equation literally, we would say thatg diverges at the scale
D′ = TK . This interpretation is too literal, because the above scaling equation has only
been calculated to orderg2, nevertheless, this result does show us that the Kondo
interaction can only be treated perturbatively at energy scales large compared with the
Kondo temperature. We also see that once we have written the coupling constant in terms
of the Kondo temperature, all reference to the original cut-off energy scale vanishes from
the expression. This cut-off independence of the problem isan indication that the physics
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FIGURE 8. Schematic illustration of renormalization group flow from arepulsive “weak coupling”
fixed point, via a crossover to an attractive “strong coupling” fixed point.

of the Kondo problem does not depend on the high energy details of the model: there is
only one relevant energy scale, the Kondo temperature.

It is possible to extend the above leading order renormalization calculation to higher
order ing. To do this requires a more systematic method of calculatinghigher order
scattering effects. One tool that is particularly useful inthis respect, is to use the
Abrikosov pseudo-fermion representation of the spin, writing

~S = d†
α

(
~σ
2

)

αβ
dβ

nd = 1. (45)

This has the advantage that the spin operator, which does notsatisfy Wick’s theorem, is
now factorized in terms of conventional fermions. Unfortunately, the second constraint
is required to enforce the condition thatS2 = 3/4. This constraint proves very awkward
for the development of a Feynman diagram approach. One way around this problem, is
to use the Popov trick, whereby the d-electron is associatedwith a complex chemical
potential

µ = −iπ
T
2

The partition function of the Hamiltonian is written as an unconstrained trace over the
conduction and pseudofermion Fock spaces,

Z = Tr
[
e−β (H+iπ T

2 (nd−1))
]

(46)

Now since the Hamiltonian conservesnd, we can divide this trace up into contributions
from thed0, d1 andd2 subspaces, as follows:

Z = eiπ/2Z(d0)+Z(d1)+e−iπ/2Z(d2)

But sinceSd = 0 in thed2andd0 subspaces,Z(d0) = Z(d2) so that the contributions to
the partition function from these two unwanted subspaces exactly cancel. You can test
this method by applying it to a free spin in a magnetic field. (see exercise)

By calculating the higher order diagrams shown in fig 9 , it is straightforward, though
laborious to show that the beta-function to orderg3 is given by

∂g
∂ lnD

= β (g) = −2g2+2g3 +O(g4) (47)



FIGURE 9. Diagrams contributing to the third-order term in the beta function. A “crossed” propagator
line indicates that the contribution from high-energy electrons with energies|εk| ∈ [D− δD,D] is taken
from this line.

One can integrate this equation to obtain

ln

(
D′

D

)
=

∫ g

go

dg′

β (g′)
= −1

2

∫ g

go

dg

[
1

g′2
+

1
g′

+O(1)

]

A better estimate of the temperatureTK where the system scales to strong coupling is
obtained by settingD′ = TK andg = 1 in this equation, which gives

ln

(
TK

D̃

)
= − 1

2go
+

1
2

ln2go+O(1), (48)

where for convenience, we have absorbed a factor
√e

2 into the cut-off, writingD̃ =

D
√e

2. Thus,

TK = D̃
√

2goe−
1

2go (49)

up to a constant factor. The square-root pre-factor inTK is often dropped in qualitative
discussion, but it is important for more quantitative comparison.

2.5. Universality and the resistance minimum

Provided the Kondo temperature is far smaller than the cut-off, then at low energies
it is the only scale governing the physics of the Kondo effect. For this reason, we expect
all physical quantities to be expressed in terms of universal functions involving the ratio
of the temperature or field to the Kondo scale. For example, the the susceptibility

χ(T) =
1

4T
F(

T
TK

), (50)

and the resistance
1
τ
(T) =

1
τo

G (
T
TK

) (51)

both display universal behavior.



We can confirm the existence of universality by examining these properties in the
weak coupling limit, whereT >> TK. Here, we find

1
τ
(T) = 2πJ2ρS(S+1)ni, (S=

1
2
)

χ(T) =
ni

4T
[1−2Jρ]

whereni is the density of impurities. Scaling implies that at lower temperaturesJρ →
Jρ +2(Jρ)2 ln D

T , so that to next leading order we expect

1
τ
(T) = ni

2π
ρ

S(S+1)[Jρ +2(Jρ)2 ln
D
T

]2, (52)

χ(T) =
ni

4T

[
1−2Jρ −4(Jρ)2 ln

D
T

+O((Jρ)3)

]
(53)

results that are confirmed from second-order perturbation theory. The first result was
obtained by Jun Kondo. Kondo was looking for a consequence ofthe antiferromagnetic
interaction predicted by the Anderson model, so he computedthe electron scattering
rate to third order in the magnetic coupling. The logarithm which appears in the electron
scattering rate means that as the temperature is lowered, the rate at which electrons
scatter off magnetic impurities rises. It is this phenomenon that gives rise to the famous
Kondo “resistance minimum” .

Since we know the form ofTK, we can use this result to deduce that the weak coupling
limit of the scaling forms. If we take equation (48), and replace the cut-off by the
temperatureD → T, and replacego by the running coupling constantgo → g(T), we
obtain

g(T) =
1

2ln
(

T
TK

)
+ ln2g(T)

(54)

which we may iterate to obtain

2g(T) =
1

ln
(

T
TK

) +
ln(ln(T/TK))

2ln2
(

T
TK

) . (55)

Using this expression to make the replacementJρ → g(T) in (52) and (53), we obtain

χ(T) =
ni

4T

[
1− 1

ln(T/TK)
− 1

2
ln(ln(T/TK))

ln2(T/TK)
+ . . .

]
(56)

1
τ
(T) = ni

πS(S+1)

2ρ

[
1

ln2(T/TK)
+

ln(ln(T/TK))

ln3(T/TK)
+ . . .

]
(57)

From the second result, we see that the electron scattering rate has the scale-invariant
form

1
τ
(T) =

ni

ρ
G (T/TK). (58)



whereG (x) is a universal function. The pre-factor in the electron scattering rate is
essentially the Fermi energy of the electron gas: it is the “unitary scattering” rate,
the maximum possible scattering rate that is obtained when an electron experiences a
resonantπ/2 scattering phase shift. From this result, we see that at absolute zero, the
electron scattering rate will rise to the value1

τ (T) =
ni
ρ G (0), indicating that at strong

coupling, the scattering rate is of the same order as the unitary scattering limit. We shall
now see how this same result comes naturally out of a strong coupling analysis.

2.6. Strong Coupling: Nozières Fermi Liquid Picture of the Kondo
Ground-state

The weak-coupling analysis tells us that at scales of order the Kondo temperature,
the Kondo coupling constantg scales to a value of orderO(1). Although perturbative
renormalization group methods can not go past this point, Anderson and Yuval pointed
out that it is not unreasonable to suppose that the Kondo coupling constant scales
to a fixed point where it is large compared to the conduction electron band-width
D. This assumption is the simplest possibility and if true, itmeans that the strong-
coupling limit is an attractive fixed point, being stable under the renormalization group.
Anderson and Yuval conjectured that the Kondo singlet wouldbe paramagnetic, with
a temperature independent magnetic susceptibility and a universal linear specific heat
given byCV = γK

T
TK

at low temperatures.
The first controlled treatment of this cross-over regime wascarried out by Wilson

using a numerical renormalization group method. Wilson’s numerical renormalization
method was able to confirm the conjectured renormalization of the Kondo coupling
constant to infinity. This limit is called the “strong coupling” limit of the Kondo problem.
Wilson carried out an analysis of the strong-coupling limit, and was able to show that
the specific heat would be a linear function of temperature, like a Fermi liquid. Wilson
showed that the linear specific heat could be written in a universal form

CV = γT,

γ =
π2

3
0.4128±0.002

8TK
(59)

Wilson also compared the ratio between the magnetic susceptibility and the linear
specific heat with the corresponding value in a non-interacting system, computing

W =
χ/χ0

γ/γ0 =
χ
γ

(
π2k2

B

3(µB)2

)
= 2 (60)

within the accuracy of the numerical calculation.
Remarkably, the second result of Wilson’s can be re-derivedusing an exceptionally

elegant set of arguments due to Nozières[19] that leads to anexplicit form for the strong
coupling fixed point Hamiltonian. Nozières began by considering an electron in a one-
dimensional chain as illustrated in Fig. 10. The Hamiltonian for this situation is
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FIGURE 10. Illustrating the strong-coupling limit of the Kondo model

Hlattice = −t ∑
j=0,∞

[c†
σ ( j +1)cσ ( j)+H.c]+Jc†

α(0)~σαβ cβ (0) · ~Sd. (61)

Nozières argued that the strong coupling fixed point will be described by the situation
J >> t. In this limit, the kinetic energy of the electrons in the band can be treated as a
perturbation to the Kondo singlet. The local moment couplesto an electron at the origin,
forming a “Kondo singlet” denoted by

|GS〉 =
1√
2

(| ⇑↓〉− | ⇓↑〉) (62)

where the thick arrow refers to the spin state of the local moment and the thin arrow
refers to the spin state of the electron at site 0. Any electron which migrates from site
1 to site 0 will automatically break this singlet state, raising its energy by 3J/4. This
will have the effect of excludingelectrons (or holes) from the origin. The fixed point
Hamiltonian must then take the form

Hlattice = −t ∑
j=1,∞

[c†
σ ( j +1)cσ( j)+H.c]+weak interaction (63)

where the second-term refers to the weak-interactions induced in the conduction sea by
virtual fluctuations onto site 0. If the wavefunction of electrons far from the impurity
has the formψ(x) ∼ sin(kFx), wherekF is the Fermi momentum, then the exclusion of
electrons from site 1 has the effect of phase-shifting the electron wavefunctions by one
the lattice spacinga, so that nowψ(x)∼ sin(kFx−δ ) whereδ = kFa. But if there is one
electron per site, then 2(2kFa/(2π)) = 1 by the Luttinger sum rule, so thatkF = π/(2a)
and hence the Kondo singlet acts as a spinless, elastic scattering center with scattering
phase shift

δ = π/2. (64)

The appearance ofδ = π/2 could also be deduced by appealing to the Friedel sum
rule, which states that the number of bound-electrons at themagnetic impurity site is



∑σ
δσ=±1

π = 2δ/π , so thatδ = π/2. By considering virtual fluctuations of electrons
between site 1 and 0, Nozières argued that the induced interaction at site 1 must take
the form

Hint ∼
t4

J3n1↑n1↓ (65)

because fourth order hopping processes lower the energy of the singly occupied state,
but they do not occur for the doubly occupied state. This is a repulsive interaction
amongst the conduction electrons, and it is known to be a marginal operator under the
renormalization group, leading to the conclusion that the effective Hamiltonian describes
a weakly interacting “local” Fermi liquid.

Nozières formulated this local Fermi liquid in the languageof an occupancy-
dependent phase shift. Suppose thekσ scattering state has occupancynkσ , then the the
ground-state energy will be a functional of these occupanciesE[{nkσ}]. The differential
of this quantity with respect to occupancies defines aphase shiftas follows

δE
δnkσ

= εk−
∆ε
π

δ ({nk′σ ′},εk). (66)

The first term is just the energy of an unscattered conductionelectron, while
δ ({nk′σ ′},εk) is the scattering phase shift of the Fermi liquid. This phaseshift can
be expanded

δ ({nk′σ ′},εk) =
π
2

+α(εk−µ)+Φ∑
k

δnk,−σ (67)

where the term with coefficientΦ describes the interaction between opposite spin states
of the Fermi liquid. Nozières argued that when the chemical potential of the conduction
sea is changed, the occupancy of the localizedd state will not change, which implies
that the phase shift is invariant under changes inµ. Now under a shiftδ µ, the change
in the occupancy∑k δnkσ → δ µρ , so that changing the chemical potential modifies the
phase shift by an amount

∆δ = (α +Φρ)∆µ = 0 (68)

so thatα = −ρΦ. We are now in a position to calculate the impurity contribution to
the magnetic susceptibility and specific heat. First note that the density of quasiparticle
states is given by

ρ =
dN
dE

= ρo+
1
π

∂δ
∂ε

= ρo+
α
π

(69)

so that the low temperature specific heat is given byCV = (γbulk+ γi) where

γi = 2

(
π2k2

B

3

)
α
π

(70)

where the prefactor “2” is derived from the spin up and spin-down bands. Now in a
magnetic field, the impurity magnetization is given by

M =
δ↑
π

−
δ↓
π

(71)



Since the Fermi energies of the up and down quasiparticles are shifted toεFσ → εF −σB,
we have∑k δnkσ = σρB, so that the phase-shift at the Fermi surface in the up and down
scattering channels becomes

δσ =
π
2

+αδεFσ +Φ(∑
k

δnkσ

=
π
2

+ασB−ΦρσB

=
π
2

+2ασB (72)

so that the presence of the interaction term doublesthe size of the change in the phase
shift due to a magnetic field. The impurity magnetization then becomes

Mi = χiB = 2

(
2α
π

)
µ2

BB (73)

where we have reinstated the magnetic moment of the electron. This is twice the value
expected for a “rigid” resonance, and it means that the Wilson ratio is

W =
χiπ

2k2
B

γi3(µB)2 = 2 (74)

2.7. Experimental observation of Kondo effect in real materials and
quantum dots

Experimentally, there is now a wealth of observations that confirm our understanding
of the single impurity Kondo effect. Here is a brief itemization of some of the most
important observations. (Fig. 11.)

• A resistance minimum appears when local moments develop in amaterial. For ex-
ample, inNb1−xMox alloys, a local moment develops forx> 0.4, and the resistance
is seen to develop a minimum beyond this point.[20, 21]

• Universality seen in the specific heatCV =
ni
T F(T/TK) of metals doped with dilute

concentrations of impurities. Thus the specific heat ofCu− Fe (iron impurities
in copper) can be superimposed on the specific heat ofCu−Cr, with a suitable
rescaling of the temperature scale. [22, 23]

• Universality is observed in the differential conductance of quantum dots[25, 26]
and spin-fluctuation resistivity of metals with a dilute concentration of
impurities.[24] Actually, both properties are dependent on the same thermal
average of the imaginary part of the scattering T-matrix

ρi = ni
ne2

m

∫
dω
(
− ∂ f

∂ω

)
2Im[T(ω)]

G =
2e2

h̄

∫
dω
(
− ∂ f

∂ω

)
πρIm[T(ω)]. (75)
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FIGURE 11. (a) Sketch of resistance minimum inMoxNb1−x (b) Sketch of excess resistivity associated
with scattering from an impurity spin. Right hand-scale- differential conductivity of a quantum dot.

Putting πρ
∫

dω
(
− ∂ f

∂ω

)
ImT(ω) = t(ω/TK,T/TK), we see that both properties

have the form

ρi = ni
2ne2

πmρ
t(T/TK)

G =
2e2

h̄
t(T/TK) (76)

wheret(T/TK) is a universal function. This result is born out by experiment.



2.8. Exercises

1. Generalize the scaling equations to the anisotropic Kondo model with an anisotropic
interaction

HI = ∑
|εk|,|εk′ ,a=(x,y,z)

Jac†
kασa

αβ ck′β ·S
a
d (77)

and show that the scaling equations take the form

∂Ja

∂ lnD
= −2JbJcρ +O(J3),

where and(a,b,c) are a cyclic permutation of(x,y,z). Show that in the special case where
Jx = Jy = J⊥, the scaling equations become

∂J⊥
∂ lnD

= −2JzJ⊥ρ +O(J3),

∂Jz

∂ lnD
= −2(Jz)

2ρ +O(J3), (78)

so thatJ2
z −J2

⊥ = constant. Draw the corresponding scaling diagram.
2. Consider the symmetric Anderson model, with a symmetric band-structure at half filling.

In this model, thed0 andd2 states are degenerate and there is the possibility of a “charged
Kondo effect” when the interactionU is negative. Show that under the “particle-hole”
transformation

ck↑ → ck↑, d↑ → d↑
ck↓ → −c†

k↓, d↓ →−d†
↓ (79)

the positiveU model is transformed to the negativeU model. Show that the spin operators
of the local moment are transformed into Nambu “isospin operators” which describe the
charge and pair degrees of freedom of the d-state. Use this transformation to argue that
when U is negative, a charged Kondo effect will occur at exactly half-filling involving
quantum fluctuations between the degenerated0 andd2 configurations.

3. What happens to the Schrieffer-Wolff transformation in the infinite U limit? Rederive
the Schrieffer-Wolff transformation for an N-fold degenerate version of the infinite U
Anderson model. This is actually valid for Ce and Yb ions.

4. Rederive the Nozières Fermi liquid picture for an SU (N) degenerate Kondo model. Explain
why this picture is relevant for magnetic rare earth ions such asCe3+ orYb3+.

5. Check the Popov trick works for a magnetic moment in an external field. Derive the
partition function for a spin in a magnetic field using this method.

6. Use the Popov trick to calculate the T-matrix diagrams forthe leading Kondo renormaliza-
tion diagramatically.

3. HEAVY FERMIONS

Although the single impurity Kondo problem was essentiallysolved by the early sev-
enties, it took a further decade before the physics community was ready to accept the



FIGURE 12. Illustrating how the polarization of spin around a magneticimpurity gives rise to Friedel
oscillations and induces an RKKY interaction between the spins

notion that the same phenomenon could occur within a dense lattice environment. This
resistance to change was rooted in a number of popular misconceptions about the spin
physics and the Kondo effect.

At the beginning of the seventies, it was well known that local magnetic moments
severely suppress superconductivity, so that typically, afew percent is all that is required
to destroy the superconductivity. Conventional superconductivity is largely immune
to the effects of non-magnetic disorder7 but highly sensitive to magnetic impurities,
which destroy the time-reversal symmetry necessary for s-wave pairing. The arrival
of a new class of superconducting material containing densearrays of local moments
took the physics community completely by surprise. Indeed,the first observations of
superconductivity inUBe13, made in 1973 [27] were dismissed as an artifact and had
to await a further ten years before they were revisited and acclaimed as heavy fermion
superconductivity. [28, 29]

Normally, local moment systems develop antiferromagneticorder at low tempera-
tures. When a magnetic moment is introduced into a metal it induces Friedel oscillations
in the spin density around the magnetic ion, given by

〈~M(x)〉 = −Jχ(~x−~x′)〈~S(~x′)〉

whereJ is the strength of the Kondo coupling and

χ(x) = ∑
~q

χ(~q)ei~q·~x

χ(~q) = 2∑
~k

f (ε~k)− f (ε~k+~q
)

ε~k+~q
− ε~k

(80)

is the the non-local susceptibility of the metal. If a secondlocal moment is introduced
at location~x, then it couples to〈M(~x)〉 giving rise to a long-range magnetic interaction

7 Anderson argued in his “dirty superconductor theorem” thatBCS superconductivity involves pairing
of electrons in states that are the time-reverse transform of one another. Non-magnetic disorder does not
break time reversal symmetry, and so the one particle eigenstates of a dirty system can still be grouped
into time-reverse pairs from which s-wave pairs can be constructed. For this reason, s-wave pairing is
largely unaffected by non-magnetic disorder.



called the “RKKY”[30] interaction,8

HRKKY =

JRKKY(~x−~x′)︷ ︸︸ ︷
−J2χ(~x−~x′)~S(x) ·~S(x′). (81)

The sharp discontinuity in the occupancies at the Fermi surface produces slowly decay-
ing Friedel oscillations in the RKKY interaction given by

JRKKY(r) ∼−J2ρ
cos2kF r

|kF r|3 (82)

whereρ is the conduction electron density of states andr is the distance from the
impurity, so the RKKY interaction oscillates in sign, depending on the distance between
impurities. The approximate size of the RKKY interaction isgiven byERKKY ∼ J2ρ .

Normally, the oscillatory nature of this magnetic interaction favors the development
of antiferromagnetism. In alloys containing a dilute concentration of magnetic transi-
tion metal ions, the RKKY interaction gives rise to a frustrated, glassy magnetic state
known as a spin glass in which the magnetic moments freeze into a fixed, but random
orientation. In dense systems, the RKKY interaction typically gives rise to an ordered
antiferromagnetic state with a Néel temperatureTN ∼ J2ρ .

In 1976 Andres, Ott and Graebner discovered the heavy fermion metalCeAl3. [31]
This metal has the following features:

• A Curie susceptibilityχ−1 ∼ T at high temperatures.
• A paramagnetic spin susceptibilityχ ∼ constantat low temperatures.
• A linear specific heat capacityCV = γT, whereγ ∼ 1600mJ/mol/K2 is approxi-

mately 1600 times larger than in a conventional metal.
• A quadratic temperature dependence of the low temperature resistivity ρ = ρo +

AT2

Andres, Ott and Grabner pointed out that the low temperatureproperties are those of
a Fermi liquid, but one in which the effective masses of the quasiparticlesare approx-
imately 1000 larger than the bare electron mass. The Fermi liquid expressions for the
magnetic susceptibilityχ and the linear specific heat coefficientγ are

χ = (µB)2 N∗(0)

1+Fa
o

γ =
π2k2

B

3
N∗(0) (83)

whereN∗(0)= m∗
m N(0) is the renormalized density of states andFa

0 is the spin-dependent
part of the s-wave interaction between quasiparticles. What could be the origin of this
huge mass renormalization? Like other Cerium heavy fermionmaterials, the Cerium
atoms in this metal are in aCe3+(4 f 1) configuration, and because they are spin-orbit

8 named after Ruderman, Kittel, Kasuya and Yosida
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FIGURE 13. (a) Single impurity Kondo effect builds a single fermionic level into the conduction sea,
which gives rise to a resonance in the conduction electron density of states (b) Lattice Kondo effect builds
a fermionic resonance into the conduction sea in each unit cell. The elastic scattering off this lattice of
resonances leads to formation of a heavy electron band, of widthTK .

coupled, they form huge local moments with a spin ofJ = 5/2. In their paper, Andres,
Ott and Graebner suggested that a lattice version of the Kondo effect might be responsi-
ble.

This discovery prompted Sebastian Doniach[32] to propose that the origin of these
heavy electrons derived from a dense version of the Kondo effect. Doniach proposed that
heavy electron systems should be modeled by the “Kondo-lattice Hamiltonian” where a
dense array of local moments interact with the conduction sea. For a Kondo lattice with
spin 1/2 local moments, the Kondo lattice Hamiltonian[33] takes the form

H = ∑
~kσ

ε~kc
†
~kσ

c~kσ
+J∑

j

~Sj ·c†
~kα

(
~σ
2

)

αβ
c~k′β ei(~k′−~k)·~Rj (84)

Doniach argued that there are two scales in the Kondo lattice, the Kondo temperatureTK
andERKKY, given by

TK = De−1/2Jρ

ERKKY = J2ρ (85)

WhenJρ is small, thenERKKY >> TK, and an antiferromagnetic state is formed, but
when the Kondo temperature is larger than the RKKY interaction scale,TK >> ERKKY,
Doniach argued that a dense Kondo lattice ground-state is formed in which each site
resonantly scatters electrons. Bloch’s theorem then insures that the resonant elastic
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FIGURE 14. Doniach diagram, illustrating the antiferromagnetic regime, whereTK < TRKKY and the
heavy fermion regime, whereTK > TRKKY. Experiment has told us in recent times that the transition
between these two regimes is a quantum critical point. The effective Fermi temperature of the heavy
Fermi liquid is indicated as a solid line. Circumstantial experimental evidence suggests that this scale
drops to zero at the antiferromagnetic quantum critical point, but this is still a matter of controversy.

scattering at each site will form a highly renormalized band, of width∼ TK. By contrast
to the single impurity Kondo effect, in the heavy electron phase of the Kondo lattice the
strong elastic scattering at each site acts in a coherent fashion, and does not give rise
to a resistance. For this reason, as the heavy electron stateforms, the resistance of the
system drops towards zero. One of the fascinating aspects ofthe Kondo lattice concerns
the Luttinger sum rule. This aspect was first discussed in detail by Martin[36], who
pointed out that the Kondo model can be regarded as the resultof adiabatically increasing
the interaction strengthU in the Anderson model, whilst preserving the valence of the
magnetic ion. During this process, one expects sum rules to be preserved. In the impurity,
the scattering phase shift at the Fermi energy counts the number of localized electrons,
according to the Friedel sum rule

∑
σ

δσ
π

= nf = 1

This sum rule survives to largeU , and reappears as the constraint on the scattering
phase shift created by the Abrikosov Suhl resonance. In the lattice, the corresponding
sum rule is the Luttinger sum rule, which states that the Fermi surface volume counts
the number of electrons, which at smallU is just the number of localized (4f, 5f or 3d)
and conduction electrons. WhenU becomes large, number of localized electrons is now
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the number of spins, so that
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(2π)3 = ne+nspins

This sum rule is thought to hold for the Kondo lattice Hamiltonian, independently of the
origin of the localized moments. Such a sum rule would work, for example, even if the
spins in the model were derived from nuclear spins, providedthe Kondo temperature
were large enough to guarantee a paramagnetic state.

Experimentally, there is a great deal of support for the above picture. It is possible,
for example, to examine the effect of progressively increasing the concentration ofCe
in the non-magnetic hostLaCu6.(15 ) At dilute concentrations, the resistivity rises to a
maximum at low temperatures. At dense concentrations, the resistivity shows the same
high temperature behavior, but at low temperatures coherence between the sites leads to
a dramatic drop in the resistivity. The thermodynamics of the dense and dilute system
are essentially identical, but the transport properties display the effects of coherence.

There are also indications that the Fermi surface of heavy electron systems does
have the volume which counts both spins and conduction electrons, derived from Fermi
surface studies. [52, 53]

3.1. Some difficulties to overcome.

The Doniach scenario for heavy fermion development is purely a comparison of en-
ergy scales: it does not tell us how the heavy fermion phase evolves from the antiferro-
magnet. There were two early objections to Doniach’s idea:

• Size of the Kondo temperatureTK. Simple estimates of the value ofJρ required for
heavy electron behavior give a valueJρ ∼ 1. Yet in the Anderson model,Jρ ∼ 1
would imply a mixed valent situation, with no local moment formation.



• Exhaustion paradox. The naive picture of the Kondo model imagines that the local
moment is screened by conduction electrons within an energyrangeTK of the Fermi
energy. The number of conduction electrons in this range is of order TK/D << 1
per unit cell, whereD is the band-width of the conduction electrons, suggesting that
there are not enough conduction electrons to screen the local moments.

The resolution of these two issues are quite intriguing.

3.1.1. Enhancement of the Kondo temperature by spin degeneracy

The resolution of the first issue has its origins in the large spin-orbit coupling of
the rare earth or actinide ions in heavy electron systems. This protects the orbital
angular momentum against quenching by the crystal fields. Rare earth and actinide ions
consequently display a large total angular momentum degeneracyN = 2 j +1, which has
the effect of dramatically enhancing the Kondo temperature. Take for example the case
of the Cerium ion, where the 4f 1 electron is spin-orbit coupled into a state withj = 5/2,
giving a spin degeneracy ofN = 2 j +1 = 6. Ytterbium heavy fermion materials involve
theYb: 4 f 13 configuration, which has an angular momentumj = 7/2, orN = 8.

To take account of these large spin degeneracies, we need to generalize the Kondo
model. This was done in the mid-sixties by Coqblin and Schrieffer[15]. Coqblin and
Schrieffer considered a degenerate version of the infiniteU Anderson model in which
the spin component of the electrons runs from− j to j,

H = ∑
kσ

εkc
†

kσ ckσ +Ef ∑
σ
| f 1 : σ〉〈 f 1 : σ |+∑

k,σ
V
[
c†

kσ | f 0〉〈 f 1 : σ |+H.c.
]
.

Here the conduction electron states are also labeled by spinindices that run from− j
to j. This is because the spin-orbit coupledf states couple to partial wave states of the
conduction electrons in which the orbital and spin angular momentum are combined into
a state of definitej. Suppose|~kσ〉 represents a plane wave of momentum~k, then one can
construct a state of definite orbital angular momentuml by integrating the plane wave
with a spherical harmonic, as follows:

|klmσ〉 =
∫

dΩ
4π

|~kσ〉Y∗
lm(k̂)

When spin orbit interactions are strong, one must work with apartial wave of definite
j, obtained by combining these states in the following linearcombinations. Thus for the
casej = l +1/2 (relevant for Ytterbium ions), we have

|km〉 = ∑
σ=±1

√
l +σm+ 1

2

2l +1
|klm− σ

2
,
σ
2
〉.

An electron creation operator is constructed in a similar way. This construction is
unfortunately, not simultaneously possible at more than one site.



WhenEf << 0, the valence of the ion approaches unity andnf → 1. In this limit,

one can integrate out the virtual fluctuationsf 1 ⇀↽ f 0 + e− via a Schrieffer Wolff
transformation. This leads to the Coqblin Schrieffer model

HCS= ∑
kσ

εkc
†
kσ ckσ +J ∑

k,k′,αβ
c†

kβ ck′αΓαβ , (σ ,α,β ∈ [− j, j]).

whereJ =V2/|Ef | is the induced antiferromagnetic interaction strength. This interaction

is understood as the result of virtual charge fluctuations into the f 0 state,f 1 ⇀↽ f 0+e−.
The spin indices run from− j to j, and we have introduced the notation

Γαβ ≡ f †
α fβ = | f 1 : α〉〈 f 1 : β |

Notice that the chargeQ= nf of the f−electron, normally taken to be unity, is conserved
by the spin-exchange interaction in this Hamiltonian.

To get an idea of how the Kondo effect is modified by the larger degeneracy, consider
the renormalization of the interaction, which is given by the diagram

Je f f(D
′) =

J

+

J

N

J

= J+NJ2ρ ln

(
D
D′

)
(86)

( where the cross on the intermediate conduction electron state indicates that all states
with energy |εk| ∈ [D′,D] are integrate over). From this result, we see thatβ (g) =

∂g(D)/∂ lnD = −Ng2, whereg = Jρ has anN− fold enhancement, derived from the
N intermediate hole states. A more extensive calculation shows that the beta function to
third order takes the form

β (g) = −Ng2 +Ng3. (87)

This then leads to the Kondo temperature

TK = D(NJρ)
1
N exp

[
− 1

NJρ

]

so that large degeneracy enhances the Kondo temperature in the exponential factor.
By contrast, the RKKY interaction strength is given byTRKKY ∼ J2ρ , and it does not
involve anyN fold enhancement factors, thus in systems with large spin degeneracy,
the enhancement of the Kondo temperature favors the formation of the heavy fermion
ground-state.

In practice, rare-earth ions are exposed to the crystal fields of their host, which splits
the N = 2 j + 1 fold degeneracy into many multiplets. Even in this case, the large
degeneracy is helpful, because the crystal field splitting is small compared with the band-
width. At energiesD′ large compared with the crystal field splittingTx, D′ >> Tx, the
physics is that of anN fold degenerate ion, whereas at energiesD′ small compared with
the crystal field splitting, the physics is typically that ofa Kramers doublet, i.e.



N−2

2

XT

∂g
∂ lnD

=

{
−Ng2 (D >> Tx)
−2g2 (D << Tx)

(88)

from which we see that at low energy scales, the leading orderrenormalization ofg is
given by

1
g(D′)

=
1
go

−N ln

(
D
Tx

)
−2ln

(
Tx

D′

)

where the first logarithm describes the high energy screening with spin degeneracyN,
and the second logarithm describes the low-energy screening, with spin degeneracy 2.
This expression is∼ 0 whenD′ ∼ T∗

K , the Kondo temperature, so that

0 =
1
go

−N ln

(
D
Tx

)
−2ln

(
Tx

T∗
K

)

from which we deduce that the renormalized Kondo temperature has the form[34]

T∗
K = Dexp

(
− 1

2Joρ

)(
D
Tx

)N
2−1

.

Here the first term is the expression for the Kondo temperature of a spin 1/2 Kondo
model. The second term captures the enhancement of the Kondotemperature coming
from the renormalization effects at scales larger than the crystal field splitting. Suppose
Tx ∼ 100K, andD ∼ 1000K, andN = 6, then the enhancement factor is order 100. This
effect enhances the Kondo temperature of rare earth heavy fermion systems to values
that are indeed, up to a hundred times bigger than those in transition metal systems. This
is the simple reason why heavy fermion behavior is rare in transition metal systems.
[38] In short- spin-orbit coupling, even in the presence of crystal fields, substantially
enhances the Kondo temperature.

3.1.2. The exhaustion problem

At temperaturesT <
˜TK, a local moment is “screened” by conduction electrons. What

does this actually mean? The conventional view of the Kondo effect interprets it in terms
of the formation of a “magnetic screening cloud” around the local moment. According to
the screening cloud picture, the electrons which magnetically screen each local moment
are confined within an energy range of orderδε ∼ TK around the Fermi surface, giving
rise to a spatially extended screening cloud of dimensionl = vF/TK ∼ aεF

TK
, wherea is a

lattice constant andεF is the Fermi temperature. In a typical heavy fermion system,this



length would extend over hundreds of lattice constants. This leads to the following two
dilemmas

1. It suggests that when the density of magnetic ions is greater thanρ ∼ 1/l3, the
screening clouds will interfere. Experimentally no such interference is observed,
and features of single ion Kondo behavior are seen at much higher densities.

2. “ The exhaustion paradox” The number of “screening”electrons per unit cell within
energyTK of the Fermi surface roughlyTK/W, whereW is the bandwidth, so
there would never be enough low energy electrons to screen a dense array of local
moments.

In this lecture I shall argue that the screening cloud picture of the Kondo effect
is conceptually incorrect. Although the Kondo effect does involve a binding of lo-
cal moments to electrons, the binding process takes place between the local moment
and high energy electrons, spanning decades of energy from the Kondo temperature
up to the band-width. (Fig. 16) I shall argue that the key physics of the Kondo ef-
fect, both in the dilute impurity and dense Kondo lattice, involves the formation of a
composite heavy fermionformed by binding electrons on logarithmically large energy
scales out to the band-width. These new electronic statesare injected into the conduction
electron sea near the Fermi energy. For a single impurity, this leads to a single isolated
resonance. In the lattice, the presence of a new multiplet offermionic states at each
site leads to the formation of a coherent heavy electron bandwith an expanded Fermi
surface. ( 16)

3.2. Large N Approach

We shall now solve the Kondo model, both the single impurity and the lattice, in
the largeN limit. In the early eighties, Anderson[39] pointed out thatthe large spin
degeneracyN = 2 j +1 furnishes a small parameter 1/N which might be used to develop
a controlled expansion about the limitN → ∞. Anderson’s observation immediately
provided a new tool for examining the heavy fermion problem:the so called “largeN
expansion”. [40].

The basic idea behind the largeN expansion, is to take a limit where every term in the
Hamiltonian grows extensively withN. In this limit, quantum fluctuations in intensive
variables, such as the electron density, become smaller andsmaller, scaling as 1/N, and
in this sense,

1
N

∼h̄e f f

behaves as an effective Planck’s constant for the theory. Inthis sense, a largeN expansion
is a semi-classical treatment of the quantum mechanics, butinstead of expanding around
h̄= 0, one can obtain new, non trivial results by expanding around the non trivial solvable
limit 1

N = 0. For the Kondo model, we are lucky, because the important physics of the
Kondo effect is already captured by the largeN limit as we shall now see.
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FIGURE 16. Contrasting (a) the “screening cloud” picture of the Kondo effect with (b) the composite
fermion picture. In (a), low energy electrons form the Kondosinglet, leading to the exhaustion problem.
In (b) the composite heavy electron is a highly localized bound-state between local moments and high
energy electrons which injects new electronic states into the conduction sea at the chemical potential.
Hybridization of these states with conduction electrons produces a singlet ground-state, forming a Kondo
resonance in the single impurity, and a coherent heavy electron band in the Kondo lattice.

Our model for a Kondo lattice or an ensemble of Kondo impurities localized at sites
j is

H = ∑
~kσ

ε~kc
†
~kσ

c~kσ
+∑

j
HI( j) (89)

where

HI( j) =
J
N

Γαβ ( j)ψ†
β ( j)ψα( j)

is the interaction Hamiltonian between the local moment andconduction sea. Here, the
spin of the local moment at sitej is represented using pseudo-fermions

Γαβ ( j) = f †
jα f jβ ,

and
ψ†

α( j) = ∑
~k

c†
~kα

e−i~k·~Rj

creates an electron localized at sitej.



There are a number of technical points about this model that need to be discussed:

• The spherical cow approximation. For simplicity, we assume that electrons have
a spin degeneracyN = 2 j + 1. This is a theorists’ idealization- a “spherical cow
approximation” which can only be strictly justified for a single impurity. Neverthe-
less, the basic properties of this toy model allow us to understand how the Kondo
effect works in a Kondo lattice. With anN-fold conduction electron degeneracy, it
is clear that the Kinetic energy will grow asO(N).

• Scaling the interaction. Now the interaction part of the HamiltonianHI( j) in-
volves two sums over the spin variables, giving rise to a contribution that scales as
O(N2). To ensure that the interaction energy grows extensively with N, we need to
scale the coupling constant asO(1/N).

• Constraint nf = Q. Irreducible representations of the rotation group SU (N) re-
quire that the number off−electrons at a given site is constrained to equal to
nf = Q. In the largeN limit, it is sufficient to apply this constraint on the aver-
age〈nf 〉 = Q, though at finiteN a time dependent Lagrange multiplier coupled
to the differencenf −Q is required to enforce the constraint dynamically. WithQ

f−electrons, the spin operatorsΓab = f †
a fb provide an irreducibleantisymmet-

ric representation ofSU(N) that is described by column Young Tableau withQ
boxes. AsN is made large, we need to ensure thatq = Q/N remains fixed, so that
Q∼ O(N) is an extensive variable. Thus, for instance, if we are interested inN = 2,
this corresponds toq = nf /N = 1

2. We may obtain insight into this case by consid-
ering the largeN limit with q = 1/2.

The next step in the largeN limit is to carry out a “Hubbard Stratonovich” transfor-
mation on the interaction. We first write

HI( j) = − J
N

(
ψ†

jβ f jβ

)(
f †

jαψ jα

)
,

with a summation convention on the spin indices. We now factorize this[45, 46] as

HI ( j) → HI [V, j] = V̄j

(
ψ†

jα f jα

)
+
(

f †
jαψ jα

)
Vj +N

V̄jVj

J

This is an exact transformation, provided the hybridization variablesVj(τ) are regarded
as fluctuating variables inside a path integral, so formally,

Z =
∫

D [V,λ ]

Z[λ ,V]︷ ︸︸ ︷
Tr[T exp

[
−
∫ β

0
H[V,λ ]

]
] (90)

where

H[V,λ ] = ∑
~kσ

ε~kc
†
~kσ

c~kσ
+∑

j

(
HI [Vj , j]+λ j [nf ( j)−Q]

)
, (91)



is exact. In this expression,D [V,λ ] denotes a path integral over all possible time-
dependences ofVj and λ j(τ), andT denotes time ordering. The important point for
our discussion here however, is that in the largeN limit, the Hamiltonian entering into
this path integral grows extensively withN, so that we may write the partition function
in the form

Z =
∫

D [V,λ ]Tr[T exp

[
−N

∫ β

0
H [V,λ ]

]
(92)

whereH [V,λ ] = 1
NH[V,λ ] ∼ O(1) is an intensive variable inN. The appearance of a

large factorN in the exponential means that this path integral becomes dominated by its
saddle points in the largeN limit- i.e, if we choose

Vj = Vo, λ j = λo

where the saddle point valuesVo andλo are chosen so that

∂ lnZ[V,λ ]

∂V

∣∣∣∣
Vj=Vo,λ j=λo

=
∂ lnZ[V,λ ]

∂λ

∣∣∣∣
Vj=Vo,λ j=λo

= 0

then in the largeN limit,
Z = Tre−βH[Vo,λo]

In this way, we have converted the problem to a mean-field theory, in which the fluctuat-
ing variablesVj(τ) andλ j(τ) are replaced by their saddle-point values. Our mean-field
Hamiltonian is then

HMFT =∑
~kσ

ε~kc
†
~kσ

c~kσ
+∑

j ,α

(
f †

jαψ jαVo+V̄oψ†
jβ f jβ +λo f †

jα f jα

)
+Nn

(
V̄oVo

J
−λoq

)
,

where n is the number of sites in the lattice. We shall now illustrate the use of this mean-
field theory in two cases- the Kondo impurity, and the Kondo lattice. In the former, there
is just one site; in the latter, translational invariance permits us to setVj = Vo at every
site, and for convenience we shall choose this value to be real.

3.3. Mean-field theory of the Kondo impurity

3.3.1. Diagonalization of MF Hamiltonian

The Kondo effect is at heart, the formation of a many body resonance. To understand
this phenomenon at its conceptually simplest, we begin withthe impurity model. We
shall begin by writing down the mean-field Hamiltonian for a single Kondo ion

H = ∑
kσ

εkc
†

kσ ckσ +∑
kσ

V[c†
kσ fσ + f †

σ ckσ ]+λ ∑
σ

nf σ −λQ+
NV2

J
(93)



By making a mean-field approximation, we have reduced the problem to one of a
self-consistently determined resonant level model. Now, suppose we diagonalize this
Hamiltonian, writing it in the form

H = ∑
γσ

Eγa†
γσ aγσ +

NV2

J
−λQ (94)

where the “quasiparticle operators”αγ are related via a unitary transformation to the
original operators

a†
γσ = ∑

k

αkc
†

kσ +β f †
σ . (95)

commutinga†
γσ with H, we obtain

[H, a†
γσ ] = Eγa† (96)

Expanding the right and left-hand side of (96) in terms of (95) and (93), we obtain,

(Eγ − εk)αk−Vβ = 0
−V ∑

k

αk +(Eγ −λ )β = 0 (97)

Solving for αk using the first equation, and substituting into the second equation, we
obtain

Eγ −λ −∑
k

V2

Eγ − εk
= 0 (98)

We could have equally well obtained these eigenvalue equations by noting the electron
eigenvaluesEγ must correspond to the poles of the f-Green function,Gf (Eγ)

−1 = 0,
where from an earlier subsection,

G−1
f (ω) =

[
ω −λ −∑

k

V2

ω − εk

]
(99)

Either way, the one-particle excitation energiesEγ must satisfy

Eγ = λ +∑
k

V2
o

Eγ − εk
(100)

The solutions of this eigenvalue equation are illustrated graphically in Fig. (17). Suppose
the energies of the conduction sea are given by the 2M discrete values

εk = (k+
1
2
)∆ε, k∈ {−M, . . . ,M−1}

Suppose we restrict our attention to the particle-hole casewhen the f-state is exactly
half filled, i.e. whenQ = N/2. In this situation,λ = 0. We see that one solution to the
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FIGURE 17. (a)Graphical solution of the equationy = −∑k
V2

y−εk
, for eight equally spaced conduction

electron energies. Notice how the introduction of a new bound-state aty= 0 displaces electron band-states
both up and down in energy. In this way, the Kondo effect injects new bound-state fermion states into the
conduction sea. (b) Energy dependence of the scattering phase shift.

eigenvalue equation corresponds toEγ = 0. The original band-electron energies are now
displaced to both lower and higher energies, forming a band of 2M + 1 eigenvalues.
Clearly, the effect of the hybridization is to inject one newfermionic eigenstate into the
band. Notice however, that the electron states are displaced symmetrically either-side of
the new bound-state atEγ = 0.



Each new eigenvalue is shifted relative to the original conduction electron energy by
an amount of order∆ε. Let us write

Eγ = εγ −∆ε
δγ

π

whereδ ∈ [0,π ] is called the “phase shift”. Substituting this into the eigenvalue equation,
we obtain

Eγ = λ +
γ+M

∑
n=γ+1−M

V2
o

∆ε(n− δ
π )

Now if M is large, we can replace the sum over states in the above equation by an
unbounded sum

Eγ = λ +
V2

o

∆ε

∞

∑
n=−∞

1

(n− δ
π )

Using contour integration methods, one can readily show that

∞

∑
n=−∞

1

(n− δ
π )

= −π cotδ

so that the phase shift is given byδγ = δ (Eγ), where

tanδ [ε] =
πρV2

o

λ − ε

where we have replacedρ = 1
∆ε as the density of conduction electron states. This can

also be written

δ (ε) = tan−1
[

∆
λ − ε

]
= Imln[λ + i∆− ε] (101)

where∆ = πρV2
o is the width of the resonant level induced by the Kondo effect. Notice

that forλ = 0, δ = π/2 at the Fermi energy.

• The phase shift varies fromδ = 0 atEγ =−∞ to δ = π atEγ = ∞ , passing through
δ = π/2 at the Fermi energy.

• An extra state has been insertedinto the band, squeezing the original electron states
both down and up in energy to accommodate the additional state: states beneath
the Fermi sea are pushed downwards, whereas states above theFermi energy are
pushed upwards. From the relation

Eγ = εγ −
∆ε
π

δ (Eγ)

we deduce that

dε
dE

= 1+
∆ε
π

dδ (E)

dE



= 1+
1

πρ
dδ (E)

dE
(102)

whereρ = 1/∆ε is the density of states in the continuum. The new density of states
ρ∗(E)is given byρ∗(E)dE = ρdε, so that

ρ∗(E) = ρ(0)
dε
dE

= ρ +ρi(E) (103)

where

ρi(E) =
1
π

dδ (E)

dE
=

1
π

∆
(E−λ )2+∆2 (104)

corresponds to the enhancement of the conduction electron density of states due to
injection of resonant bound-state.

3.3.2. Minimization of Free energy

With these results, let us now calculate the Free energy and minimize it to self-
consistently evaluateλ and∆. The Free energy is given by

F = −NT∑
γ

ln[1+e−βEγ ]−λQ+
NV2

o

J
. (105)

In the continuum limit, whereε → 0, we can use the relationEγ = εγ −∆ε δ
π to write

−T ln[1+e−βEγ ] = −T ln[1+e−β (εγ−∆ε δ
π )]

=

→F0︷ ︸︸ ︷
−T ln[1+e−βεγ ]−∆ε

π
δ (εγ) f (εγ) (106)

wheref (x) = 1/(eβx+1) is the Fermi function. The first term in (106) is the Free energy
associated with a state in the continuum. The second term results from the displacement
of continuum states due to the injection of a resonance into the continuum. Inserting this
result into (105), we obtain

F = F0−N∑
γ

∆ε
π

δ (εγ) f (εγ)−λQ+
NV2

o

J

= F0−N
∫ ∞

−∞

dε
π

f (ε)δ (ε)−λQ+
NV2

o

J
(107)

The shift in the Free energy due to the Kondo effect is then

∆F = −N
∫ ∞

−∞

dε
π

f (ε)Imln[ζ − ε]−λQ+
N∆
πJρ

(108)



where we have introducedζ = λ + i∆. This integral can be done at finite temperature,
but for simplicity, let us carry it out atT = 0, when the Fermi function is just at step
function, f (x) = θ(−x). This gives

∆E =
N
π

Im
[
(ζ − ε) ln

[
ζ − ε

e

]]0

−D
−λQ+

N∆
πJρ

=
N
π

Im
[
ζ ln

[
ζ
eD

]
−D ln

[
D
e

]]
−λQ+

N∆
πJρ

(109)

where we have expanded(ζ +D) ln
[

D+ζ
e

]
→D ln

[
D
e

]
+ζ lnD to obtain the second line.

We can further simplify this expression by noting that

−λQ+
N∆
πJρ

= −N
π

Im
[
ζ ln

[
e−

1
ρJ+iπq

]]
(110)

whereq = Q/N. With this simplification, the shift in the ground-state energy due to the
Kondo effect is

∆E =
N
π

Im
[
ζ ln

[
ζ

eTKeiπq

]]
(111)

where we have dropped the constant term and introduced the Kondo temperatureTK =

De−
1

Jρ . The stationary point∂E/∂ζ = 0 is given by

ζ = λ + i∆ = TKeiπq
{

TK =
√

λ 2+∆2

tan(πq) = ∆
λ

Notice that

• The phase shiftδ = πq is the same in each spin scattering channel, reflecting
the singlet nature of the ground state. The relationship between the filling of the
resonance and the phase shiftQ = ∑σ

δσ
π = Nδ

π is nothing more than Friedel’s sum
rule.

• The energy is stationary with respect to small variations inλ and∆. It is only a local
minimum once the condition∂E/∂λ , corresponding to the constraint〈n̂f 〉 = Q, or
λ = ∆cot(πq) is imposed. It is instructive to study the energy for the special case
q = 1

2, λ = 0 which is physically closest to theS= 1/2, N = 2 case. In this case,
the energy takes the simplified form

∆E =
N
π

[
∆ ln

[
∆

eTK

]]
(112)

Plotted as a function ofV, this is the classic “Mexican Hat” potential, with a
minimum where∂E/∂V = 0 at∆ = πρ|V|2 = TK. (Fig. 18)

• According to (103), the enhancement of the density of statesat the Fermi energy is

ρ∗(0) = ρ +
∆

π(∆2+λ 2)



= ρ +
sin(πq)

πTK
(113)

per spin channel. When the temperature is changed or a magnetic field introduced,
one can neglect changes in∆ andλ , since the Free energy is stationary. This implies
that in the largeN limit, the susceptibility and linear specific heat are thoseof a non-
interacting resonance of width∆. The change in linear specific heat∆CV = ∆γT and
the change in the paramagnetic susceptibility∆χ are given by

∆γ =

[
Nπ2k2

B

3

]
ρi(0) =

[
Nπ2k2

B

3

]
sin(πq)

πTK

∆χ =

[
N

j( j +1)(gµB)2

3

]
ρi(0) =

[
N

j( j +1)(gµB)2

3

]
sin(πq)

πTK
(114)

Notice how it is the Kondo temperature that determines the size of these two
quantities. The dimensionless “Wilson” ratio of these two quantities is

W =

[
(πkB)2

(gµB)2 j( j +1)

]
∆χ
∆γ

= 1

At finite N, fluctuations in the mean-field theory can no longer be ignored. These
fluctuations induce interactionsamongst the quasiparticles, and the Wilson ratio
becomes

W =
1

1− 1
N

.

The dimensionless Wilson ratio of a large variety of heavy electron materials lies
remarkably close to this value.

3.4. Gauge invariance and the composite nature of thef−electron

We now discuss the nature of thef−electron. In particular, we shall discuss how

• the f−electron is actually a composite object, formed from the binding of high-
energy conduction electrons to the local moment.

• although the broken symmetry associated with the largeN mean-field theory does
not persist to finiteN, the phase stiffness associated with the mean-field theory
continues to finiteN. This phase stiffness is responsible for the charge of the
compositef electron.

3.4.1. Composite nature of the heavy f−electron

Let us begin by discussing the composite structure of thef−electron. In real mate-
rials, the Kondo effect we have described involves spins formed from localized f- or
d-electrons. Though it is tempting to associate the composite f−electron in the Kondo



effect with the thef−electron locked inside the local moment, we should also bearin
mind that the Kondo effect could have occurred equally well with a nuclearspin! Nu-
clear spins do couple antiferromagnetically with a conduction electron, but the coupling
is far too small for an observable nuclear Kondo effect. Nevertheless, we could conduct a
thought experiment where a nuclear spin is coupled to conduction electrons via a strong
antiferromagnetic coupling. In this case, a resonant bound-state would also form from
the nuclear spin. The composite bound-state formed in the Kondo effect clearly does not
depend on the origin of the spin partaking in the Kondo effect.

There are some useful analogies between the formation of thecompositef−electron
in the Kondo problem and the formation of Cooper pairs in superconductivity, which
we shall try to draw upon. One of the best examples of a composite bound-state is the
Cooper pair. Inside a superconductor, pairs of electrons behave as composite bosonic
particles. One of the signatures of pair formation, is the fact that Cooper pairs of electron
operators behave as a single composite at low energies,

ψ↑(x)ψ↓(x
′) ≡ F(x−x′)

The Cooper pair operator is a boson, and it behaves as a c-number because the Cooper
pairs condense. The Cooper pair wavefunction is extremely extended in space, extending
out to distances of orderξ ∼ vF/Tc. A similar phenomenon takes place in the Kondo
effect, but here the bound-state is afermion and it does not condense For the Kondo
effect the fermionic composite(~σ ·~S(x))αβ ψβ (x) behaves as a single charged electron
operator. The analogy between superconductivity and the Kondo effect involves the
temporal correlation between spin-flips of the conduction sea and spin-flips of the local
moment, so that at low energies

[~σαβ ·~S(t)]ψβ(t ′) ∼ ∆(t − t ′) fα(t ′).

The function∆(t − t ′) is the analog of the Cooper pair wavefunction, and it extendsout
to timesτK ∼h̄/TK.

To see this in a more detailed fashion, consider how the interaction term behaves. In
the path integral we factorize the interaction as follows

HI =
J
N

ψ†
β Γαβ ψα −→ V̄

(
ψ†

β fβ

)
+
(

f †
β ψβ

)
V +N

V̄V
J

By comparing these two terms, we see that the composite operator Γαβ ( j)ψα( j) be-
haves as a single fermi field:

1
N

Γαβ (t)ψα(t)−→
(

V̄
J

)
fβ (t)

Evidently, a localized conduction electron is bound to a spin-flip of the local moment
at the same site, creating a new independentfermionic excitation. The correlated action
of adding a conduction electron with a simultaneous spin flipof the local moment at
the same site creates a compositef−electron.



It is worth noting that this fermionic object only hybridizes with conduction electrons at
a single point: it is thus localin space.

Let us now try to decompose the composite fermion in terms of the electrons that
contribute to the bound-state amplitude. We start by writing the local moment in the
fermionic representation,9

1
N

Γαβ ψα = − 1
N

f †
αψα fβ −→− 1

N
〈 f †

αψα〉 fβ

where we have replaced the bilinear product between the conduction and f−electron
by its expectation value. We can evaluate this “bound-stateamplitude” from the corre-
sponding Green-function

−V0

J
=

1
N
〈 f †

β ψβ 〉 =
∫

dω
π

f (ω)ImGψ f (ω − iδ )

= Vo

∫
f (ω)

dω
π

Im

[

∑
k

1
ω − εk− iδ

1
ω − i∆

]
(115)

where we have chosen the half-filled caseQ/N = 1/2, λ = 0. In the large band-width
limit, the main contribution to this integral is obtained byneglecting the principal part
of the conduction electron propagator 1/(ω − εk− iδ ) → iπδ (ω − εk), so that

1
N
〈 f †

β ψβ 〉 = ∑
k

f (εk)

(
εk

ε2
k +∆2

)
(116)

From this expression, we can see that the contribution of a givenk state in the Fermi sea
to the bound-state amplitude is given by

1
N
〈 f †

β ckβ 〉 = f (εk)

(
εk

ε2
k +∆2

)

This function decays with the inverse of the energy, right out to the band-width. Indeed,
if we break-down the contribution to the overall bound-state amplitude, we see that each
decade of energy counts equally. Let us takeT = 0 and divide the band on a logarithmic
scale inton equal parts, where the ratio of the lower and upper energies is s> 1, then

Vo

J
= ρVo

∫ 0

−D
dε

−ε
ε2+∆2 ∼ ρVo

∫ D

∆
dε

1
ε

= ρVo

{∫ D

D/s
+
∫ D/s

D/s2
+ . . .

∫ D/sn−1

D/sn
+
∫ D/sn

∆

}
dε
ε

9 Important and subtle point: The emergence of a composite fermion does not depend on a fermionic
representation of the spin. The fermionic representation for the spin is simply the most convenient because
it naturally furnishes us with an operator in the theory thatrepresents the composite bound-state.



= ρV0

{
lns+ lns+ . . . lns+ ln

Ds−n

∆

}
(117)

This demonstrates that the composite bound-state involveselectrons spread out over
decades of energy out to the band-width. If we complete the integral, we find that

Vo

J
= ρVo ln

D
∆
⇒ ∆ = De−

1
Jρ = TK

as expected from the minimization of the energy. Another wayof presenting this discus-
sion, is to write the composite bound-state in the time-domain, as

1
N

Γαβ (t ′)ψα(t) −→ ∆(t− t ′) fα(t ′) (118)

where now

∆(t− t ′) =
1
N
〈 fβ

†(t)ψβ (t ′)〉

This is the direct analog of Cooper pair bound-state wavefunction, except that the
relevant variable is time, rather than space. If one evaluates the function∆(t) at a finite
t, we find that

∆(t − t ′) = ∑
k

f (εk)

(
εk

ε2
k +∆2

)
e−iεk(t−t ′)

Heuristically, the finite time cuts off the energy integral over the Fermi surface at an
energy of order ¯h/t, so that

∆(t) ∼
{

ρVo ln
(Dt

h̄

)
(t <<h̄/TK)

ρVo ln
(

D
TK

)
(t >>h̄/TK)

emphasizing the fact that the Kondo effect involves a correlation between the spin-flips
of the conduction sea and the local moment over decades of time scales from the the
inverse band-width up to the Kondo time ¯h/TK.

From these discussions, we see that the Kondo effect is

• entirely localized in space.
• extremely non-local in time and energy.

This picture of the Kondo effect as a temporal, rather than a spatial bound-state is vital
if we are to understand the extension of the Kondo effect fromthe single impurity to the
lattice.

3.4.2. Gauge invariance and the charge of the f−electron

One of the interesting points to emerge from the mean-field theory is that the energy of
mean-field theory does not depend on the phase of the bound-state amplitudeV = |V|eiθ .



This is analogous to the gauge invariance in superconductivity, which derives from
the conservation of the total electronic charge. Here, gauge invariance arises because
there are no charge fluctuations at the site of the local moment, a fact encoded by the
conservation of the total f-chargeQ. Let us look at the full Lagrangian for thef−electron
and interaction term

LI = fσ
†(i∂t −λ ) fσ −HI

HI = V̄
(

ψ†
α fα

)
+
(

f †
αψα

)
V +N

V̄V
J

(119)

This is invariant under the “Read-Newns”[46] transformation

f → f eiφ ,
V → Veiφ , (θ → θ +φ),

λ → λ +
∂φ
∂ t

. (120)

where the last relation arises from a consideration of the gauge invariance of the dynamic
part f †(i∂t − λ ) f of the Lagrangian. Now ifV(t) = |V(t)|eiθ (t), whereV(t) is real,
Read and Newns observed that by making the gauge choiceφ(t) = −θ(t), the resulting
V = |V|ei(θ+φ) = |V| is real. In this way, once the Kondo effect takes place the phase
of V = |V|eiθ is dynamically absorbed into the constraint fieldλ : effectivelyλ ≡ ∂tφ
represents the phase precession rate of the hybridization field. The absorption of the
phase of an order parameter into a dynamical gauge field is called the “Anderson
Higgs ” mechanism.[47] By this mechanism, once the Kondo effect takes place,V
behaves as a real, and hence neutral object under gauge transformations, this in turn
implies that the compositef−electron has to transform under real electromagnetic gauge
transformations, in other words the Anderson Higgs effect in the Kondo problem endows
the compositef−electron with charge.

There is a paradox here, for in the Kondo effect, there can actually be no true broken
symmetry, since we are dealing with a system where the numberof local degrees of free-
dom is finite. Nevertheless, the phaseφ does develop a stiffness- a stiffness against vari-
ation in time, and the order parameter consequently develops infinite range correlations
in time. There is a direct analogy between the spatial phase stiffness of a superconductor
and the temporal phase stiffness in the Kondo effect. In superconductivity, the energy
depends on spatial derivatives of the phase

E ∝
ρs

2
(∇φ −2e~A)2 ⇒ 1

λL

2

∝ ρs

( where we have set ¯h = 1.) Gauge invariance links this stiffness to the mass of the
photon field, which generates the Meissner effect; the inverse squared penetration depth
is directly proportional to the phase stiffness. In an analogous fashion, in the Kondo
effect, the energy depends on temporal derivatives of the phase and the phase stiffness
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FIGURE 18. “Mexican Hat Potential” which determines minimum of Free energy, and self-consistently
determines the width of the Kondo resonance. The Free energydisplays this form provided the constraint
∂F/∂λ = 〈nf 〉−Q= 0 is imposed.

is 10

E ∝
ρφ

2
(∂tφ)2

For a Kondo lattice, there is one independent Kondo phase foreach spin site, and
the independent conservation ofQ at each site guarantees that there is no spatial phase
stiffness associated withφ . The temporal phase stiffness leads to a slow logarithmic
growth in the phase -phase correlation functions, which in turn leads to power-law
temporal correlations in the order parameterV(τ):

〈δφ(τ)δφ(τ ′)〉 ∼ 1
N

ln(τ − τ ′), 〈V̄(τ)V(τ ′)〉 ∼ e−〈δφ(τ)δφ(τ ′)〉 ∼ (τ − τ ′)−
1
N .

In this respect, the Kondo ground-state resembles a two dimensional superconductor,
or a one dimensional metal: it is critical but has no true long-range order. As in the

10 Note that becauseλ ∼ ∂tφ , the phase stiffness is given byρφ = ∂ 2F/∂λ 2



TABLE 1. Parallels between Superconductivity and the Kondoeffect .

Superconductivity Kondo effect

Bound State ψ↑(x)ψ↓(x
′) = F(x−x′) (~σαβ ·~S(t ′))ψβ (t) = ∆(t− t ′) fα(t ′)

Bosonic Fermionic

Characteristic energy Tc = ωDe−1/gρ TK = D
√

Jρe−1/Jρ

Energy range contributing E ∈ [Tc,ωD] E ∈ [TK,D]
to bound state

Extended in space time
ξ ∼ vF/Tc τ ∼h̄/TK

Conserved Quantity Total electron charge Charge of local moment

Long Range Order LRO d > 2 Powerlaw in time
Powerlaw in spaced ≤ 2

Phase stiffness ρs ρφ

Consequences of Meissner effect Formation of charged
Phase stiffness heavy electron
(Anderson- Higgs) 2 ∆VF

(2π)3 = ne+nspins

Quantity related 1
λ 2

L
∝ ρs

1
U∗ = ρφ

to phase stiffness

superconductor, the development of phase stiffness involves real physics. When we make
a gauge transformation of the electromagnetic field,

eΦ(x, t) → eΦ(x, t)+∂tα(x, t),
e~A(x, t) → e~A(x, t)+∇α,



ψ(x) → ψ(x)e−iα(x,t) (121)

Because of the Anderson - Higgs effect, the hybridization isreal and the only way
to keepLI invariant under the above transformation, is by gauge transforming the
f−electron and the constraint field

fσ ( j) → fσ ( j)e−iα(x j ,t)

λ → λ +∂tα (122)

( Notice howλ transforms in exactly the same way as the potentialeΦ.)

The non-trivial transformation of thef−electron under electromagnetic gauge trans-
formations confirm that it has acquired a charge. Rigidity ofthe Kondo phase is thus
intimately related to the formation of a composite charged fermion. The gauge invariant
form for the energy dependence of the Kondo effect on the Kondo phaseφ must then be

E ∝
ρφ

2
(∂tφ −eΦ)2

From the coefficient ofΦ2, we see that the Kondo cloud has an intrinsic capacitance
C = e2ρφ (E ∼CΦ2/2). But since the energy can also be written(enf )

2/2C ∼U∗n2
f /2

we see that the stiffness of the Kondo phase can also be associated with an interaction
between thef−electrons of strengthU∗, where

1
U∗ = C/e2 = ρφ

3.5. Mean-field theory of the Kondo Lattice

3.5.1. Diagonalization of the Hamiltonian

We can now make the bold jump from the single impurity problem, to the lattice.
Most of the methods described in the last subsection generalize very naturally from the
impurity to the lattice: the main difficulty is to understandthe underlying physics. The
mean-field Hamiltonian for the lattice[48, 49] takes the form

HMFT =∑
~kσ

ε~kc
†
~kσ

c~kσ
+∑

j ,α

(
f †

jαψ jαVo+V̄oψ†
jβ f jβ +λo f †

jα f jα

)
+N N

(
V̄oVo

J
−λoq

)
,

whereN is the number of sites in the lattice. Notice, before we begin, that the composite
f-state at each site of the lattice is entirely local, in thathybridization occurs at one site
only. Were the composite f-state to be in any way non-local, we would expect that the
hybridization of one f-state would involve conduction electrons at different sites. We
begin by rewriting the mean field Hamiltonian in momentum space, as follows

HMFT = ∑
~kσ

(
c†

~kσ
, f †

~kσ

)( ε~k V̄o

Vo λo

)(
c~kσ
f~kσ

)
+N N

(
V̄oVo

J
−λoq

)



where

f †
~kσ

=
1√
N

∑
j

f †
jσ ei~k·~Rj

is the Fourier transform of thef−electron field. The absence ofk− dependence in
the hybridization is evident that each compositef−electron is spatially local. This
Hamiltonian can be diagonalized in the form

HMFT = ∑
~kσ

(
a†

~kσ
,b†

~kσ

)(E~k+
0

0 E~k−

)(
a~kσ
b~kσ

)
+Nn

(
V̄oVo

J
−λoq

)

wherea†
~kσ

and b†
~kσ

are linear combinations ofc†
~kσ

and f †
~kσ

, playing the role of
“quasiparticle operators” of the theory and the momentum state eigenvaluesE~k± of this
Hamiltonian are determined by the condition

Det

[
E~k±1−

(
ε~k V̄o

Vo λo

)]
= 0,

which gives

E~k± =
ε~k +λo

2
±



(

ε~k−λo

2

)2

+ |Vo|2



1
2

(123)

are the energies of the upper and lower bands. The dispersiondescribed by these energies
is shown in Fig. 19 . A number of points can be made about this dispersion:

• We see that the Kondo effect injectsnew fermionic states into the original con-
duction band. Hybridization between the heavy electron states and the conduction
electrons builds an upper and lower Fermi band separated by a“hybridization gap”
of width ∆g = Eg(+)−Eg(−), such that energies in the range

Eg(−) < E < λo+Eg(+)

Eg(±) = λo±
V2

0

D∓
(124)

are forbidden. Here±D± are the top and bottom of the conduction band. In the
special case whereλo = 0, corresponding to half filling, a Kondoinsulator is
formed.

• The effective mass of the Fermi surface has the opposite signto the original con-
duction sea from which it is built, so naively, the Hall constant should change sign
when coherence develops.

• The Fermi surface volume expandsin response to the presence of the new heavy
electron bands. The new Fermi surface volume now counts the total number of
particles. To see this note that

Ntot = 〈∑
kλσ

nkλσ 〉 = 〈nf +nc〉



(a) (b)

(c)

λ
µ

E(k)

k

Light small
electron FS

Heavy fermion
"hole" Fermi surface

E

 ρ(   )E

g∆

FIGURE 19. (a) Dispersion produced by the injection of a composite fermion into the conduction sea.
(b) Renormalized density of states, showing “hybridization gap” (∆g). (c) Transformation of the Fermi
surface from a light electron Fermi surface into a heavy “hole”-like Fermi surface.

wherenkλσ = a†
kλσ akλσ is the number operator for the quasiparticles andnc is the

total number of conduction electrons. This means

Ntot = N
VFS

(2π)3 = Q+nc.

This expansion of the Fermi surface is a direct manifestation of the creation of
new states by the Kondo effect. It is perhaps worth stressingthat these new states
would form, even if the local moments were nuclear in origin. In other words, it is
only the rotational degrees of freedom of the local moments that are needed to form
heavy electron bound-states with the conduction electrons.

The Free energy of this system is then

F
N

= −T ∑
~k,±

ln
[
1+e−βE~k±

]
+N

(
V̄V
J

−λq

)



Let us discuss the ground-state energy,Eo -theT → 0 limit of this expression. We can
write this in the form

Eo

N N
=

∫ 0

−∞
dEρ∗(E)E +

(
V̄V
J

−λq

)

where we have introduced the density of heavy electron states ρ∗(E) = ∑~k,± δ (E −
E(±)
~k

). Now the relationship between the energy of the heavy electrons (E) and the

energy of the conduction electrons (ε) is given by

E = ε +
V̄V

E−λ

so that the density of heavy electron states related to the conduction electron density of
statesρ by

ρ∗(E) = ρ
dε
dE

= ρ
(

1+
V̄V

(E−λ )2

)
(125)

The originally flat conduction electron density of states isnow replaced by a “hy-
bridization gap”, flanked by two sharp peaks of width approximatelyπρV2 ∼ TK. With
this information, we can carry out the integral over the energies, to obtain

Eo

N N
=

D2ρ
2

+
∫ 0

−D
dEρV̄V

E
(E−λ )2 +

(
V̄V
J

−λq

)

=
D2ρ

2
− ∆

π
ln

(
D
λe

)
+

(
V̄V
J

−λq

)

=
D2ρ

2
− ∆

π
ln

(
TK

λe

)
−λq (126)

where we have assumed that the upper band is empty, and the lower band is partially

filled, and setTK = De−
1

Jρ as before. If we impose the constraint

∂F
∂λ

= 〈nf 〉−Q = 0 (127)

we obtain
∆

πλ
−q = 0

so that the ground-state energy can be written

Eo

Nns
=

∆
π

ln

(
∆e

πqTK

)
. (128)

Let us pause for a moment to consider this energy functional qualitatively. The Free
energy surface has the form of the “Mexican Hat” at low temperatures. The minimum
of this functional will then determine a family of saddle point valuesV = Voeiθ , where



θ can have any value. If we differentiate the ground-state energy with respect toV2, we
obtain

0 =
1
π

ln

(
∆e2

πqTK

)
(129)

or
∆ =

πq
e2 TK (130)

confirming that∆ ∼ TK.

3.5.2. Composite Nature of the heavy quasiparticle in the Kondo lattice.

We now turn to discuss the nature of the heavy quasiparticlesin the Kondo lattice.
Clearly, at an operational level, the compositef−electrons are formed in the same way
as in the impurity model, but at each site, i.e

1
N

Γαβ ( j, t)ψ jα(t)−→
(

V̄
J

)
f jβ (t)

This composite object admixes with conduction electrons ata single site- site j. The
bound-state amplitude in this expression can be written

− V̄o

J
=

1
N
〈 f †

β ψβ 〉 (131)

To evaluate the contributions to this sum, it is useful to notice that the condition
∂E/∂V = 0 can be written

1
N

∂E
∂Vo

= 0 =
V̄o

J
+

1
N
〈 f †

β ψβ 〉

=
V̄o

J
+Vo

∫ 0

−D
dEρ

E
(E−λ )2 (132)

where we have used (126) to evaluate the derivative. From this we see that we can write

V̄o

J
= −V̄o

∫ 0

−D
dEρ

(
1

E−λ
+

λ
(E−λ )2

)

= −Voρ ln

[
λe
D

]
(133)

It is clear that as in the impurity, the compositef−electrons in the Kondo lattice
are formed fromhigh energyelectron states all the way out to the bandwidth. In a
similar fashion to the impurity, each decadeof energy betweenTK andD contributes
equally to the overall bound-state amplitude. The above expression only differs from the
corresponding impurity expression (115) at low energies, showing that low energy elec-
trons play a comparatively unimportant role in forming the composite heavy electron. It



is this feature that permits a dense array of composite fermions to co-exist throughout
the crystal lattice.

These compositef−electrons admix with the conduction electrons to produce a heavy
electron band with a density of states given by (125),

ρ∗(E) = ρ
dε
dE

= ρ
(

1+
V2

0

(E−λ )2

)

which, settingE = 0 and using (127) and (130), becomes

ρ∗(0) = ρ +
q
λ

= ρ +
qe2

TK

at the Fermi energy. The mass enhancement of the heavy electrons is then

m∗

m
= 1+

qe2

ρTK
∼ qD

TK

This large factor in the effective mass enhancement can be asmuch as 1000 in the most
severely renormalized heavy electron systems.

3.5.3. Consequences of mass renormalization

The effective mass enhancement of heavy electrons can be directly observed in a wide
range of experimental quantities including

• The large renormalization of the linear specific heat coefficient γ∗ ∼ m∗
m γ and Pauli

susceptibilityχ∗ ∼ m∗
m χ .

• The quadratic temperature (“ A” ) coefficient of the resistivity. At low temperatures
the resistivity of a Fermi liquid has a quadratic temperature dependence,ρ ∼
ρo+AT2, whereA∼

(
1

TF

)2
∼
(

m∗
m

)2
∼ γ2 is related to the density of three-particle

excitations. The approximate constancy of the ratioA/γ2 in heavy fermion systems
is known as the “Kadowaki-Woods” relation.[50]

• The renormalization of the effective mass as measured by dHvA measurements of
heavy electron Fermi surfaces.[51, 52, 53]

• The appearance of a heavy quasiparticle Drude feature in thefrequency dependent
optical conductivityσ(ω). (See discussion below).

The optical conductivity of heavy fermion metals deserves special discussion. Ac-
cording to the f-sum rule, the total integrated optical conductivity is determined by the
plasma frequency ∫ ∞

0

dω
π

σ(ω) = f1 =
π
2

(
ne2

m

)
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=
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FIGURE 20. Separation of the optical sum rule in a heavy fermion system into a high energy “inter-
band” component of weightf2 ∼ ne2/mand a low energy Drude peak of weightf1 ∼ ne2/m∗.

wheren is the density of electrons.11 In the absence of local moments, this is the total
spectral weight inside the Drude peak of the optical conductivity.

What happens to this spectral weight when the heavy electronfluid forms? Whilst we
expect this sum rule to be preserved, we also expect a new “quasiparticle” Drude peak
to form in which ∫

dωσ(ω) = f2
π
2

ne2

m∗ = f1
m
m∗

In other words, we expect the total spectral weight to divideup into a tiny “heavy
fermion” Drude peak, of total weightf2, where

σ(ω) =
ne2

m∗
1

(τ∗)−1− iω

11 The f-sum rule is a statement about the instantaneous, or short-time diamagnetic response of the metal.
At short timesd j/dt = (ne2/m)E, so the high frequency limit of the conductivity isσ(ω) = ne2

m
1

δ−iω . But
using the Kramers Krönig relation

σ(ω) =

∫
dx
iπ

σ(x)
x−ω − iδ

at large frequencies,

σ(ω) =
1

δ − iω

∫
dx
π

σ(x)

so that the short-time diamagnetic response implies the f-sum rule.



is split off by an energy of orderV ∼
√

TKD from an “inter-band” component associated
with excitations between the lower and upper Kondo bands.[96, 54] This second term
carries the bulk∼ f1 of the spectral weight. (Fig. 20 ).

Simple calculations, based on the Kubo formula confirm this basic expectation,[96,
54] showing that the relationship between the original relaxation rate of the conduction
sea and the heavy electron relaxation rateτ∗ is

(τ∗)−1 =
m
m∗ (τ)−1. (134)

Notice that this means that the residual resistivity

ρo =
m∗

ne2τ∗
=

m
ne2τ

is unaffected by the effects of mass renormalization. This can be understood by observ-
ing that the heavy electron Fermi velocity is also renormalized by the effective mass,
v∗F = m

m∗ , so that the mean-free path of the heavy electron quasiparticles is unaffected by
the Kondo effect.

l∗ = v∗Fτ∗ = vFτ
This is yet one more reminder that the Kondo effect is local inspace, yet non-local in
time.

These basic features- the formation of a narrow Drude peak, and the presence
of a hybridization gap, have been seen in optical measurements on heavy electron
systems[55, 56, 57]

3.6. Summary

In this lecture we have presented Doniach’s argument that the enhancement of the
Kondo temperature over and above the characteristic RKKY magnetic interaction energy
between spins leads to the formation of a heavy electron ground-state. This enhance-
ment is thought to be generated by the large spin degeneracies of rare earth, or actinide
ions. A simple mean-field theory of the Kondo model and Kondo lattice, which ignores
the RKKY interactions, provides a unified picture of heavy electrons and the Kondo
effect. The essential physics involves composite quasiparticle formation between high
energy conduction band electrons and local moments. This basic physical effect is local
in space, but non-local in time. Certain analogies can be struck between Cooper pair for-
mation, and the formation of the heavy electron bound-state, in particular, the charge on
the f−electron can be seen as a direct consequence of the temporal phase stiffness of the
Kondo bound-state. This bound-state hybridizes with conduction electrons- producing a
single isolated resonance in a Kondo impurity, and an entirerenormalized Fermi surface
in the Kondo lattice.

3.7. Exercises



1. (a) Directly confirm the Read-Newns gauge transformation(120).

(b) Directly calculate the “phase stiffness”ρφ = −d2F
dλ 2 of the largeN Kondo model and

show that atT = 0.

ρφ =
N
π

(
sin(πq)

TK

)
.

2. (a) Introduce a simple relaxation time into the conduction electron propagator, writing

G(~k, iωn)
−1 = iωn + isgn(ωn)/2τ +

V2

iωn−λ
(135)

Show that the poles of this Greens function occur at

ω = Ek±
i

2τ∗

where

τ∗ =
m∗

m
τ

is the renormalized elastic scattering time.
(b) The Kubo formula for the optical conductivity of an isotropic one-band system is

σ(ν) = −Ne2

3 ∑
k

v2
k

Π(ν)

iν

where we have used theN fold spin degeneracy, andΠ(ν) is the analytic extension
of

Π(iνn) = T ∑
m

G(~k, iωm)
[
G(~k, iωm+ iνn)−G(~k, iωm)

]

where in our case,G(~k, iωn) is the conduction electron propagator. Using (135), and
approximating the momentum sum by an integral over energy, show that the low
frequency conductivity of the largeN Kondo lattice is given by

σ(ν) =
ne2

m∗
1

(τ∗)−1− iν
.

4. QUANTUM CRITICALITY IN HEAVY ELECTRON SYSTEMS

4.1. Introduction

This section provides a brief introduction to the unsolved problem of quantum crit-
icality in heavy fermion materials. Many of the ideas summarized here are the result
of collaborations, and much of the material in this section is published in review form.
[67, 106, 107] Heavy electron materials lie on the verge of magnetic instability. In the
discussion of the last section, we ignored magnetism and focussed on the dense Kondo
effect. What happens when they are pushed to the very edge of magnetic instability?
Such a question was first posed in the context of itinerant magnetic order in a pioneering
work by John Hertz, almost thirty years ago. Hertz concludedthat a metallic system at



the edge of magnetic instability would develop a new kind of critical behavior- quantum
critical behavior.

A quantum critical point (QCP) is a zero-temperature instability between two phases
of matter where quantum fluctuations develop long range correlations in both space and
time[58]. At a finite temperature critical point, the critical long-wavelength fluctuations
of the order parameter do not involve quantum mechanics. This is because thermal
fluctuations destroy the coherence of quantum fluctuations on time-scales longer than

τ ∼ h̄
kBT

, (136)

The great revolution in our understanding of critical phenomena which occured in the
1970s involved many tools borrowed from relativistic field theory, but the physics was
entirely classical.

Experimental developments of the past decade have brought anew awareness of the
importance of quantum critical points in condensed matter physics. These special points
exert a profound influence on the finite temperature properties of a material. Materi-
als close to quantum criticality develop a new excitation structure, they display novel
thermodynamic, transport and magnetic behavior. They alsohave marked a predeliction
towards the development of new kinds of order, such as anisotropic superconductivity.
A dramatic example is provided by the cuprate superconductors. By doping with holes,
these materials pass through one or more quantum phase transitions: from an insulator
to a metal with a spin gap at low doping, and at higher doping a second QPT appears
to occur when the spin gap closes [59] (Fig. 21) The singular interactions induced by
quantum criticality are thought to the driving force for both the high temperature super-
conductivity and the anomalous metallic state above the spin gap temperatureT∗.[60]

Heavy Fermion materials offer a unique opportunity to studyquantum criticality
under controlled conditions. By the application of pressure, doping and most recently,
magnetic field, these materials can be tuned through a quantum critical point from a
metallic antiferromagnet into a paramagnet (Fig. 22). Unlike the cuprate metals, here
the paramagnetic phase is a well characterized Fermi liquid,[61, 62, 63] with heavy
Landau quasiparticles, or “heavy electrons”. A central property of these quasiparticles,
is the existence of a finite overlap “Z” between a single quasiparticle state, denoted
by |qp−〉 and the state formed by adding a single electron to the ground-state, denoted
by |e−〉 = c†

kσ |0〉. This quantity is closely related to the ratiom/m∗ of the electron to
quasiparticle mass,

Z = |〈e−|qp−〉|2 ∼ m
m∗ . (137)

A wide body of evidence suggests thatm∗/m diverges at a heavy fermion QCP, indicat-
ing that

Z → 0 (P→ Pc).

The state which forms above the QCP is referred to as a “non-Fermi” or “singular Fermi
liquid”. [64, 65, 67, 68, 66] By what mechanism does this break-down in the Landau
quasiparticle occur?

Table. 1. Selected Heavy Fermion compounds with quantum critical points.
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Compound xc/Pc/Hc
Cv
T → ∞? ρ ∼ Ta Ref.

YbRh2Si2−xGex xc = 0.1 Log
(To
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CeCu6−xAux xc = 0.1 Log
(
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)
T +c [70, 71, 72]

CeCu6−xAgx xc = 0.09 Log
(

To
T

)
T1.1 [73]

CeNi2Ge2 Pc = 0 Log
(

To
T

)∗ T1.2 [74, 75, 76, 77, 78]

U2Pt2In Pc = 0 Log
(To

T

)
T [79]

U2Pd2In Pc < 0 ? T +c [79]

CePd2Si2 Pc > 0 ? T1.2 [74]

CeCoIn5 Pc ∼ 1.6GPa ? T [80]

CeIn3 Pc > 0 ? T1.5 [74, 81]

U3Ni3Sn4 Pc > 0 no ? [82]

CeCu2Si2 Pc = 0 no T1.5 [83]

CeRu2Si2 H‖
c = 7.7T Log
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)
[84]

UPt3 H⊥
c = 20T Log
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)
T1.2 [85]

Sr3Ru2O7 H‖
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(
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T

)
T1.1 [86]
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∗ New data[78, 75] show a stronger divergence at lower temperatures.

4.2. Properties of the Heavy Fermion Quantum Critical Point

There is a growing list of heavy fermion systems that have been tuned to an antifer-
romagnetic QCP by the application of pressure or by doping (Table 1.). These materials
display many common properties

• Fermi liquid behavior in the paramagnet, as indicated by the emergence of a
quadratic temperature dependence in the resistivity in theapproach to the QPT
ρ = ρo+AT2 [82, 87] at ever lower temperatures.

• Divergent A coefficient in resistivity at the QCP. In a typical Fermi liquid theA

coefficient in the resistivity is proportional to
(

1
1/T∗

F

)2
∼
(

m∗
m

)2
, whereT∗

F is the



Fermi temperature. Support for the divergence of the effective mass is provided
by the observation that the quadratic coefficientA of the resistivity grows, and
apparantly diverges at the quantum critical point[79].

• Divergent specific heatat the QCP, with an asymptotic logarithmic temperature
dependence,

γ(T) =
Cv(T)

RT
=

Q
To

log

[
To

T

]
+ γn, (138)

whereR is the gas constant, and experimentallyQ≈ 0.4, suggesting that the Fermi
temperature vanishes and the quasiparticle effective masses diverge

T∗
F → 0,

m∗

m
→ ∞ (139)

at the QCP. The above expression has been written in a form where the character-
istic energyTo enters both inside the logarithm and in the prefactor. Thereare a
number of materials where this one-parameter form holds, with γn = 0, suggest-
ing a new kind of universality where no normal component to the Fermi surface
survives at the QCP. [88]

• Quasi-linear resistivity
ρ ∝ T1+ε , (140)

at the QCP withε in the range 0−0.6. In criticalYbRh2Si2−xGex, ρ ∝ T over three
decades[69].

• Non-Curie spin susceptibilities

χ−1(T) = χ−1
0 +cTa (141)

with a < 1 observed in criticalCeCu6−xAux (x=0.1),YbRh2Si2−xGex (x=0.1) and
CeNi2Ge2.

• E/T and H/T Scaling.In criticalCeCu6−xAux andYbRh2Si2−xGex the differential
magnetic susceptibilitydM/dH exhibitsH/T scaling,

(dM/dH)−1 = χ−1
0 +cTag[H/T], (142)

wherea ≈ 0.75. Neutron measurements[72] showE/T scaling[89, 90] in the dy-
namical spin susceptiblity of criticalCeCu6−xAux, throughout the Brillouin zone,
parameterized in the form

χ−1(q,ω) = Ta f (E/T)+ χ−1
0 (q) (143)

F[x] ∝ (1− ix)a. Scaling behavior with a single anomalous exponent in the
momentum-independent component of the dynamical spin susceptibility suggests
an emergence oflocal magnetic moments which arecritically correlated in timeat
the quantum critical point[72].



4.3. Universality

Usually, the physics of a metal above its Fermi temperature depends on the detailed
chemistry and band-structure of the material: it is non-universal. However, if the renor-
malized Fermi temperatureT∗

F (P) can be tuned to become arbitrarily small compared
with the characteristic scales of the material as one approaches a QCP, we expect that
the “high energy” physicsabovethe Fermi temperatureT∗

F is itself, universal.
Quantum critical behavior implies a divergence of the long distance and long-time

correlations in the material. Finite temperatures introduce the cutoff timescale

τT =
h̄

kBT
(144)

beyond which coherent quantum processes are dephased by thermal fluctuations. Renor-
malization group principles[91] imply that the quantum critical physics has an upper-
critical dimensiondu. Ford < du, τT becomes thecorrelation timeτ of the system[92],
so frequency dependent correlation functions and responsefunctions take the form

F(ω,T) =
1

ωα f (ωτT) =
1

ωα f (h̄ω/kBT). (145)

leading toE/T scaling[93]. By contrast, ford > du the correlation time is sensitive to
the details of the short-distance interactions between thecritical modes, and in general
τ−1 ∝ T1+b, (b > 0). ThusE/T scaling with a non-trivial exponent strongly suggests
that the underlying physics of the heavy fermion quantum critical point is governed by
universal physics withdu > 3.

4.4. Failure of the Spin Density Wave picture

The standard model of the heavy fermion QCP assumes the non-Fermi liquid behavior
derives from Bragg diffraction of the electrons off a quantum-critical spin density wave
(QSDW)[91, 94, 95, 96]. The virtual emission of these soft fluctuations,

e− ⇀↽ e− +spin fluctuation (146)

generates a retarded interaction

Ve f f(q,ω) = g2

χ(q,ω)︷ ︸︸ ︷
 χ0

(q−Q)2+ξ−2− iω
ΓQ


 (147)

between the electrons, whereχ(q,ω) is the dynamical spin susceptibility of the collec-
tive modes. The damping term−iω/ΓQ of the magnetic fluctuations is derived from the

linear density of particle-hole states in the Fermi sea.ξ−1 andτ−1 = ΓQξ−2 are the
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FIGURE 23. Quantum spin density wave scenario, where the Fermi surface“folds” along lines
separated by the magneticQ vector, pinching off into two separate Fermi surface sheets.

inverse spin correlation length and correlation times respectively. In real space,

Ve f f(r,ω = 0) ∝
e−r/ξ

r
eiQ·r (148)

is a “modulated ” Yukawa potential whose rangeξ ∼ (P− Pc)
− 1

2 → ∞ at the QCP.
Unlike a ferromagnetic QCP, the modulated potential only affects electron quasiparticles
along “hot lines” on the Fermi surface, that are separated bythe wave-vectorQ and
satisfyεk = εk+Q. At a finite temperature, electrons within a momentum range∼

√
T

are affected by this critical scattering (Fig. 23.). This limits the ability of this singular
potential to generate non Fermi liquid behavior. There are then two major difficulties
with the (three dimensional) QSDW scenario for the heavy fermion QCP:

1. No breakdown of the Fermi liquid Away from the hot lines, the Fermi surface
and Landau quasiparticles remain intact at the QCP. Thus thespecific heat and
typical quasiparticle mass do not diverge but exhibit a weaker singularity,CV/T =

γo−A
√

T in the QSDW picture[96].
2. No E/T scaling The quantum critical behavior predicted by this model has been

extensively studied[91, 96]. In the interactionVe f f(q,ω) the momentum depen-
dence enters with twice the power of the frequency, so

τ ∼ ξ z, (z= 2).

In the renormalization group (RG) treatment[91] time counts aszspace dimensions
so the effective dimensionality isDe f f = d+z= d+2. The upper critical dimension
is set byDe f f = 4, ordu = 2[96], so 3D quantum spin fluctuations will not lead to
E/T scaling. In three dimensions, QSDW theory predicts that thescale entering
into the energy dependent response functions should scale as T3/2, with a non-
universal prefactor[58].



4.5. Towards a new understanding.

In this last lecture, I would like to give you a sense of the seriousness of the failure
of the spin density wave scenario and share with you some of the new ideas that are
circulating. Some have argued that it may be possible to explain the ofE/T scaling
and the logarithmically divergent specific heat[97] by supposing that the spin fluctua-
tions form a quasi-two-dimensionalspin fluid[81, 97], lying at the critical dimension.
Inelastic neutron scattering experiments onCeCu6−xAux, (x=0.1) support a kind of re-
duced dimensionality in which the critical scattering is concentrated along linear, rather
than at point-like regions in reciprocal space[72, 97]. More recent data[98] may support
quasi-2D spin fluctuations at intermediate scales inCeGe2Ni2.

The assumption that the spin fluid is two dimensional is hard to reconcile with the fact
that the developing order is fully three dimensional, and with the fact that these systems
exhibit very little dimensional anisotropy. Even if we accept these problems, there other
difficulties. First- quasi-two dimensionality can furnishE/T scaling, but it does not
drop the theory below its critical dimension, and hence has no way of accounting for the
anomalous exponents in theE/T scaling.

Finally, there is another more serious difficulty. It has recently become possible to
examine the approach to the heavy electron quantum criticalpoint through the use of
field tuning[12, 85, 99]. The materialYbRh2Si2−xGex with x = 0.1 lies precisely at a
quantum critical point. By applying a small magnetic field, this system is driven back
into the Fermi liquid. As the field is reduced and the system istuned back towards the
quantum critical point, theA coefficient of the resistivity is observed to diverge as

A ∝
1
B

Such behavior can be obtained in a two dimensional spin fluid model in which the inverse
squared correlation length is assumed to be proportional toB, ξ−2 ∝ B. The same model
predicts a weak dependence of the linear specific heat on magnetic field

γth ∝ Log(1/B)

so that the ratio
Ath

γ2
th

∼ 1
BLog(1/B)

.

The same experiments also show that the linear specific heat diverges much more rapidly
with B, asγ ∝ 1√

B
, so that the Kadowaki Woods ratio

A/γ2 = constant. (149)

It is difficult to understate the importance of this new result. The constancy of the
Kadowaki Woods ratio over more than a decade inγ indicates that the momentum
dependence of the scattering amplitudes in the Fermi liquidare notradically affected by
the magnetic field, as they would be if the chief mechanism forthe mass renormalization
were derived from the exchange of soft magnetic fluctuationsin a 2D spin fluid. These



new results can only be understood if, in the approach to the quantum critical point,
the Fermi liquid scattering amplitudes remain local, depending only on the size of the
renormalized Fermi temperatureT∗

F [49].

F

k k’

k+qk’+q
= Fk,k′,k−q = T∗

F F (
E~k

T∗
F

,
E~k′

T∗
F

,
E~k−~q

T∗
F

;~k,~k′,~q)

(150)

In the previous chapter, I argued that the effective Fermi temperature of the Kondo lattice
measures the “phase stiffness” associated with the amplitude to form of a composite
heavy electron, so that

ρφ ∼ T∗
F .

The constancy of the Kadowaki Woods ratio, the lock-step divergence of bothA and
γ2, and the appearance of local features in the spin correlations at the quantum crit-
ical point are all in keeping with the idea that the Kondo bound-state phase stiffness
is going to zeroon the paramagnetic side of the heavy electron quantum critical point,
just as the spin-wave stiffnessρM goes to zero on the magnetic side of the same point.
In other words

ρφ −→ 0,

ρM −→ 0

}
quantum bicriticality? (151)

In other words, the Kondo composite bound-state appears to die at exactly the same time
magnetic order develops. This strongly suggests to me, thatperhaps the heavy electron
quantum critical point might be better understood as a quantum bicriticalpoint, where
two order parameters go to zero at a point.

Traditionally, theories of phase transition are built aponan underlying mean-field
theory. The spin density wave scenario is a consequence of examining fluctuations about
the Stoner and Slater view of itinerant magnetism. If this approach fails, then perhaps it is
a sign that we should search for a new kind of mean-field theoryto describe the quantum
phase transition between antiferromagnetism and the heavyelectron fluid. There are two
kinds of suggestion that have been considered recently :

• Local quantum criticality. The apparent momentum independence of the localized
critical correlations at the quantum critical point[72] has led to the suggestion that
the the correct mean-field theory, is one that is local, yet fully dynamical.[100, 101,
102] Such “dynamical mean-field theories”,[103] are thought to asymptotically
exact in infinite dimensions. In this philosophy, the local physics remains strongly
interacting even in infinite dimensions, but the local character of the interactions is
supposed to be stable against finite dimensionality. This idea forms the basis of a
recent theory by Si et al.

• Traditional RG approach on a new Lagrangian. Rather than abandon the traditional
RG approach first suggested by Hertz,[91] we should continueto embrace the
notion that a Wilsonian approach, where interactions become weak in high enough
dimensions does work for quantum critical points. This approach argues that what



is needed, is a new description of magnetism, and the way it couples to the Fermi
sea. One idea here, is that at the quantum critical point, theheavy electron breaks
up into its spin and charge components.[68]

We now discuss these ideas in more depth.

4.6. Local Quantum Criticality

The momentum-independent scaling term in the inverse dynamic susceptibility (7)
suggests that the critical behavior associated with the heavy fermion QCP contains some
kind of local critical excitation[72]. One possibility, is that this critical excitation is the
spin itself, which would then presumably develop a slow power-law decay[100, 101,
102]

〈S(τ)S(τ ′)〉 =
1

(τ − τ ′)2−ε , (152)

whereε 6= 0 signals non- Fermi liquid behavior.
Si[104] et al. have extensively developed this idea, proposing that thelocal spin

susceptibilityχloc = ∑~q χ(~q,ω)|ω=0 diverges at a heavy fermion QCP. From (143),

χloc(T) ∼
∫

ddq
1

(q−Q)2+Tα ∼ T(d−2)α/2 (153)

so a divergent local spin susceptibilty requires a spin fluidwith d ≤ 2. Si et al are thus
motivated to propose that the non-trivial physics of the heavy fermion QCP is driven by
the formation of a two-dimensional spin fluid. Si et al consider an impurity spin within
an effective medium in which the local Weiss fieldH has a critical power-spectrum (Fig.
24.)

〈|H(ω)|2〉 ≡ χ−1
0 (ω) = ωγ (154)
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FIGURE 24. In the local quantum critical theory, each spin behaves as a local moment in a fluctuating
Weiss field. In the theory of Si et al [102], a self-consistentsolution can be obtained forε = 1 in which

the local susceptibility develops a self-energy with a non-universal exponent.M(ω) ∝ ω
1

ρΛ .



whereε is self-consistently evaluated using a dynamical mean-field theory, whereq−
dependence of self-energies is dropped. In principle, the method solves the dynamical
spin susceptibility of the impurityχ−1(ω) = χ−1

o (ω) + M(ω). This, in turn furnishes
a “spin self-energy”M(ω) used to determine the spin susceptibility of the medium
χ−1(~q,ω) = J(~q)+M(ω).

Si et al find that a self-consistent solution is obtained forε = 1, if the spin-self energy
contains a separate power-law dependenceM(ω) ∼ ωα with an exponentα = 1/ρΛ
which is determined by the density of statesρ and band-widthΛ of the bond-strengths in
the two-dimensional spin fluid. Although self-consistencyrequires a new power-law in
the spin susceptibility, independent solutions of the impurity model have not yet shown
that this feature is indeed generated by a critical Weiss field. This theory nevertheless
raises many interesting questions:

1. Is the requirement of a two dimensional spin fluid consistent with the ultimate
emergence of three dimensional magnetic order. For example- does the the cubic
(and hence manifestly three dimensional) quantum criticalmaterial,CeIn3 display
a divergent specific heat?

2. If the spin-fluids are quasi-two dimensional, do we expectan ultimate cross-over to
a three-dimensional QSDW scenario?

3. If α is non-universal, why are the critical exponents inCeCu6−xAux and
YbRh2Si2−xGex so similar?

4. What stabilizes the local quantum criticality against intersite couplings?

4.7. Ideas of spin charge separation and supersymmetry.

An alternative possibility, is that the heavy fermion QCP isa truly three-dimensional
phenomenon. In this case a different approach is needed- we need to search for a
new class of critical Lagrangian withdu > 3[106]. On general grounds, the existence
of a Fermi liquid in the paramagnetic phase suggests that thenew class of critical
Lagrangians must find expression in terms of the quasiparticle fields ψ in the Fermi
liquid- but how do we couple these degrees of freedom to the magnetism, and how do
we account for the simultaneous loss of the resonant bound-state stiffness at the same
time that magnetism develops? The simplest possibility is to write

L = LF [ψ]+LF−M[ψ,M]+LM[M]. (155)

whereLF describes the heavy Fermi liquid, far from the magnetic instability, LM de-
scribes the magnetic excitations that emerge above the energy scaleT∗

F (P).
LF−M describes the way that the quasiparticles couple to and decay into critical

magnetic modes; it also determines the type of transformation which takes place in the
Fermi surface which occurs at the QCP. This last point follows because away from the
QCP, magnetic fluctuations can be ignored in the ground-state, so thatLM → 0. In the
paramagnetic phase,〈M〉 = 0 soLFM → 0, but in the antiferromagnetic phase〈M〉 6= 0,



i.e.

Leff =





L∗
F [ψ] paramagnet

L∗
F [ψ]+LFM[ψ,〈M〉] a.f.m.

where the asterisk denotes the finite renormalizations derived from zero-point fluctua-
tions in the magnetization.

If the staggered magnetization is the fundamental criticalfield, then we are forced to
couple the magnetic modes directly to the spin density of theFermi liquid

L(1)
F−M = g∑

k,q
ψ†

~k−~q
~σψ~k

· ~Mq. (156)

But once the staggered magnetization condenses, this leadsdirectly back to a static spin
density wave (Fig 23).

An alternative possibility is suggested by the observationthat the magnetism develops
spinorial character in the heavy Fermi liquid. The Luttinger sum rule[108] governing the
Fermi surface volumeVFS “ counts” both the electron densityne andthe number of local
moments per unit cellnspins[36, 37] :

2
VFS

(2π)3 = ne+nspins. (157)

The appearance of the spin density in the Luttinger sum rule reflects the composite
nature of the heavy quasiparticles, formed from bound-states between local moments
and high energy electron states. Suppose the spinorial character of the magnetic degrees
of freedom seen in the paramagnetalso manifests itself in the decay modes of the heavy
quasiparticles. This would imply that at the QCP, the staggered magnetization factorizes
into a spinorial degree of freedom~M(x) = z†(x)~σz(x), wherez is a two-component spin
1/2 Bose field. “Spinorial magnetism” affords a direct coupling between the magnetic
spinorzand the heavy electron quasi-particles via an inner product, over the spin indices

L(2)
F−M

= g∑
k,q

[χq
†
(

z†
k−qσ ψkσ

)
+H.c], (158)

where conservation of exchange statistics obliges us to introduce a spinless chargee
fermion χ . This would imply that the composite heavy electron decays into a neutral
“spinon”and a spinless charge e fermione−σ ⇀↽ sσ + χ−. The critical Lagrangian in this
case would take the form

L = LF [ψ]+LF−M[ψ,χ,z]+LM[z,ψ]. (159)

We have to be cautious of course, because this is undoubtedlyone of many alternative
ways we might begin to construct a new class of critical Lagrangians. What we do see
quite clearly however, is this line of reasoning leads us to into the notion that the break-
up of the heavy fermion QCPinvolves spin-charge separation.

Hall constant measurements may provide a good way to discernbetween the spin
density wave and composite quasiparticle alternatives. Inthe former, regions around the



hot-line do not contribute to the Hall conductivity, and thechange in the Hall constant
is expected to evolve as the staggered magnetization[68]. By contrast, the composite
fermion scenario leads to a much more rapid evolution: provided that the density of
spinless fermions is finite at the QCP the Hall constant will jump suddenly at the QCP
[67].

∆RH ∝
{

MQ, (vectorial )
O(1) (spinorial)

(160)

The only available Hall measurement at a QCP to date shows a change in sign takes place
in the close vicinity of the QCP in criticalCeCu6−xAux, it is not yet clear whether there
is a discontinuity at the transition[109]. This is clearly an area where more experimental
input is highly desirable.

Let me end with a few speculations. If we are to construct a newcritical theory for
the heavy electron quantum critical point, then we will needsome new theoretical ideas.
A new critical theory will require as a first step, a new kind ofmean-field description
that permits us to understand why the magnetism and the Kondoeffect die at a common
critical point. At present, we do not know how to construct a mean-field theory that
contains a heavy electron quantum critical point. One interesting idea here, may be the
incorporation of supersymmetry. This is an idea that I have tried to develop, as yet
with only partial success, with my graduate student John Hopkinson and collaborators,
Catherine Pépin and Alexei Tsvelik.[106, 107] At a very naive level, magnetism involves
the manifestation of spin as a bosonic excitation, whereas heavy electron behavior
involves the manifestation of spin as a fermionic object. Ifthe two phenomena share
the same quantum critical point, then is it possible that thespin manifests both types
of behavior at a quantum critical point- in otherwords, thatit displays some kind of
supersymmetry?

It does prove possible to represent both spin and Hubbard operators in a way that
involves a locally supersymmetric gauge theory, but a mean-field theory still eludes us
at the current time. We do have an idea about the structure of this mean-field theory,
which I shall briefly mention to you. In this putative mean-field theory, we require two
order parameters- one for the formation of the composite heavy electron corresponding
to the amplitude for composite fermion formationψ1 ∼ V and one for the magnetism
(ψ2 ∼ 〈zσ〉 ∼

√
M). Suppose we can integrate out all of the fermions in the theory, so

that we are left with an effective theory forψ1 andψ2, given by a Landau Ginzburg
free energyF[ψ1,ψ2]. Now here’s the remarkable thing- for the two order parameters to
share a quantum critical point, then the expansion of the Free energy near the QCP must
take the form

F ∼ α(|ψ2|2−|ψ1|2)+ interactions

When α > 0, we have the heavy electron phase withψ2 = 0, ψ1 6= 0 but when
α < 0, we have the magnetic phase, whereψ2 6= 0, ψ1 = 0. At α = 0, both order
parameters vanish simultaneously. The two must go to zero atthe same point in the phase
diagram, so they can only come together in the quadratic combination(|ψ1|2−|ψ2|2).
This suggests that the negative definite metric

(|ψ2|2−|ψ1|2)
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FIGURE 25. The heavy fermion QCP may involve a supersymmetric gauge symmetry. To understand
the fact that the magnetization (M) disappears at precisely the same point in the phase diagramwhere the
amplitude (V) for the formation of composite fermions goes to zero, we need a special symmetry between
the two order parameters. Local moments behave as fermions in the paramagnetic phase, but as bosons in
the antiferromagnet. Does a supersymmetry develop at the quantum critical point and is this responsible
for the “Minkowskii” metric between the two order parameters that is required for them to vanish at the
same point in the phase diagram?

is a symmetry invariant of the quantum critical point. The appearance of a minus sign
- a Minkowskii type metric- is required by the phenomenology, yet traditional invariant
symmetry groups of a critical point involve a positive metric associated with a trace over
order parameter combinations. The minus sign would occur ifthe residual symmetry
between these two order parameters corresponded to symplectic group. One way for
such minus signs might appear is via the supertrace- an invariant of a supergroup. This
prompts the following conjecture, on which I will end: that the the above invariance is a
residue of a supertrace in a supersymmetric Lagrangian for quantum criticality.

4.8. Summary

This section has discussed the origin of the mass divergenceat the heavy fermion
quantum critical point, emphasizing that a quantum spin density wave picture can not
explain the observed properties. The proposal of fundamentally new kinds of quantum
critical points has been reviewed. This is clearly an area with a huge potential for
progress both on the experimental, and theoretical front.



4.9. Exercises

1. Consider the tree level scaling for the zero temperature Hertz-Millis Lagrangian at an
antiferromagnetic quantum critical point

S= SK +SI (161)

where

SK =
∫ |ω|<ωo,k<Λ dωddk

(2π)d+1
χ−1(κ)M(κ)M(−κ)

χ−1(κ) =

[
(~k− ~Q)2 +

|ω |2/z

Γ

]
(162)

describes the propagation of an overdamped spin fluctuationwith inverse susceptibility
χ−1(~k,ω) at quantum criticality, with a critical wavevector~Q. Here we have used the
notationκ ≡ (~k,ω) to denote the wavevector and frequency of a magnetization mode.
The non-linear interaction term in the model takes the form

SI [U ] = U
∫ (

∏
j=1,4

d(d+1)κ j

(2π)d+1

)
M(κ1) . . .M(κ4)δ

d+1(∑
j

κ j) (163)

(a) Derive the tree level scaling that keeps the Kinetic termSK invariant. First note that
from the kinetic term, the scaling dimension of frequency is[ω ] = [k]z. Show that if
the wavevector and frequency cut-off are rescaled according to

Λ̃ =
Λ
b

, ω̃0 =
ω0

bz
(164)

then one must rescale
k = k̃b, ω = ω̃bz (165)

to keep the form of the Kinetic term invariant. Show that under this scaling

SK → b(z+d−2)
∫ |ω̃|<ωo,k̃<Λ dd+1κ̃

(2π)d+1
χ−1(κ̃)M(κ)M(−κ)

so that with scaling
M(κ) = M̃(κ̃)b−(z+d−2)/2

the kinetic energy remains invariant.
(b) Using the tree level scaling derived above, show that theinteraction term transforms

as
SI (U) → SI (U

∗)

where

U∗ =
U

b(z+d−4)

showing that the interaction term scales to zero ford+z> 4, proving thatd = 4−z=
2 is the upper-critical dimension for the Hertz-Millis model.
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