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Outline of what was covered in lectures:
1A. Physical background of IQHE and topological insulators (slides). Crash course on homotopy and cohomology.

Examples: equivalence of Chern number in a 2D two-band model to π2(S2) (in notes on page ). Sketch of Haldane’s
theory for gap in integer-spin 1D Heisenberg antiferromagnets.

1B. Meaning of Berry phase of Bloch wavefunctions: semiclassical equations of motion.
2. FQHE physical background (in textbooks, so not really covered in slides or on board). Two FQHE pictures:

Laughlin state via Haldane pseudopotentials. Composite fermions. Meaning of fractional statistics.
3. Chern-Simons internal theory and flux attachment.

A. Cohomology example: invariant integrals along paths in two dimensions and exact forms

As our first example of a topological property, let’s ask about making line integrals along paths (not path integrals
in the physics sense, where the path itself is integrate over) that are nearly independent of the precise path: they will
turn out to depend in some cases on topological properties (homotopy or cohomology). We will assume throughout
these notes, unless otherwise specified, that all functions are smooth (i.e., C∞, meaning derivatives of all orders exist).

First, suppose that we deal with paths on some open set U in the two-dimensional plane R2. (Open set: some
neighborhood of each point in the set is also in the set.) We consider a smooth path (u(t), v(t)), where 0 ≤ t ≤ 1 and
the endpoints may be different. (To make these results more precise, we should provide for adding one path to another
by requiring only piecewise smooth paths, and require that u and v be smooth in an open set including t ∈ [0, 1]. For
additional rigor, see the first few chapters of W. Fulton, “Algebraic Topology: A First Course”, Springer).

Now let f(x, y) = (p(x, y), q(x, y)) be a two-dimensional vector field that lets us compute line integrals of this path:

W =

∫ 1

0

dt p
du

dt
+ q

dv

dt
dt, (1)

where p and q are evaluated at (x(t), y(t)).
Mathematical note: in more fancy language, f is a differential form, a “1-form” to be precise. All that means is

that f is something we can use to form integrals over paths that are linear and probe the tangent vector of the path.
Another way to state this, with which you may be more familiar is that the tangent vector to a path, which we call
a “vector”, transforms naturally in an opposite way to the gradient of a function, which we call a “covector”. To
convince yourself that this is true, think about how both transform under a linear transformation on the underlying
space. We will say a bit more about such forms in a moment.

Our first goal is to show that the following three statements are equivalent: (a) W depends only on the endpoints
(u(0), v(0)) and (u(1), v(1)); (b) W = 0 for any closed path; (c) f is the gradient of a function g: (p, q) = (∂xg, ∂yg);
The formal language used for (c) is that f is an exact form: f = dg is the differential of a 0-form (a smooth function)
g.

Note that (c) obviously implies (a) and (b), since then W = g(u(1), v(1))− g(u(0), v(0)). To show that (b) implies
(a), suppose (b) is true and (a) is not. Then there are two paths γ1, γ2 that have different integrals but the same
endpoints. Form a new path γ so that, as t goes from 0 to 1

2 , γ1 is traced, and then as t goes from 1
2 to 1, γ2 is traced

opposite its original direction (now you can see why piecewise smooth paths are needed if one wants to be rigorous).
Then this integral is nonzero, which contradicts (b).

It remains to show that (a) implies (c). Define g(x, y) as equal to 0 at (0, 0), or some other reference point in U if
U does not include the origin. Everywhere else, set g equal to the W obtained by integrating over an arbitrary path
from (0, 0) to the final point, which by (a) is path-independent. (If U is not connected, then carry out this process
on each connected component.) We will show that ∂xg = p, and the same logic then implies ∂yg = q. We need to
compute

∂xg = lim
∆x→0

g(x+ ∆x, y)− g(x, y)

∆x
. (2)
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We can obtain g by any path we like, so let’s take an arbitrary path to define g(x, y), then add a short horizontal
segment to that path to define the path for g(x+∆x, y). The value of the integral along this extra horizontal segment
converges to p(x, y)(∆x), as needed.

It turns out that the above case is simple because the plane we started with is “topologically trivial.” Before
proceeding to look at a nontrivial example, let us state one requirement on f that is satisfied whenever f is exact
(f = dg). The fact that partial derivatives commute means that, with f = dg = (p, q), ∂yp = ∂xq. We can come up
with an elegant notation for this property by expanding our knowledge of differential forms.

Before, we obtained a 1-form f as the differential of a scalar g by defining

f = dg = ∂xg dx+ ∂yg dy. (3)

Note that we now include the differential elements dx, dy in the definition of f , and that 1-forms form a real vector
space (spanned by dx, dy): we can add them and multiply them by scalars. To obtain a 2-form as the differential of
a 1-form, we repeat the process: writing f = fidxi (with x1 = x, x2 = y, f1 = p, f2 = q)

df =
∑
j

∂fi
∂xj

dxj ∧ dxi. (4)

where the ∧ product between differential forms satisfies the rule dxi ∧ dxj = −dxj ∧ dxi, which implies that if any
coordinate appears twice, then we get zero: dx∧dx = 0. For some intuition about why this anticommutation property
is important, note that in our 2D example,

df = (∂xfy − ∂yfx)dx ∧ dy, (5)

so that the function appearing in df is just the curl of the 2D vector field represented by f . So our statement about
partial derivatives commuting is just the statement that if f = dg, then df = 0, or that the curl of a gradient is zero.
We label any 1-form satisfying df = 0 a closed form. While every exact form is also closed, we will see that not every
closed form is exact, with profound consequences.

B. Topologically invariant integrals along paths: closed forms

As an example of nontrivial topology, we would now like to come up with an example where integrals over paths are
only path-independent in a limited “topological” sense: the integral is the same for any two paths that are homotopic,
one of the fundamental concepts of topology (to be defined in a moment). Basically, two paths are homotopic if one
can be smoothly deformed into another. Consider the vector field

f = (p, q) =

(
− y

x2 + y2
,

x

x2 + y2

)
=
−ydx+ xdy

x2 + y2
, (6)

where in the second step we have written it using our 1-form notation. This vector field is well-defined everywhere
except the origin. This 1-form looks locally like the differential of g = tan−1(y/x) (which just measures the angle in
polar coordinates), but that function can only be defined smoothly on some open sets. For example, in a disc around
the origin, the 2π ambiguity of the inverse tangent prevents defining g globally.

So if we have a path that lies entirely in a region where g can be defined, then the integral of this 1-form over the
path will give the change in angle between the starting point and end point g(u(1), v(1))− g(u(0), v(0)). What about
other types of paths, for example, paths in R2/{0, 0}, the 2D plane with the origin omitted, that circle the origin
and return to the starting point? We can still integrate using the 1-form f , even if it is not the gradient of a scalar
function g, and will obtain the value 2πn, where n is the “winding number”: a signed integer that describes how
many times the closed path (u(t), v(t)) circled the origin as t went from 0 to 1.

Now this winding number does not change as we make a small change in the closed path, as long as the path
remains in R2/{0, 0}. What mathematical property of f guarantees this? Above we saw that any exact 1-form (the
differential of a scalar function) is also closed. While f is not exact, we can see that it is closed:

df =

(
∂x

x

x2 + y2

)
dx ∧ dy +

(
∂y

−y
x2 + y2

)
dy ∧ dx =

2− 2

x2 + y2
dx ∧ dy = 0. (7)

In other words, (−y, x)/(x2 + y2) is curl-free (“irrotational”), while (−y, x) has constant nonzero curl. Now suppose
that we are given two paths γ1 and γ2 that differ by going in different ways around some small patch dA in which
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the 1-form remains defined. The difference in the integral of f over these two paths is then the integral of df over the
enclosed surface by Stokes’s theorem, which is zero if f is a closed form.

So we conclude that if f is a closed form, then the path integral is path-independent if we move the path through
a region where f is always defined. For an exact form, the integral is completely path-independent. In the case of
R/{0, 0}, the 1-form in Eq. 6 is locally but not completely path-independent. Both closed forms and exact forms are
vector spaces (we can add and multiply by scalars), and typically infinite-dimensional, but their quotient as vector
spaces is typically finite-dimensional. (The quotient of a vector space A by a vector space B is the vector space that
identifies any two elements of A that differ only by an element of B). A basic object in “cohomology” is the first de
Rham cohomology group (a vector space is by definition a group under addition),

H1(M) =
closed 1-forms on M

exact 1-forms on M
=
Z1(M)

B1(M)
. (8)

If you wonder why the prefix “co-” appears in “cohomology”, there is a dual theory of linear combinations of curves,
etc., called homology, in which the differential operator in de Rham cohomology is replaced by the boundary operator.
However, while arguably more basic mathematically, homology seems to crop up less frequently in physics. An even
simpler object is the zeroth de Rham cohomology group. To understand this, realize that a closed 0-form is one whose
gradient is zero, i.e., one that is constant on each connected component of U . There are no (-1)-forms and hence no
exact 0-forms. So the zeroth group is just Rn, where n is the number of connected components.

We can show that H1 = R for the unit circle S1 using the angle form f in Eq. 6, by showing that this form (more
precisely, its equivalence class up to exact forms) provides a basis for H1. Given some other form f ′, we use the unit
circle path, parametrized by an angle θ going from zero to 2π, to define

c =

∫ 2π

0
f ′∫ 2π

0
f
. (9)

Now f ′ − cf integrates to zero. We can define a function g via

g(θ) =

∫ θ

0

(f ′ − cf). (10)

Now g is well-defined and periodic because of how we defined c, and f ′ = cf + dg, which means that f ′ and cf are in
the same equivalence class as dg is an exact form. We say that f ′ and f are cohomologous because they differ by an
exact form. So cf , c ∈ R, generates H1, and H1(S1) is isomorphic to R. With a little more work, one can show that
R/{0, 0} also has H1 = R.

Actually we can connect the results of this section to the previous one: a general expression for the Euler charac-
teristic is

χ(M) =
∑
i

(−1)i dimHi(M) =
∑
i

(−1)i dim
Zi(M)

Bi(M)
. (11)

The dimension of the ith cohomology group is called the ith Betti number (to be pedantic, the Betti numbers are
defined for homology rather than cohomology, but we can use a duality relationship). There is a compact way to
express the idea of cohomology and homology that will let us introduce some notation and terminology that comes
in later. If Ωr is the vector space of r-forms, and Cr is the dual space of r-chains, then the action of the boundary
operator and the differential is as follows:

←− Cr ←−−−
∂r+1

Cr+1 ←−−−
∂r+2

Cr+2 ←−

−→ Ωr −−−→
dr+1

Ωr+1 −−−→
dr+2

Ωr+2 −→ . (12)

The rth cohomology group is the quotient ker dr+1/im dr, and the rth homology group is ker ∂r/im ∂r+1.
The duality relationship is provided by Stokes’s theorem. Recall that this theorem relates the integral of a form

over a boundary to the integral of the differential of the form over the interior. In terms of the linear operator (f, c)
that evaluates the form f on the chain c, we have the compact expression

(f, ∂c) = (df, c). (13)

Now we move on to a different type of topology that is perhaps more intuitive and will be useful for our first physics
challenge: how to classify defects in ordered systems.
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C. Homotopy

What if we did not want to deal with smooth functions and calculus? An even more basic type of topology is
homotopy theory, which can be defined without reference to calculus, differential forms, etc. (although in physics the
assumption of differentiability is usually applicable). Suppose that we are given a continuous map from [0, 1] to a
manifold M such that 0 and 1 get mapped to the same point; we can think of this as a closed curve on M . We say
that two such curves γ1, γ2 are homotopic if there is a continuous function (a homotopy) f from [0, 1] × [0, 1] to M
that satisfies

f(x, 0) = γ1(x), f(x, 1) = γ2(x). (14)

Intuitively, f describes how to smoothly distort γ1 to γ2. Now homotopy is an equivalence relation and hence defines
equivalence classes: [γ1] is the set of all paths homotopic to γ1. Furthermore, concatenation of paths (i.e., tracing one
after the other) defines a natural group structure on these equivalence classes: the inverse of any path can be obtained
by tracing it in the opposite direction. (To be precise, one should define homotopy with reference to a particular
point where paths start and end; for a symmetric space where all points are basically equivalent, this is unnecessary.)
We conclude that the equivalence classes of closed paths form a group π1(M), called the fundamental group or first
homotopy group. Higher homotopy groups πn(M) are obtained by considering mappings from the n-sphere Sn to M
in the same way.

The homotopy groups of a manifold are not totally independent of the cohomology groups: for example, if π1(M)
is trivial, then so is the first de Rham group. The examples above of R2/{0, 0} and S1 both have π1(M) = Z: there
is an integer-valued winding number that we can use to classify paths, and this winding number can be computed by
the angle form given above. So our two-dimensional examples already contains the two types of topology that occur
most frequently in physics: de Rham cohomology and homotopy.

Homotopy was the original application of topology in condensed matter physics: it can be used to classify topological
defects such as vortices in broken-symmetry phases. The review article of Mermin is a good reference for this topic.
Briefly, a topological defect that can be enclosed by a d-dimensional sphere is classified by the homotopy group πd(M),
where M is the order parameter manifold (see Appendix). M = G/H, where G is the high-temperature symmetry
group (i.e., the symmetry group of the disordered phase), H is the residual symmetry of the ordered phase, and
division means forming cosets (identifying two states that differ by a symmetry in H).

I. TOPOLOGICAL PHASES I: THOULESS PHASES ARISING FROM BERRY PHASES

The integer quantum Hall effect has the remarkable property that, even at finite temperature in a disordered
material, a transport quantity is quantized to remarkable precision: the transverse (a.k.a. Hall) conductivity is
σxy = ne2/h, where n is integral to 1 part in 109. This quantization results because the transport is determined by
a topological invariant, as stated most clearly in work of Thouless. Consequently we use the term “Thouless phases”
for phases where a response function is determined by a topological invariant.

In the cases we discuss, including the recently discovered “topological insulators” and quantum spin Hall effect, this
topological invariant results from integration of an underlying Berry phase. It turns out that the Berry phase can be
rather important even when it is not part of a topological invariant. In crystalline solids, the electrical polarization,
the anomalous Hall effect, and the magnetoelectric polarizability all derive from Berry phases of the Bloch electron
states, which are introduced in subsection 2. Before that, we give some background for the original quantum Hall
discovery that triggered a flood of developments continuing to the present day.

A. Physical background of the IQHE

(Here we follow standard treatments, e.g., the introductions to the books by Prange and Girvin, or Das Sarma and
Pinczuk, so I will not write new notes.)

B. Bloch states

One of the cornerstones of the theory of crystalline solids is Bloch’s theorem for electrons in a periodic potential.
We will demonstrate this in the following form: given a potential invariant under a set of lattice vectors R, V (r+R) =
V (r), the electronic eigenstates can be labeled by a “crystal momentum” k and written in the form

ψk(r) = eik·ruk(r), (15)
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where the function u has the periodicity of the lattice. Note that the crystal momentum k is only defined up to
addition of reciprocal lattice vectors, i.e., vectors whose dot product with any of the original lattice vectors is a
multiple of 2π.

We give a quick proof of Bloch’s theorem in one spatial dimension, then consider the Berry phase of the resulting
wavefunctions. A standard fact from quantum mechanics tells us that, given two Hermitian operators that commute,
we can find a basis of simultaneous wavefunctions. In the problem at hand, we have a non-Hermitian operator (lattice
translations by the lattice spacing a: (Tψ)(x) = ψ(x + a)) that commutes with the Hamiltonian. It turns out that
only one of the two operators needs to be Hermitian for simultaneous eigenstates to exist, and therefore we can find
wavefunctions that are energy eigenstates and satisfy

(Tψ)(x) = λψ(x). (16)

Now if the magnitude of λ is not 1, repeated application of this formula will give a wavefunction that either blows up
at spatial positive infinity or negative infinity. We would like to find wavefunctions that can extend throughout an
infinite solid with bounded probability density, and hence require |λ| = 1. From that it follows that λ = eiθ, and we
define k = θ/a, where we need to specify an interval of width 2π to uniquely define θ, say [−π, π). In other words, k
is ambiguous by addition of a multiple of 2π/a, as expected. So we have shown

ψk(x+ a) = eikaψk(x). (17)

The last step is to define uk(x) = ψk(x)e−ikx; then (17) shows that uk is periodic with period a, and ψk(x) =
eikxuk(x). 1

While the energetics of Bloch wavefunctions underlies many properties of solids, there is also Berry-phase physics
arising from the dependence of uk on k that was understood only rather recently. Note that, even though this is
one-dimensional, there is a nontrivial “closed loop” in the parameter k that can be defined because of the periodicity
of the “Brillouin zone”’ k ∈ [−π/a, π/a):

γ =

∮ π/a

−π/a
〈uk|i∂k|uk〉dk. (18)

How are we to interpret this Berry phase physically, and is it even gauge-invariant? We will derive it from scratch
below, but an intuitive clue is provided if we make the replacement i∂k by x, as would be appropriate if we consider
the action on a plane wave. This suggests, correctly, that the Berry phase may have something to do with the spatial
location of the electrons, but evaluating the position operator in a Bloch state gives an ill-defined answer; for this
real-space approach to work, we would need to introduce localized “Wannier orbitals” in place of the extended Bloch
states.

Another clue to what the phase γ might mean physically is provided by asking if it is gauge-invariant. Before,
gauge-invariance resulted from assuming that the wavefunction could be continuously defined on the interior of the
closed path. Here we have a closed path on a noncontractible manifold; the path in the integral winds around the
Brillouin zone, which has the topology of the circle. What happens to the Berry phase if we introduce a phase change
φ(k) in the wavefunctions, |uk〉 → e−iφ(k)|uk〉, with φ(π/a) = φ(−π/a) + 2πn, n ∈ Z? Under this transformation, the
integral shifts as

γ → γ +

∮ π/a

−π/a
(∂kφ) dk = γ + 2πn. (19)

So redefinition of the wavefunctions shifts the Berry phase; we will see later that this corresponds to changing the
polarization by a multiple of the “polarization quantum”, which in one dimension is just the electron charge. (In
higher dimensions, the polarization quantum is one electron charge per transverse unit cell.) Physically the ambiguity
of polarization corresponds to the following idea: given a system with a certain bulk unit cell, there is an ambiguity in
how that system is terminated and how much surface charge is at the boundary; adding an integer number of charges
to one allowed termination gives another allowed termination (cf. Resta). The Berry phase is not gauge-invariant,
but any fractional part it had in units of a is gauge-invariant. However, the above calculation suggests that, to obtain
a gauge-invariant quantity, we need to consider a two-dimensional crystal rather than a one-dimensional one. Then
integrating the Berry curvature, rather than the Berry connection, has to give a well-defined gauge-invariant quantity.

1 Readers interested in more information and the three-dimensional case can consult the solid state text of Ashcroft and Mermin.
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We will give a physical interpretation of γ in the next section as a one-dimensional polarization by relating changes
in γ to electrical currents. (A generalization of this Berry phase is remarkably useful for the theory of polarization
in real, three-dimensional materials.) In the next section we will understand how this one-dimensional example is
related to the two-dimensional integer quantum Hall effect. Historically the understanding of Berry phases in the
latter came first, in a paper by Thouless, Kohmoto, den Nijs, and Nightingale. They found that, when a lattice is put
in a commensurate magnetic field (one with rational flux per unit cell, in units of the flux quantum so that Bloch’s
theorem applies), each occupied band j contributes an integer

nj =
i

2π

∫
dkx dky

(
〈∂kxuj |∂kyuj〉 − 〈∂kyuj |∂kxuj〉

)
(20)

to the total Hall conductance:

σxy =
e2

h

∑
j

nj . (21)

Now we derive this topological quantity (the “Chern number”, expressed as an integral over the Berry flux, which
is the curl of the Berry connection Aj = i〈uj |∇kuj〉) for the case of one-dimensional polarization, then explain its
mathematical significance.

C. 1D polarization and 2D IQHE

We start with the question of one-dimensional polarization mentioned earlier. More precisely, we attempt to
compute the change in polarization by computing the integral of current through a bulk unit cell under an adiabatic
change:

∆P =

∫ 1

0

dλ
dP

dλ
=

∫ t1

t0

dt
dP

dλ

dλ

dt
=

∫ t1

t0

j(t) dt. (22)

In writing this formula, we are assuming implicitly that there will be some definition of dP in terms of a parameter
λ of the bulk Hamiltonian. Our treatment will follow that of Resta, but with a few more mathematical details in the
derivation. (We write q for one-dimensional momentum and kx, ky for two-dimensional momenta in the following.)
We will use Bloch’s theorem in the following form: the periodic single-particle orbitals un(q, r) are eigenstates of

H(q, λ) =
1

2m
(p+ ~q)2 + V (λ)(r). (23)

The current operator is

j(q) = ev(q) =
ie

~
[H(q, λ), r] =

e

m
(p+ ~q) =

e

~
∂qH(q, λ). (24)

The current at any fixed λ in the ground state is zero, but changing λ adiabatically in time drives a current that
generates the change in polarization. To compute this current, we need to use the first correction to the adiabatic
theorem (cf. the quantum mechanics book of Messiah). Following Thouless, we choose locally a gauge in which the
Berry phase is zero (this can only be done locally and is only meaningful if we obtain a gauge-invariant answer for
the instantaneous current), and write for the many-body wavefunction

|ψ(t)〉 = exp

(
−(i/~)

∫ t

E0(t′) dt′
)|ψ0(t)〉+ i~

∑
j 6=0

|ψj(t)〉(Ej − E0)−1〈ψj(t)|ψ̇0(t)〉

 . (25)

Here Ei(t) are the local eigenvalues and |ψj(t)〉 a local basis of reference states. The first term is just the adiabatic

expression we derived before, but with the Berry phase eliminated with a phase rotation to ensure 〈ψ0(t)|ψ̇0(t)〉 = 0.
We want to use the above expression to write the expectation value of the current. The ground state must differ

from the excited state by a single action of the (one-body) current operator, which promotes one valence electron
(i.e., an electron in an occupied state) to a conduction electron. Using the one-particle states, we get

dP

dλ
= 2~e Im

∑
v,c

∫
dq

2π

〈uv(q)|v(q)|uc(q)〉〈uc(q)|∂λuv(q)〉
Ec(q)− Ev(q)

. (26)
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For example, we wrote

〈ψj(t)|ψ̇0(t)〉 =
∑
v,c

〈uc|∂λuv〉
dλ

dt
. (27)

This sum involves both valence and conduction states. For simplicity we assume a single valence state in the follow-
ing. We can rewrite the sum simply in terms of the valence state using the first-order time-independent perturbation
theory expression for the wavefunction change under a perturbation Hamiltonian H ′ = dq ∂qH:

|∂quj(q)〉 =
∑
j 6=j′
|uj′(q)〉

〈uj′(q)|∂qH(q, λ)|uj(q)〉
Ej(q)− Ej′(q)

. (28)

Using this and v(q) = 1
~∂qH(q, λ) we obtain

dP

dλ
= 2~e Im

∑
c

∫
dq

2π

〈uv(q)|v(q)|uc(q)〉〈uc(q)|∂λuv(q)〉
Ec(q)− Ev(q)

= 2e Im

∫
dq

2π
〈∂quv(q)|∂λuv(q)〉. (29)

We can convert this to a change in polarization under a finite change in parameter λ:

∆P = 2e Im

∫ 1

0

dλ

∫
dq

2π
〈∂quv(q)|∂λuv(q)〉. (30)

The last expression is in two dimensions and involves the same type of integrand (a Berry flux) as in the 2D TKNN
formula (20). However, in the polarization case there does not need to be any periodicity in the parameter λ. If this
parameter is periodic, so that λ = 0 and λ = 1 describe the same system, then the total current run in a closed cycle
that returns to the original Hamiltonian must be an integer number of charges, consistent with quantization of the
TKNN integer in the IQHE.

If we define polarization via the Berry connection,

P = ie

∫
dq

2π
〈uv(q)|∂quv(q)〉, (31)

so that its derivative with respect to λ will give the result above with the Berry flux, we note that a change of gauge
changes P by an integer multiple of the charge e. Only the fractional part of P is gauge-independent. The relationship
between polarization in 1D, which has an integer ambiguity, and the IQHE in 2D, which has an integer quantization,
is the simplest example of the relationship between Chern-Simons forms in odd dimension and Chern forms in even
dimension. We now turn to the mathematical properties of these differential forms, which in the case above (and
others to be discussed) came from the Berry phases of a band structure.

D. Interactions and disorder: the flux trick

One might worry whether the TKNN integer defined in equation (20) is specific to noninteracting electrons in perfect
crystals. An elegant way to generalize the definition physically, while keeping the same mathematical structure, was
developed by Niu, Thouless, and Wu. This definition also makes somewhat clearer, together with our polarization
calculation above, why this invariant should describe σxy. First, note that from the formula for the Bloch Hamiltonian
in the polarization calculation above, we can reinterpret the crystal momentum q as a parameter describing a flux
threaded through a unit cell of size a: the boundary conditions are periodic up to a phase eiqa = eieΦ/~c. We will
start by reinterpreting the noninteracting case in terms of such fluxes, then move to the interacting case.

The setup is loosely similar to the Laughlin argument for quantization in the IQHE. Consider adiabatically pumping
a flux Φx though one circle of a toroidal system, in the direction associated with the periodicity x→ x+ Lx, y → y.
The change in this flux in time generates an electric field pointing in the x̂ direction. Treating this flux as a parameter
of the crystal Hamiltonian, we compute the resulting change in ŷ polarization, which is related to the y current
density:

dPy
dt

= jy =
dPy
dΦx

dΦx
dt

=
dPy
dΦx

(cExLx). (32)
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We are going to treat the polarization Py as an integral over y flux but keep Φx as a parameter. Then (cf. Ortiz and
Martin, 1994)

Py(Φx) =
ie

2π

∫
dΦy 〈u|∂Φyu〉 (33)

and we see that polarization now has units of charge per length, as expected. In particular, the polarization quantum
in the y direction is now one electronic charge per Lx. The last step to obtain the quantization is to assume that we
are justified in averaging jy over the flux:

〈jy〉 = 〈 dPy
dΦx
〉(cExLx)→ ∆Py

∆Φx
(cExLx), (34)

where ∆ means the change over a single flux quantum: ∆Φx = hc/e. So the averaged current is determined by how
many y polarization quanta change in the periodic adiabatic process of increasing the x flux by hc/e

〈jy〉 =
e

hc

ne

Lx
(cExLx) =

ne2

h
Ex. (35)

The integer n follows from noting that computing dPy/dΦx and then integrating dΦx gives just the expression for the
TKNN integer (20), now in terms of fluxes.

E. TKNN integers, Chern numbers, and homotopy

In this section we will give several different ways to understand the TKNN integer or Chern number described
above. First, a useful trick for many purposes is to define the Berry flux and first Chern number in a manifestly
gauge-invariant way, using projection operators. For the case of a single non-degenerate band, define Pj = |uj〉〈uj | at
each point of the Brillouin zone. This projection operator is clearly invariant under U(1) transformations of uj . The
Chern number can be obtained as

nj =
i

2π

∫
d2kTr [dPj ∧ Pj dPj ] , (36)

where ∧ is the wedge product and dPj = ∂kxPj dx+∂kyPj dy is a differential form where the coefficients are operators.
(Note that the wedge product in the above formula acts only on dx and dy.) It is a straightforward exercise to verify
that this reproduces the TKNN definition (20).

Then the generalization to degenerate bands, for example, is naturally studied by using the gauge- and basis-
invariant projection operator Pij = |ui〉〈ui| + |uj〉〈uj | onto the subspace spanned by |ui〉 and |uj〉: the index of this
operator gives the total Chern number of bands i and j. In general, when two bands come together, only their total
Chern number is defined. The total Chern number of all bands in a finite-dimensional band structure (i.e., a finite
number of bands) is argued to be zero below. Often one is interested in the total Chern number of all occupied bands
because this describes the integer quantum Hall effect through the TKNN formula; because of this zero sum rule, the
total Chern number of all unoccupied bands must be equal and opposite.

In the remainder of this section, we use a powerful homotopy argument of Avron, Seiler, and Simon to show
indirectly that there is one Chern number per band, but with a “zero sum rule” that all the Chern numbers add up
to zero. We will not calculate the Chern number directly, but rather the homotopy groups of Bloch Hamiltonians.
To get some intuition for the result, we first consider the example of a nondegenerate two-band band structure, then
give the general result, which is an application of the “exact sequence of a fibration” mentioned in the Introduction.

The Bloch Hamiltonian for a two-band nondegenerate band structure can be written in terms of the Pauli matrices
and the two-by-two identity as

H(kx, ky) = a0(kx, ky)1 + a1(kx, ky)σx + a2(kx, ky)σy + a3(kx, ky)σz. (37)

The nondegeneracy constraint is that a1, a2, and a3 are not all simultaneously zero. Now we first argue that a0 is
only a shift in the energy levels and has no topological significance, i.e., it can be smoothly taken to zero without a
phase transition. Similarly we can deform the other a functions to describe a unit vector on Z2: just as the punctured
plane R2 − {0, 0} can be taken to the circle, we are taking punctured three-space to the two-sphere via

(a1, a2, a3)→ (a1, a2, a3)√
a1

2 + a2
2 + a3

2
(38)
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at each point in k-space.
Now we have a map from T 2 to S2. We need to use one somewhat deep fact: under some assumptions, if π1(M)

= 0 for some target space M , then maps from the torus T 2 →M are contractible to maps from the sphere S2 →M .
Intuitively this is because the images of the noncontractible circles of the torus, which make it different from the
sphere, can be contracted on M . By this logic, the two-band nondegenerate band structure in two dimensions is
characterized by a single integer, which can be viewed as the Chern number of the occupied band.

The one subtle thing about this two-band model is that there is a nontrivial invariant in three spatial dimensions,
since π3(S2) = Z (the “Hopf invariant”). In other words, even if the Chern numbers for the three two-dimensional
planes in this three-dimensional structure are zero, there still can be an integer-valued invariant 2. This map is familiar
to physicists from the fact that the Pauli matrices can be used to map a normalized complex two-component spinor,
i.e., an element of S3, to a real unit vector, i.e., an element of S2: ni = z†σiz. This “Hopf map” is an example of
a map that cannot be deformed to the trivial (constant) map. The Hopf invariant does not generalize to more than
two bands, but what happens instead is quite remarkable; we return to the Hopf invariant below when we discuss
Chern-Simons terms in three dimensions.

Now we consider the case of a nondegenerate two-dimensional band structure with multiple bands. By the same
argument as in the two-band case, we would like to understand π1 and π2 of the target space Hn×n, nondegenerate
n× n Hermitian matrices. As before, we will find that π1 is zero so that maps from T 2 are equivalent to maps from
S2, but the latter will be quite nontrivial. We first diagonalize H at each point in k-space:

H(k) = U(k)D(k)U−1(k). (39)

Here U(k) is unitary and D(k) is real diagonal and nondegenerate. We can smoothly distort D everywhere in
the Brillouin zone to a reference matrix with eigenvalues 1, 2, . . . because of the nondegeneracy: if we plot the jth
eigenvalue of D as a function of kx and ky, then this distortion corresponds to smoothing out ripples in this plot to
obtain a constant plane.

The nontrivial topology is contained in U(k). The key is to note that U(k) in the above is ambiguous: right
multiplication by any diagonal unitary matrix, an element of DU(N), will give the same H(k). So we need to
understand the topology ofM = U(N)/DU(N) = SU(N)/SDU(N), where SDU(N) means diagonal unitary matrices
with determinant 1. We can compute π2 of this quotient by using the exact sequence of a fibration and the following
facts: π2(SU(N)) = π1(SU(N)) = 0 for N ≥ 2. These imply that π2(M) ∼= π1(SDU(N)) = Zn−1, i.e., n−1 copies of
the integers. This follows from viewing SDU(N) as N circles connected only by the requirement that the determinant
be 1. Similarly we obtain π1(M) = 0. We interpret these n − 1 integers that arise in homotopy theory as just the
Chern numbers of the bands, together with a constraint that the Chern numbers sum to zero.

F. Time-reversal invariance in Fermi systems

Now we jump to 2004-2005, when it was noted that imposing time-reversal symmetry in 2D electronic systems
leads to new topological invariants. While nonzero Chern numbers cannot be realized with time-reversal invariance,
the zero-Chern-number class gets subdivided into two pieces: “ordinary” insulators that do not in general have an
edge state, and a “quantum spin Hall effect” or “topological insulator” where a bulk topological invariant forces an
edge state. The topological invariant is not an integer here but rather a two-valued or Z2 invariant.

The idea that triggered this development started from considering two copies of the quantum Hall effect, one for
spin-up electrons and one for spin-down, with opposite effective magnetic fields for the two spins. This combination,
studied early on by Murakami, Nagaosa, Zhang, and others, is time-reversal invariant because acting with the time-
reversal operator T changes both the magnetic field direction and the spin. Note that in a model such as this, Sz is
a conserved quantum number even though SU(2) (spin-rotation invariance) is clearly broken, as up and down spins
behave differently. Heuristically, think of the spin-orbit coupling as arising from intra-atomic terms like L · S, and
consider specifically LzSz. For an electron of fixed spin, this coupling to the orbital motion described by Lz is just
like the coupling in a constant magnetic field, since the orbital motion Lz generates a magnetic dipole moment. In the
simplest case of a Chern number +1 state of up electrons and a Chern number −1 state of down electrons, the edge will
have counterpropagating modes: e.g., up-spin moves clockwise along the edge and down-spin moves counterclockwise.
This turns out not to be a bad caricature of the quantum spin Hall phase in a more realistic system: one can tell by

2 The nature of this fourth invariant changes when the Chern numbers are nonzero, as shown by Pontryagin in 1941: it becomes an
element of a finite group rather than of the integers.
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symmetry arguments that it will have no quantum Hall effect (i.e., αc = 0 in Ji = αcεijkEjBk), it will have a spin
Hall effect

J ij = αsεijkEk, (40)

where αc and αs are some numerical constants and J ij is a spin current (a current of angular momentum i in spatial

direction j 3 The appearance of the electric field rather than the magnetic field in the quantum spin Hall equation
results from the goal of having a potentially dissipationless current equation. If dissipation provides no “arrow of
time”, then both sides should transform in the same way under the time-reversal operation, which fixes the field on
the right side to be E rather than B.

As an example of this “two copies of the IQHE” generated by spin-orbit coupling, consider the model of graphene
introduced by Kane and Mele.(?) This is a tight-binding model for independent electrons on the honeycomb lattice
(Fig. 1). The spin-independent part of the Hamiltonian consists of a nearest-neighbor hopping, which alone would
give a semimetallic spectrum with Dirac nodes at certain points in the 2D Brillouin zone, plus a staggered sublattice
potential whose effect is to introduce a gap:

H0 = t
∑
〈ij〉σ

c†iσcjσ + λv
∑
iσ

ξic
†
iσciσ. (41)

Here 〈ij〉 denotes nearest-neighbor pairs of sites, σ is a spin index, ξi alternates sign between sublattices of the
honeycomb, and t and λv are parameters.

The insulator created by increasing λv is an unremarkable band insulator. However, the symmetries of graphene
also permit an “intrinsic” spin-orbit coupling of the form

HSO = iλSO
∑

〈〈ij〉〉σ1σ2

νijc
†
iσ1
szσ1σ2

cjσ2
. (42)

Here νij = (2/
√

3)d̂1 × d̂2 = ±1, where i and j are next-nearest-neighbors and d̂1 and d̂2 are unit vectors along the
two bonds that connect i to j. Including this type of spin-orbit coupling alone would not be a realistic model. For
example, the Hamiltonian H0 +HSO conserves sz, the distinguished component of electron spin, and reduces for fixed
spin (up or down) to Haldane’s model.(?) Generic spin-orbit coupling in solids should not conserve any component
of electron spin.

Ly

Lx

d1
d2

ψeiφx

ψeiφx+iφyψeiφy

ψ

FIG. 1 (Color online) The honeycomb lattice on which the tight-binding Hamiltonian resides. For the two sites depicted, the
factor νij of equation (42) is νij = −1. The phases φx,y describe twisted boundary conditions that are used below to give a
pumping definition of the Z2 invariant.

3 There are some challenges that arise in trying to define a spin current in a realistic physical system, chiefly because spin is not a
conserved quantity. Spin currents are certainly real and measurable in various situations, but the fundamental definition we give of the
quantum spin Hall phase will actually be in terms of charge; “two-dimensional topological insulator” is a more precise description of
the phase.
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This model with Sz conservation is mathematically treatable using the Chern number above, as it just reduces
to two copies of the IQHE. It is therefore not all that interesting in addition to not being very physical, because of
the requirement of Sz conservation. In particular, the stability of the phase is dependent on a subtle property of
spin-half particles (here we use the terms spin-half and Fermi interchangeably). The surprise is that the quantum
spin Hall phase survives, with interesting modifications, once we allow more realistic spin-orbit coupling, as long as
time-reversal symmetry remains unbroken.

The time-reversal operator T acts differently in Fermi and Bose systems, or more precisely in half-integer versus
integer spin systems. Kramers showed that the square of the time-reversal operator is connected to a 2π rotation,
which implies that

T 2 = (−1)2S , (43)

where S is the total spin quantum number of a state: half-integer-spin systems pick up a minus sign under two
time-reversal operations.

An immediate consequence of this is the existence of “Kramers pairs”: every eigenstate of a time-reversal-invariant
spin-half system is at least two-fold degenerate. We will argue this perturbatively, by showing that a time-reversal
invariant perturbation H ′ cannot mix members of a Kramers pair (a state ψ and its time-reversal conjugate φ = Tψ).
To see this, note that

〈Tψ|H ′|ψ〉 = 〈Tψ|H ′|T 2ψ〉 = −〈Tψ|H ′|ψ〉 = 0, (44)

where in the first step we have used the antiunitarity of T and the time-reversal symmetry of H ′, the second step the
fact that T 2 = −1, and the last step is just to note that if x = −x, then x = 0.

Combining Kramers pairs with what is known about the edge state, we can say a bit about why a odd-even or Z2

invariant might be physical here. If there is only a single Kramers pair of edge states and we consider low-energy elastic
scattering, then a right-moving excitation can only backscatter into its time-reversal conjugate, which is forbidden
by the Kramers result above if the perturbation inducing scattering is time-reversal invariant. However, if we have
two Kramers pairs of edge modes, then a right-mover can back-scatter to the left-mover that is not its time-reversal
conjugate. This process will, in general, eliminate these two Kramers pairs from the low-energy theory.

Our general belief based on this argument is that a system with an even number of Kramers pairs will, under time-
reversal-invariant backscattering, localize in pairs down to zero Kramers pairs, while a system with an odd number
of Kramers pairs will wind up with a single stable Kramers pair. Additional support for this odd-even argument will
be provided by our next approach. We would like, rather than just trying to understand whether the edge is stable,
to predict from bulk properties whether the edge will have an even or odd number of Kramers pairs. Since deriving
the bulk-edge correspondence directly is quite difficult, what we will show is that starting from the bulk T -invariant
system, there are two topological classes. These correspond in the example above (of separated up- and down-spins)
to paired IQHE states with even or odd Chern number for one spin. Then the known connection between Chern
number and number of edge states is good evidence for the statements above about Kramers pairs of edge modes.

G. An interlude: Wess-Zumino terms in one-dimensional nonlinear σ-models

A mathematical strategy similar to what we will need for the QSHE was developed by Wess and Zumino in the
context of 1+1-dimensional field theory. Before, in the discussion of the Kosterlitz-Thouless transition, we discussed
the behavior of the U(1) nonlinear sigma model, i.e., with the action

S0 = −K
2

∫
R2

(∇φ)2. (45)

The direct generalization of this to a more complicated Lie group such as SU(N) is written as

S0 = − k

8π

∫
S2

K(g−1∂µg, g−1∂µg), (46)

where we have compactified the plane to the sphere, changed the prefactor, and written the interaction in terms of
the “Killing form” K on the Lie algebra associated with g. (This Killing form is a symmetric bilinear form that, in
the U(1) case above, is just the identity matrix.) Unfortunately this action behaves quite differently from the U(1)
case: it does not describe a critical theory (in particle physics language, it develops a mass).

To fix this problem, Wess and Zumino wrote a term

SWZ = − 2πk

48π2

∫
B3

εµνλK
(
g−1∂µg,

[
g−1∂νg, g

−1∂λg
])

(47)
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that is quite remarkable: even writing this term depends on being able to take an original configuration of g on the
sphere S2 and extend it in to the sphere’s interior B3. (We will not show here that this term accomplishes the desired
purpose, just that it is topologically well-defined.) At least one contraction into the ball exists because π2(G) = 0.
Different contractions exist because π3(G) = Z, and the coefficient of the second term is chosen so that, if k (the
“level” of the resulting Wess-Zumino-Witten theory) is an integer, the different topological classes differ by a multiple
of 2πi in the action, so that the path integral is independent of what contraction is chosen. The reason that π3(G) is
relevant here is that two different contractions into the interior B3 can be joined together at their common boundary
to form a 3-sphere, in the same way as two disks with the same boundary can be joined together to form the top and
bottom hemispheres of a 2-sphere.

H. Topological invariants in time-reversal-invariant Fermi systems

The main subtlety in finding a topological invariant for time-reversal-invariant band structures will be in keeping
track of the time-reversal requirements. We introduce Q as the space of time-reversal-invariant Bloch Hamiltonians.
This is a subset of the space of Bloch Hamiltonians with at most pairwise degeneracies (the generalization of the
nondegenerate case we described above; we need to allow pairwise degeneracies because bands come in Kramers-
degenerate pairs). In general, a T -invariant system need not have Bloch Hamiltonians in Q except at the four special
points where k = −k. The homotopy groups of Q follow from similar methods to those used above: π1 = π2 = π3 = 0,
π4 = Z. T -invariance requires an even number of bands 2n, so Q consists of 2n× 2n Hermitian matrices for which H
commutes with Θ, the representation of T in the Bloch Hilbert space:

ΘH(k)Θ−1 = H(−k). (48)

Our goal in this section is to give a geometric derivation of a formula, first obtained by Fu and Kane via a different
approach, for the Z2 topological invariant in terms of the Berry phase of Bloch functions:

D =
1

2π

[∮
∂(EBZ)

dk ·A −
∫
EBZ

d2kF

]
mod 2. (49)

The notation EBZ stands for Effective Brillouin Zone, (?) which describes one half of the Brillouin zone together with
appropriate boundary conditions. Since the BZ is a torus, the EBZ can be viewed as a cylinder, and its boundary
∂(EBZ) as two circles, as in Fig. 2(b). While F is gauge-invariant, A is not, and different (time-reversal-invariant)
gauges, in a sense made precise below, can change the boundary integral by an even amount. The formula (49) was
not the first definition of the two-dimensional Z2 invariant, as the original Kane-Mele paper gave a definition based
on counting of zeros of the “Pfaffian bundle” of wavefunctions. However, (49) is both easier to connect to the IQHE
and easier to implement numerically.

The way to understand this integral is as follows. Since the EBZ has boundaries, unlike the torus, there is no
obvious way to define Chern integers for it; put another way, the F integral above is not guaranteed to be an integer.
However, given a map from the EBZ to Bloch Hamiltonians, we can imitate the Wess-Zumino approach above and
consider “contracting” or “extending” the map to be one defined on the sphere (Fig. 3), by finding a smooth way
to take all elements on the boundary to some constant element Q0 ∈ Q. The geometric interpretation of the line
integrals of A in (49) is that these are the integrals of F over the boundaries, and the requirement on the gauge used
to define the two A integrals is that each extends smoothly in the associated cap. The condition on the cap is that
each vertical slice satisfy the same time-reversal invariance condition as an EBZ boundary; this means that a cap can
alternately be viewed as a way to smoothly deform the boundary to a constant, while maintaining the time-reversal
condition at each step.

The two mathematical steps, as in the Wess-Zumino term, are showing that such contractions always exist and that
the invariant D in (49) is invariant of which contraction we choose. The first is rather straightforward and follows from
π1(H) = π1(Q) = 0. The second step is more subtle and gives an understanding of why only a Z2 invariant or “Chern
parity” survives, rather than an integer-valued invariant as the IQHE. We can combine two different contractions of
the same boundary into a sphere, and the Chern number of each band pair on this sphere gives the difference between
the Chern numbers of the band pair obtained using the two contractions (Fig. 3).

The next step is to show that the Chern number of any band pair on the sphere is even. To accomplish this, we note
that Chern number is a homotopy invariant and that it is possible to deform the Bloch Hamiltonians on the sphere so
that the equator is the constant element Q0 (here the equator came from the time-reversal-invariant elements at the
top and bottom of each allowed boundary circle.) The possibility of deforming the equator follows from π1(Q) = 0,
and the equivalence of different ways of deforming the equator follows from π2(Q) = 0. Then the sphere can be
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FIG. 2 (a) A two-dimensional Brillouin zone; note that any such Brillouin zone, including that for graphene, can be smoothly
deformed to a torus. The labeled points are time-reversal-invariant momenta. (b) The effective Brillouin zone (EBZ). The
horizontal lines on the boundary circles ∂(EBZ) connect time-reversal-conjugate points, where the Hamiltonians are related by
time reversal and so cannot be specified independently.
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FIG. 3 (a) Contracting the extended Brillouin zone to a sphere. (b) Two contractions can be combined to give a mapping
from the sphere, but this sphere has a special property: points in the northern hemisphere are conjugate under T to those in
the southern, in such a way that overall every band pair’s Chern number must be even.

separated into two spheres, related by time-reversal, and the Chern numbers of the two spheres are equal so that the
total Chern number is zero.

The above argument establishes that the two values of the Z2 invariant are related to even or odd Chern number
of a band pair on half the Brillouin zone. Note that the lack of an integer-valued invariant means, for example, that
we can smoothly go from an Sz-conserved model with ν = 1 for spin ↑, ν = −1 for spin ↓ to a model with ν = ±3
by breaking Sz conservation in between. This can be viewed as justification for the physical argument given above
in terms of edge states annihilating in pairs, once we define the Z2 invariant for disordered systems in the following
section.

I. Pumping interpretation of Z2 invariant

We expect that, as for the IQHE, it should be possible to reinterpret the Z2 invariant as an invariant that describes
the response of a finite toroidal system to some perturbation. In the IQHE, the response is the amount of charge
that is pumped around one circle of the torus as a 2π flux (i.e., a flux hc/e) is pumped adiabatically through the
other circle. 4 Here, the response will again be a pumped charge, but the cyclic process that pumps the chage is more
subtle.

Instead of inserting a 2π flux through a circle of the toroidal system, we insert a π flux, adiabatically; this is

4 A previous pumping definition that involves a π-flux but considers pumping of “Z2” from one boundary to another of a large cylinder
was given by Fu and Kane.
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consistent with the part of D in (49) that is obtained by integration over half the Brillouin zone. However, while a
π flux is compatible with T -invariance, it is physically distinct from zero flux, and hence this process is not a closed
cycle. We need to find some way to return the system to its initial conditions. We allow this return process to be
anything that does not close the gap, but require that the Hamiltonians in the return process not break time-reversal.
Since the forward process, insertion of a π flux, definitely breaks time-reversal, this means that the whole closed cycle
is a nontrivial loop in Hamiltonian space. The Z2 invariant then describes whether the charge pumped by this closed
cycle through the other circle of the torus is an odd or even multiple of the electron charge; while the precise charge
pumped depends on how the cycle is closed, the parity of the pumped charge (i.e., whether it is odd or even) does
not.

This time-reversal-invariant closure is one way to understand the physical origin of the A integrals in (49), although
here, by requiring a closed cycle, we have effectively closed the EBZ to a torus rather than a sphere. One weakness of
the above pumping definition, compared to the IQHE, is that obtaining the Z2 invariant depends on Fermi statistics,
so that the above pumping definition cannot be directly applied to the many-body wavefunction as in the IQHE case.
We will solve this problem later for the three-dimensional topological insulator by giving a pumping-like definition
that can be applied to the many-particle wavefunction.

Γ

B

A

C

A

C B

Stage I:
insert flux, breaking T

Γ

φx = 0 φx = π

Stage II:
complete the cycle

φy = 0

φy = π

FIG. 4 Graphical representation of charge pumping cycle for Chern parities. The first stage takes place as the flux φx increases
adiabatically from 0 to π. In the second stage the Hamiltonian at (φx = π, φy) is adiabatically transported through the space
of Hamiltonians to return to the Hamiltonian at (φx = 0, φy). The difference between the second stage and the first is that at
every step of the second stage, the Hamiltonians obey the time-reversal conditions required at φx = 0 or φx = π. The bold
lines indicate paths along which all Hamiltonians are time-reversal invariant, and the disk with horizontal lines indicates, as
before, how pairs of points in the second stage are related by time-reversal.

J. Experimental status

This completes our discussion of one- and two-dimensional insulating systems. The two-dimensional topological
insulator was observed by a transport measurement in (Hg,Cd)Te quantum wells (König et al., Science 2007). A
simplified description of this experiment is that it observed, in zero magnetic field, a two-terminal conductance 2e2/h,
consistent with the expected conductance e2/h for each edge if each edge has a single mode, with no spin degeneracy.
More recent work has observed some of the predicted spin transport signatures as well, although as expected the
amount of spin transported for a given applied voltage is not quantized, unlike the amount of charge.

In the next set of notes, we start with the three-dimensional topological insulator and its remarkable surface and
magnetoelectric properties. We then turn to metallic systems in order to understand another consequence of Berry
phases of Bloch electrons.

II. TOPOLOGICAL PHASES I: THOULESS PHASES ARISING FROM BERRY PHASES, CONTINUED

We will give a very quick introduction to the band structure invariants that allowed generalization of the previous
discussion of topological insulators to three dimensions. However, most of our discussion of the three-dimensional
topological insulator will be in terms of emergent properties that are difficult to perceive directly from the bulk band
structure invariant.
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A. 3D band structure invariants and topological insulators

We start by asking to what extent the two-dimensional integer quantum Hall effect can be generalized to three
dimensions. A generalization of the previous homotopy argument (from Avron, Seiler, and Simon, 1983) can be used
to show that there are three Chern numbers per band in three dimensions, associated with the xy, yz, and xz planes
of the Brillouin zone. A more physical way to view this is that a three-dimensional integer quantum Hall system
consists of a single Chern number and a reciprocal lattice vector that describes the “stacking” of integer quantum
Hall layers. The edge of this three-dimensional IQHE is quite interesting: it can form a two-dimensional chiral metal,
as the chiral modes from each IQHE combine and point in the same direction.

Consider the Brillouin zone of a three-dimensional time-reversal-invariant material. Our approach will be to build
on our understanding of the two-dimensional case: concentrating on a single band pair, there is a Z2 topological
invariant defined in the two-dimensional problem with time-reversal invariance. Taking the Brillouin zone to be a
torus, there are two inequivalent xy planes that are distinguished from others by the way time-reversal acts: the
kz = 0 and kz = ±π/a planes are taken to themselves by time-reversal (note that ±π/a are equivalent because of the
periodic boundary conditions). These special planes are essentially copies of the two-dimensional problem, and we
can label them by Z2 invariants z0 = ±1, z±1 = ±1, where +1 denotes “even Chern parity” or ordinary 2D insulator
and −1 denotes “odd Chern parity” or topological 2D insulator. Other xy planes are not constrained by time-reversal
and hence do not have to have a Z2 invariant.

The most interesting 3D topological insulator phase (the “strong topological insulator”) results when the z0 and
z±1 planes are in different 2D classes. This can occur if, moving in the z direction between these two planes, one has
a series of 2D problems that interpolate between ordinary and topological insulators by breaking time-reversal. We
will concentrate on this type of 3D topological insulator here. Another way to make a 3D topological insulator is to
stack 2D topological insulators, but considering the edge of such a system shows that it will not be very stable: since
two “odd” edges combine to make an “even” edge, which is unstable in the presence of T -invariant backscattering,
we call such a stacked system a “weak topological insulator”.

Above we found two xy planes with two-dimensional Z2 invariants. By the same logic, we could identify four other
such invariants x0, x±1, y0, y±1. However, not all six of these invariants are independent: some geometry (exercise)
shows that there are two relations, reducing the number of independent invariants to four:

x0x±1 = y0y±1 = z0z±1. (50)

(Sketch of geometry: to establish the first equality above, consider evaluating the Fu-Kane 2D formula on the four
EBZs described by the four invariants x0, x+1, y0, y+1. These define a torus, on whose interior the Chern two-form F
is well-defined. Arranging the four invariants so that all have the same orientation, the A terms drop out, and the F
integral vanishes as the torus can be shrunk to a loop. In other words, for some gauge choice the difference x0 − x+1

is equal to y0−y+1.) We can take these four invariants in three dimensions as (x0, y0, z0, x0x±1), where the first three
describe layered “weak” topological insulators, and the last describes the Alternately, the “axion electrodynamics” field
theory in the next subsection can be viewed as suggesting that there should be only one genuinely three-dimensional
Z2 invariant.

For example, the strong topological insulator cannot be realized in any model with Sz conservation, while, as
explained earlier, a useful example of the 2D topological insulator (a.k.a. “quantum spin Hall effect”) can be obtained
from combining IQHE phases of up and down electrons. The impossibility of making an STI with Sz conservation
follows from noting that all planes normal to z have the same Chern number, as Chern number is a topological
invariant whether or not the plane is preserved by time-reversal. In particular, the kz = 0 and kz = ±π/a phases
have the same Chern number for up electrons, say, which means that these two planes are either both 2D ordinary or
2D topological insulators.

While the above argument is rigorous, it doesn’t give much insight into what sort of gapless surface states we should
expect at the surface of a strong topological insulator. The answer can be obtained by other means (some properties
can be found via the field-theory approach given in the next section): the spin-resolved surface Fermi surface encloses
an odd number of Dirac points. In the simplest case of a single Dirac point, believed to be realized in Bi2Se3, the
surface state can be pictured as “one-quarter of graphene.” Graphene, a single layer of carbon atoms that form a
honeycomb lattice, has two Dirac points and two spin states at each k; spin-orbit coupling is quite weak since carbon
is a relatively light element. The surface state of a three-dimensional topological insulator can have a single Dirac
point and a single spin state at each k. As in the edge of the 2D topological insulator, time-reversal invariance implies
that the spin state at k must be the T conjugate of the spin state at −k.
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B. Axion electrodynamics, second Chern number, and magnetoelectric polarizability

The three-dimensional topological insulator turns out to be connected to a basic electromagnetic property of solids.
We know that in an insulating solid, Maxwell’s equations can be modified because the dielectric constant ε and mag-
netic permeability µ need not take their vacuum values. Another effect is that solids can generate the electromagnetic
term

∆LEM =
θe2

2πh
E ·B =

θe2

16πh
εαβγδFαβFγδ. (51)

This term describes a magnetoelectric polarizability: an applied electrical field generates a magnetic dipole, and vice
versa. An essential feature of the above “axion electrodynamics” theory (cf. Wilczek PRL 1987) is that, when the
axion field θ(x, t) is constant, it plays no role in electrodynamics; this follows because θ couples to a total derivative,
εαβγδFαβFγδ = 2εαβγδ∂α(AβFγδ) (here we used that F is closed, i.e., dF = 0), and so does not modify the equations
of motion. However, the presence of the axion field can have profound consequences at surfaces and interfaces, where
gradients in θ(x) appear.

A bit of work shows that, at a surface where θ changes, there is a surface quantum Hall layer of magnitude

σxy =
e2(∆θ)

2πh
. (52)

(This can be obtained by moving the derivative from one of the A fields to act on θ, leading to a Chern-Simons term
for the EM field at the surface. The connection between Chern-Simons terms and the quantum Hall effect will be
a major subject of the last part of this course.) The magnetoelectric polarizability described above can be obtained
from these layers: for example, an applied electric field generates circulating surface currents, which in turn generate a
magnetic dipole moment. In a sense, σxy is what accumulates at surfaces because of the magnetoelectric polarizability,
in the same way as charge is what accumulates at surfaces because of ordinary polarization.

We are jumping ahead a bit in writing θ as an angle: we will see that, like polarization, θ is only well defined as a
bulk property modulo 2π (for an alternate picture on why θ is periodic, see Wilczek, 1987). The integer multiple of 2π
is only specified once we specify a particular way to make the boundary. How does this connect to the 3D topological
insulator? At first glance, θ = 0 in any time-reversal-invariant system, since θ → −θ under time-reversal. However,
since θ is periodic, θ = π also works, as −θ and θ are equivalent because of the periodicity, and is inequivalent to
θ = 0.

Here we will not give a microscopic derivation of how θ can be obtained, for a band structure of noninteracting
electrons, as an integral of the Chern-Simons form:

θ =
1

2π

∫
BZ

d3k εijk Tr[Ai∂jAk − i
2

3
AiAjAk], (53)

which can be done by imitating our previous derivation of the polarization formula; for details see either Qi, Hughes,
Zhang (2008) or Essin, Moore, Vanderbilt (2008). Instead we will focus on understanding the physical and mathe-
matical meaning of the Chern-Simons form that constitutes the integrand, chiefly by discussing analogies with our
previous treatment of polarization in one dimension and the IQHE in two dimensions. These analogies are summarized
in Table I.

Throughout this section,

Fij = ∂iAj − ∂jAi − i[Ai,Aj ] (54)

is the (generally non-Abelian) Berry curvature tensor (Aλ = i〈u|∂λ|u〉), and the trace and commutator refer to band
indices. We will understand the Chern-Simons form K = Tr[Ai∂jAk − i 2

3AiAjAk] above starting from the second
Chern form Tr[F ∧ F ]; the relationship between the two is that

dK = Tr[F ∧ F ], (55)

just as A is related to the first Chern form: d(TrA) = TrF . These relationships hold locally (this is known as
Poincare’s lemma, that given a closed form, it is locally an exact form) but not globally, unless the first or second
Chern form generates the trivial cohomology class. For example, we saw that the existence of a nonzero first Chern
number on the sphere prevented us from finding globally defined wavefunctions that would give an A with dA = F .
We are assuming in even writing the Chern-Simons formula for θ that the ordinary Chern numbers are zero, so that
an A can be defined in the 3D Brillouin zone. We would run into trouble if we assumed that an A could be defined in
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Polarization Magnetoelectric
polarizability

dmin 1 3

Observable P = ∂〈H〉/∂E Mij = ∂〈H〉/∂Ei∂Bj

= δijθe
2/(2πh)

Quantum ∆P = eR/Ω ∆M = e2/h

Surface q = (P1 −P2) · n̂ σxy = (M1 −M2)

EM coupling P ·E ME ·B
CS form Ai εijk(AiFjk + iAiAjAk/3)

Chern form εij∂iAj εijklFijFkl

TABLE I Comparison of Berry-phase theories of polarization and magnetoelectric polarizability.

the 4D Brillouin zone if the first or second Chern number were nonzero. Note that the electromagnetic action above
is just the second Chern form of the (Abelian) electromagnetic field.

The second Chern form is closed and hence generates an element of the de Rham cohomology we studied earlier.
There are higher Chern forms as well: the key is that symmetric polynomials can be used to construct closed forms,
by the antisymmetry properties of the exterior derivative. In physics, we typically keep the manifold fixed (in our
Brillouin zone examples, it is usually a torus Tn), and are interested in classifying different fiber bundles on the
manifold. In mathematical language, we want to use a properly normalized cohomology form to compute a homotopy
invariant (i.e., with respect to changing the connection, not the manifold). This is exactly what we did with the Chern
number in the IQHE, which was argued to compute certain integer-valued homotopy π2 invariants of nondegenerate
Hermitian matrices.

More precisely, we saw that the U(1) gauge-dependence of polarization was connected to the homotopy group
π1(U(1)) = Z, but that this is connected also to the existence of integer-valued Chern numbers, which we explained
in terms of π2. (These statements are not as inconsistent as they might seem, because our calculation of π2 came
down to π1 of the diagonal unitary group.) We can understand the second Chern and Chern-Simons form similarly,
using the homotopy invariants π3 (gauge transformation in d = 3) and π4 (quantized state in d = 4). The Chern-
Simons integral for θ given above, in the non-Abelian case, has a 2πn ambiguity under gauge transformations, and
this ambiguity counts the integer-valued homotopy invariant

π3(SU(N)) = Z, N ≥ 2. (56)

In other words, there are “large” (non-null-homotopic) gauge transformations. Note that the Abelian Chern-Simons
integral is completely gauge-invariant, consistent with π3(U(1)) = 0.

The quantized state in d = 4 was originally discussed in the context of time-reversal-symmetric systems. The set
Q has one integer-valued π4 invariant for each band pair, with a zero sum rule. These invariants survive even once T
is broken, but realizing the nonzero value requires that two bands touch somewhere in the four-dimensional Brillouin
zone. In this sense, the “four-dimensional quantum Hall effect” is a property of how pairs of bands interact with each
other, rather than of individual bands. Even if this 4D QHE is not directly measurable, it is mathematically connected
to the 3D magnetoelectric polarizability in the same way as 1D polarization and the 2D IQHE are connected.

The above Chern-Simons formula for θ works, in general, only for a noninteracting electron system. This is not
true for the first Chern formula for the IQHE, or the polarization formula, so what is different here? The key is to
remember that the 3D Chern formula behaves very differently in the Abelian and non-Abelian cases; for example, in
the Abelian case, θ is no longer periodic as the integral is fully gauge-invariant. Taking the ground state many-body
wavefunction and inserting it into the Chern-Simons formula is not guaranteed to give the same result as using the
multiple one-particle wavefunctions.

However, we can give a many-body understanding of θ that clarifies the geometric reason for its periodicity even
in a many-particle system. Consider evaluating dP/dB by applying the 3D polarization formula

Pi = e

∫
BZ

d3k

(2π)3
TrAi . (57)

to a rectangular-prism unit cell. The minimum magnetic field normal to one of the faces that can be applied to the
cell without destroying the periodicity is one flux quantum per unit cell, or a field strength h/(eΩ), where Ω is the
area of that face. The ambiguity of polarization (57) in this direction is one charge per transverse unit cell area, i.e.,
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e/Ω. Then the ambiguity in dP/dB is

∆
Px
Bx

=
e/Ω

h/(eΩ)
=
e2

h
= 2π

e2

2πh
. (58)

So the periodicity of 2π in θ is really a consequence of the geometry of polarization, and is independent of the
single-electron assumption that leads to the microscopic Chern-Simons formula.

C. Anomalous Hall effect and Karplus-Luttinger anomalous velocity

Our previous examples of Berry phases in solids have concentrated on insulators, but one of the most direct probes
of the Berry phase of Bloch electrons is found in metals that break time-reversal symmetry. The breaking of T allows
a nonzero transverse conductivity σxy to exist along with the metallic diagonal conductivity σxx. This “anomalous
Hall effect” (AHE) can originate from several different microscopic processes. Here we will concentrate on the intrinsic
AHE that results from Berry phases of a time-reversal-breaking band structure when the Fermi level is in the middle
of a band.

Remarkably, the AHE originates from a term in the semiclassical equations of motion that is neglected in almost
all textbooks. This term was first obtained by Karplus and Luttinger, but as this took place well before the modern
idea of Berry phases, their results were not universally accepted. We will present a modern derivation of the Karplus-
Luttinger term using the same idea as in our polarization calculation: trying to “gauge away” the Berry phase leads
to a gauge-invariant physical effect. We will derive in this process the zero-B-field limit of the standard semiclassical
equations of motion in, e.g., Ashcroft and Mermin,

~k̇ = eE + ev ×B
~v = ∇kεn(k) + . . . . (59)

where . . . indicate the Karplus-Luttinger term that we seek.
In class, we derived this term for an applied electric field in the form

~v = ∇kεnk− eE× (∇k ×A(n)), (60)

where A(n) is the Berry vector potential of band n. The physical interpretation is fairly straightforward once we recall
that our polarization calculation already showed that A can be connected to the spatial distribution of the electron.
As an electron wavepacket moves in k-space under the influence of an applied field, there are two contributions to its
spatial velocity. The Karplus-Luttinger contribution describes how a change in k induces a change in the real-space
location because the Bloch states are changing; the first term describes how a fixed wavepacket of Bloch states still
describes a moving particle.

(Our treatment followed closely chapter 4 of a tutorial by Ong and Lee that is on the course web page, so I will not
reiterate it here. One note on their presentation: I believe that deriving their equation (17) requires assuming that
the potential is weakly varying, because otherwise higher-order terms are not guaranteed to vanish because of some
nonzero commutators.)

FQHE background: in class we gave some standard background on the fractional quantum Hall effect. Most of this
material is standard and can be found in quantum Hall edited volumes and textbooks (Prange and Girvin; Das Sarma
and Pinczuk; Jain). Our discussion centered on the Laughlin wavefunction for two-dimensional electrons (zj = xj+iyj
describes the jth electron, j = 1, . . . , N)

Ψm =

∏
i<j

(zi − zj)m
 e−

∑
i |zi|

2/4`2 . (61)

The magnetic length is ` =
√
~c/eB and the wavefunction is not normalized. This wavefunction clearly can be

expanded over the single-electron lowest Landau level wavefunctions in the rotational gauge,

ψm = zme−|z|
2/4`2 . (62)

where m = 0, 1, . . . labels angular momentum. For m = 1 the Laughlin state is just a Slater determinant for the filled
lowest Landau level, but for higher m it is believed not to be a sum of any finite number of Slater determinants in
the N →∞ limit.
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We explained the origin of this wavefunction using the pseudopotential approach introduced by Haldane: it is the
maximum-density zero-energy state of a repulsive interaction that vanishes for relative angular momentum greater
than or equal to m. We checked that its density is ν = 1/m by looking at the degree of the polynomial factor, which
is directly related to 〈r2〉, and argued that it contains “quasihole” excitations of charge −q/m, where q is the charge
of the electrons. The wavefunction for a quasihole at z0 is

Ψquasihole =

(∏
i

(zi − z0)

)
Ψm. (63)

The fractional charge can be understood by noting thatm copies of the extra factor here would lead to the wavefunction
with an electron at z0, but without treating z0 as an electron coordinate; in other words, a wavefunction with a “hole”
added at z0. It has edge states that at first glance are loosely similar to those in the filled Landau level.

III. WEN-TYPE TOPOLOGICAL PHASES: THE FRACTIONAL QUANTUM HALL EFFECT

A. Chern-Simons theory I: flux attachment and statistics change

We will now start the process of developing a more abstract description of the fractional quantum Hall effect that
will help us understand what type of order it has. For example, this will define precisely what it means to say that the
physical state is adiabatically connected to the Laughlin wavefunction. Our main tool will be Chern-Simons theory;
we briefly encounted the Chern-Simons term of the electromagnetic gauge potential when we discussed quantum
Hall layers at the surface of the strong topological insulator, and we will come to that in a moment. However, a
more fundamental use of the Chern-Simons theory is to describe the internal degrees of freedom of the quantum Hall
liquid. In other words, we will have both an “internal” Chern-Simons theory describing the quantum Hall liquid and
a Chern-Simons term induced in the electromagnetic action.

Since that sounds complicated, let’s start by understanding why a Chern-Simons theory might be useful. To begin,
we come up with a picture for the Laughlin state by noting that, since the filled lowest Landau level has one magnetic
flux quantum per electron, the Laughlin state at m = 3 (i.e., ν = 1/3) has three flux quanta per electron. To
get a picture for how the Laughlin state is connected to the ν = 1 state, we imagine attaching two of these flux
quanta to each electron. The resulting “composite fermion” still has fermionic statistics, by the following counting.
Interchanging two electrons gives a −1 factor. The Aharonov-Bohm factor from moving an electron all the way
around a flux quantum is +1, but in this exchange process, each electron moves only half-way around the flux quanta
attached to the other electron. So when one of these objects is exchanged with another, the wavefunction picks up
three factors of −1 and the statistics is still fermionic.

These composite fermions now can form the integer quantum Hall state in the remaining field of one flux quantum
per composite fermion, leading to a ν = 1/3 incompressible state in terms of the original electrons. More generally,
the phase picked up by a particle of charge q moving completely around a flux Φ is

eiθ = eiqΦ/(~c). (64)

We will now see how the Chern-Simons term lets us carry out a “flux attachment” related to the above composite
fermion idea: in fact, by attaching three flux quanta rather than two to each electron, we would obtain bosons moving
in zero applied field, and the Laughlin state can be viewed as a Bose-Einstein condensate of these “composite bosons”
(cf. Zhang, Hansson, and Kivelson, PRL 1988). 5

The Abelian Chern-Simons theory we will study is described by the Lagrangian density in 2+1 dimensional
Minkowski spacetime

L = 2γεµνλaµ∂νaλ + aµj
µ (65)

where γ is a numerical constant that we will interpret later, a is the Chern-Simons gauge field, and j is a conserved
current describing the particles of the theory. Under a gauge transformation aµ → aµ + ∂µχ, the Chern-Simons term
(the first one) transforms as

εµνλaµ∂νaλ → εµνλaµ∂νaλ + εµνλ∂µχ∂νaλ, (66)

5 One feature of the composite fermion picture that is preferable to the composite boson picture is that the former is naturally described
as “topological order”, while the latter would lead to a picture of the phase in terms of the symmetry-breaking order of a BEC.
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where the term with two derivatives of χ drops out by antisymmetry. The new term can be written as

δS = 2γ

∫
d2xdtεµνλ∂µ(χ∂νaλ), (67)

where again the term with two derivatives acting on a gives zero by antisymmetry. So, if we can neglect the boundary,
the Abelian Chern-Simons term is gauge-invariant. (As we discussed previously in the discussion of magnetoelectric
polarizability, the non-Abelian Chern-Simons term is not gauge-invariant, because “large” (non-null-homotopic) gauge
transformations change the integral; this is related to the third homotopy group of SU(N).) Later on we will actually
consider a system with a boundary and see how the boundary term leads to physically important effects.

Consider the equation of motion from varying this action. We get

4γεµνλ∂nuaλ = −jµ. (68)

where the 4 rather than 2 appears because the Chern-Simons term has nonzero derivative with respect to both a and
∂a. For a particle sitting at rest, the spatial components of the current vanish, but there must be a flux: writing in
components, ∫

d2x(∂1a2 − ∂2a1) = − 1

4γ

∫
d2x j0. (69)

Hence a charged particle in the theory gains a flux of the a field (since the left term is just the integral of a magnetic
field). If the charge is localized, then the flux is localized as well.

What good is this? Well, we know that when one charged particle with respect to the a field moves around another,
it will now pick up an Aharonov-Bohm phase from the attached flux in addition to any statistics factor. The additional
statistics factor is

θ =
1

8γ
, (70)

where the 1/2 here results because the particles only move halfway around each other in an exchange. In other words,
if we started with θ = 0 bosonic particles but added a γ = 1

8π Chern-Simons term, we would obtain fermions, and vice
versa. But so far nothing constrains γ, suggesting that in two dimensions, “braiding” statistics is not constrained to
be bosonic or fermionic. Particles in two dimensions that are neither bosonic nor fermionic are known as “anyons”.

Why is two spatial dimensions so special? It turns out that an argument about why generalized statistics are
possible for point particles in two spatial dimensions but not higher dimensions was given long ago by Leinaas and
Myrheim (1976). The key observation is that an exchange path that takes one particle around another and back to
its original location is not smoothly contractible in 2D without having the particles pass through each other, while in
higher dimensions, such a path is contractible. The consequence of this is that in two dimensions, phase factors are
not just defined for permutations of the particles but rather for any “braiding”. 6

B. Chern-Simons theory II: integrating out gauge fields and coupling to electromagnetism

Aside from the composite fermion/composite boson pictures, why might the Chern-Simons theory with Lagrangian
density given by (65) describe quantum Hall states? Without working through a detailed derivation starting from
nonrelativistic quantum mechanics of many interacting electrons in a magnetic field (which is still not all that rigorous;
for a discussion, see lecture notes of A. Zee in Field Theory, Topology, and Condensed Matter Physics, Springer), we
can note the following. A conserved electromagnetic current in 2+1D can always be written as the curl of a gauge
field:

Jµ =
1

2π
εµνλ∂νaλ. (71)

(Note that this electromagnetic current might in general be distinct from the particle current above.) Here a is
automatically a gauge field since the U(1) gauge transformation does not modify the current. Gauge invariance

6 Even non-Abelian statistics are possible if there are multiple ground states: the phase factor associated with a particular braid is then
a matrix acting on the set of ground states, and two such matrices need not commute.
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forbids the mass term aµaµ, so the lowest-dimension possible term is the Chern-Simons term, which we write for
future use with a different normalization than above:

LCS =
k

4π
εµνλaµ∂νaλ. (72)

The point of the new normalization k = 8πγ compared to (65) is that the boson-fermion statistics transformation
above now corresponds just to k = 1. We will argue later that k should be an integer for the electron to appear
somewhere in the spectrum of excitations of the theory.

Does this term need to appear? No, for example, in a system that has P or T symmetry, it cannot appear. However,
if it does appear, then since there is only one spatial derivative, it dominates the Maxwell term at large distances.
Effectively we define the quantum Hall phase as one in which LCS appears in the low-energy Lagrangian; for example,
this is true in both the Laughlin state and the physical state with Coulomb interactions, even though the overlap
between those two ground-state wavefunctions is presumably zero in the thermodynamic limit.

What if we added the aµJ
µ coupling and integrated out the gauge field? Well, the main reason not to do that is

that we obtain a nonlocal current-current coupling. Since the original action is quadratic in the fields, this integration
is not too difficult, but an alternate, equivalent way to do it is to solve for a in terms of J . Given a general Lagrangian

L = φQφ+ φJ, (73)

where Q denotes some operator, we have the formal equation of motion from varying φ

2Qφ = −J (74)

which is solved by

φ =
−1

2Q
J. (75)

Then substituting this into the Lagrangian (and ignoring some subtleties about ordering of operators), we obtain

L =
1

4
J

1

Q
J − J 1

2Q
J = −J 1

4Q
J. (76)

So for the Chern-Simons term we need to define the inverse of the operator εµνλ∂ν that appears between the a fields.
This is a bit subtle because there is a zero mode of the original operator, related to gauge-invariance: for any smooth
function g, εµνλ∂ν(∂λg) = 0. To define the inverse, we fix the Lorentz gauge ∂µaµ = 0. In this gauge, we look for an
inverse using

(εµνλ∂ν)(ελαβ∂αaβ) = εµνλελαβ(∂ν∂αaβ). (77)

We can combine the ε tensors by noting that εµνλ = ελµν , so there are two types of nonzero terms in the above: either
µ = α and ν = β or vice versa, with a minus sign in the second case. From the first type of term, we obtain ∂α(∂βaβ)
which is zero by our gauge choice. From the second type, we obtain

−∂2
νaµ. (78)

So the inverse of the operator appearing in the Chern-Simons term in this gauge is −εµνλ∂ν/∂2, and the Lagrangian
(65) with the gauge field integrated out is just

L =
1

8γ
jµ

(
εµνλ∂ν
∂2

)
jλ. (79)

Aside from showing another interesting difference between the Chern-Simons term and the Maxwell term, we can
use this inverse to couple the Chern-Simons theory to an external electromagnetic gauge potential Aµ. We will set
e = ~ = 1 except as noted. We do not include the Maxwell term to give this field dynamics, but rather view it as an
imposed field beyond the magnetic field producing the phase. For example, we could use this additional field to add
an electrical field, and we should find a Hall response. Let’s try this:

L =
k

4π
εµνλaµ∂νaλ −

1

2π
εµνλAµ∂νaλ =

k

4π
εµνλaµ∂νaλ −

1

2π
εµνλaµ∂νAλ, (80)
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where in the second step we have dropped a boundary term and used the antisymmetry property of the ε tensor.
Note that to obtain the second term we have just rewritten AµJ

µ using (71.
Now we can integrate out aµ using equation (79) above, recalling γ = k/(8π), and obtain

Leff =
π

k
Jµε

µνλ∂ν
1

∂2
Jλ =

1

4πk
εµαβ∂αAβε

µνλ∂ν
1

∂2
ελγδ∂γAδ. (81)

where in the second step we have used the rewritten Lagrangian in (80) to identify Jµ = 1
2π ε

µνλ∂νAλ. As above, the
nonzero possibilities are α = ν and β = λ (+1) or vice versa (-1), and also γ = µ and δ = ν (+1) or vice versa (-1).
Working through these, one is left with the γ = ν and δ = µ terms,

Leff =
1

4πk
εµνλAµ∂νAλ. (82)

This is the electromagnetic Chern-Simons term. The electromagnetic current is obtained by varying A:

Jµ = −δLeff

δAµ
=

1

2πk
εµνλ∂νAλ. (83)

where the factor of 2 is obtained because the variation can act on either A.
We can see immediately that this predicts a Hall effect: in response to an electrical field along x, we obtain a

current along y. What about the factor 1/(2π)? That is here just so that the response, once we restore factors of e
and ~, is

σxy =
e2

(2π)k~
=

1

k

e2

h
. (84)

Here we get a clue about the physical significance of k. Another clue is to consider the electromagnetic charge J0

induced by a change in the magnetic field δB (i.e., an additional field beyond the one producing the FQHE):

J0 = δn =
1

2πk
δB. (85)

where we have written J0 = δn to indicate that this electromagnetic density describes the change in electron density
from the ground state without the additional field. For the IQHE, a change of one flux quantum corresponds to one
additional electron, while we can see that the k = 3 Chern-Simons theory predicts a change in density e/3, consistent
with the quasihole and quasiparticle excitations.

To summarize what we have learned so far, we now see that Chern-Simons theory predicts a connection between
the Hall quantum, the statistics of quasiparticles in the theory (from the previous section), and the effective density
induced by a local change in the magnetic field. Here “quasiparticles”, which we will discuss later, means whatever
particle couples to the Chern-Simons theory as in the preceding section, which need not be an electron.

C. Chern-Simons theory III: topological aspects and gapless edge excitations

One obvious respect in which the Chern-Simons theory is topological is that, because ε rather than the metric tensor
g was used to raise the indices, there is no dependence on the metric. In Zee’s language, it describes a world without
rulers or clocks. Since the stress-energy tensor in a relativistic theory is determined by varying the Lagrangian with
respect to the metric, the stress-energy tensor is identically zero.

How can a theory be interesting if all its states have zero energy, as in the pure Chern-Simons theory? Well, one
interesting fact is that the number of zero-energy states is dependent on the manifold where the theory is defined.
We will not try to compute this in general but will solve the theory for the case of the torus. It is quite surprising
that we can solve this 2+1-dimensional field theory exactly; the key will be that there are very few physical degrees
of freedom once the U(1) gauge invariance is taken into account.

We wish to solve the pure Chern-Simons theory with action

LCS =
k

4π
εµνλaµ∂νaλ (86)

on the manifold R (time) ×T 2 (space). The gauge invariance is under aµ → aµ + ∂µχ, χ an arbitrary scalar function.
Given an arbitrary configuration of the gauge field aµ, we first fix a0 = 0 by the gauge transformation aµ → aµ + ∂µχ
with χ = −

∫
a0 dt. The Lagrangian is then

L = − k

4π
εijaiȧj , (87)
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where i, j = 1, 2. The equation of motion from varying the original Lagrangian with respect to a0 now gives a
constraint

εij∂iaj = 0. (88)

There is still some gauge invariance remaining in a1, a2: we can add a purely spatially dependent χ, so that a0 remains
0, to make ∂iai = 0 (exercise). Then (ai(t), aj(t)) have zero spatial derivatives and hence are purely functions of time.
The Lagrangian (87) is now just the minimal coupling of a particle moving in a position-dependent vector potential;
thinking of (a1, a2) as the coordinates of a particle moving in the plane, and noting that a constant magnetic field
can be described by the vector potential (By/2,−Bx/2) = (Ba2/2,−Ba1/2), we see that this is the interaction term
of a particle in a constant magnetic field.

So far, using gauge invariance we can reduce the degrees of freedom from a 2+1-dimensional field theory to the path
integral for the quantum mechanics of a particle moving in two dimensions. There is one last bit of gauge invariance
we need to use. This will reduce the space on which our particle moves, which so far is R2 because the gauge fields
are noncompact, to the torus T 2 on which the theory is defined. We consider a gauge transformation of the form
aj → aj − iu−1∂ju, where u is purely a function of space. Note that if we can write u = exp(iθ), this becomes a
conventional gauge transformation aj → aj + ∂jθ. This gauge transformation will not break the previous two gauge
constraints if ∇2θ = 0.

However, the periodicity of the torus means that we might not be able to define θ periodically, even if u is defined
globally and the gauge transformation is indeed periodic. Taking the torus to be L1 × L2, the following θ has zero
Laplacian everywhere and gives rise to a periodic u and hence a periodic gauge transformation, even if θ is not itself
periodic:

θ =
2πn1a1

L1
+

2πn2a2

L2
. (89)

The effect of this gauge transformation is that we can shift the particle’s trajectory by an arbitrary constant integer
multiple of L1 in the x direction and L2 in the y direction. To make the torus equivalent to the unit torus, we can
rescale ai(t) = (2π/Li)qi(t). So finally we have shown

S =

∫
d2x dt

k

4π
εµνλaµ∂νaλ = −kL1L2

4π

∫
dt

(2π)2

L1L2
εijqiq̇j . (90)

Here one L1L2 factor is from the spatial integrals and one is from the change of variable from ai to qi. We still haven’t
done anything quantum-mechanical to solve the path integral. However, we can temporarily add a term mq̇2

i /2 to the
Lagrangian and recognize it as the path integral for a particle moving on the torus in a constant magnetic field. The
gauge potential is Ai = kπεijqj , which corresponds to a magnetic field B = 2πk (this factor of 2 always appears in
the rotational gauge). This is in our theorist’s units with ~ = e = 1; it means that there are a total of k flux quanta
through the torus.

The limit we care about for pure CS theory is m → 0, which takes all states not in the lowest Landau level to
infinite energy. This makes sense because in a topological theory there can be no energy scale; the states either have
some constant energy (the lowest Landau level here), which can be taken to zero, or infinite energy (the other Landau
levels here). A quick calculation shows that there are exactly k states in the lowest Landau level on the torus pierced
by k flux quanta; note that the “shift” of 1 extra level on the sphere is absent. For example, the lowest Landau level
with one flux quantum through the sphere corresponds to the coherent-state path integral for a s = 1/2 particle (see
problem sets), with 2 degenerate states.

The conclusion is that the parameter k also controls the ground-state degeneracy on the torus. An argument (X.G.
Wen and Q. Niu, Phys. Rev. B41, 9377 (1990)) (regrettably direct calculation seems to be more difficult) shows that
the general degeneracy of the pure Abelian CS theory on a 2-manifold of genus g is kg. So for a topological theory,
the physical content of the model is determined not just by explicit parameters in the action, such as k, but also by
the topology of the manifold where the theory is defined. In this sense topological theories are sensitive to global
or “long-ranged” properties, even though the theory is massive/gapped. (Of course, in the pure CS theory there is
no notion of length so the distinction between local and global doesn’t mean much, but adding a Maxwell term or
something like that would not modify the long-distance properties; it would just mean that the other Landau levels
are no longer at infinite energy.)

Bulk-edge correspondence
We noted above that the Chern-Simons term has different gauge-invariance properties from the Maxwell term: in

particular, in a system with a boundary, it is not gauge-invariant by itself because the boundary term we found above
need not vanish. Our last goal in this section is to see that this gauge invariance leads to the free massless chiral
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boson theory at the edge,

Sedge =
k

4π

∫
dt dx (∂t + v∂x)φ∂xφ. (91)

Here k is exactly the same integer coefficient as in the bulk CS theory, while v is a nonuniversal velocity that depends
on the confining potential and other details. Note that the kinetic term here is “topological” in the sense that it does
not contribute to the Hamiltonian, because it is first-order in time. The second term is not topological and hence
shouldn’t be directly obtainable from the bulk theory.

The theory of the bulk and boundary is certainly invariant under “restricted” gauge transformations that vanish
at the boundary: aµ → aµ + ∂µχ with χ = 0 on the boundary. From (67) above, the boundary term vanishes if χ = 0
there. This constraint means that degrees of freedom that were previously gauge degrees of freedom now become
dynamical degrees of freedom. We will revisit this idea later.

To start, choose the gauge condition a0 = 0 as in the previous section and again use the equation of motion for a0 as
a constraint. 7 Then εijaj = 0 and we can write ai = ∂iφ. Substituting this into the bulk Chern-Simons Lagrangian

S = − k

4π

∫
εijai∂0aj d

2x dt = − k

4π

∫
(∂xφ∂0∂yφ− ∂yφ∂0∂xφ) d2x dt

= − k

4π

∫
(∂x(φ∂0∂yφ)− ∂y(φ∂0∂xφ)) d2x dt

= − k

4π

∫
(∇× v)z d

2x dt = − k

4π

∫
v · dl dt, (92)

where v is the vector field

v = (φ∂0∂xφ, φ∂0∂yφ). (93)

(You might wonder why this doesn’t let us transform the action simply to zero in the case of the torus studied in the
previous section. The reason is that using Stokes’s theorem in the second line, we have assumed the disk topology–
since the torus has nontrivial topology, we are not allowed to use Stokes’s theorem to obtain zero, cf. “Preliminaries”
lecture notes.) So at the boundary, which we will assume to run along x for compactness, the resulting action is, after
an integration by parts,

Sedge =
k

4π

∫
∂tφ∂xφdx dt. (94)

We’re almost done–this predicts a “topological” edge theory determined by the bulk physics; this edge theory is
topological in that the Hamiltonian is zero. However, in order to obtain an accurate physical description we need
to include non-universal, non-topological physics arising from the details of how the Hall droplet is confined. One
approach to this is to start from a hydrodynamical theory of the edge and then recognize one term in that theory as
Sedge above. The other term in that theory is a nonuniversal velocity term, and the combined action is

Sedge =
k

4π

∫
(∂tφ− v∂xφ) ∂xφdx dt. (95)

Here the nonuniversal parameter v clearly has units of a velocity, and in the correlation functions of the theory
discussed below indeed appears as a velocity. The Hamiltonian density is

H =
kv

4π
(∂xφ)2 (96)

Note that for the Hamiltonian to be positive definite, the product kv needs to be positive: in other words, the sign of
the velocity is determined by the bulk parameter k even thought the magnitude is not, and the edge is indeed chiral.
(The density at the edge is found from the hydrodynamical argument to be proportional to ∂xφ/(2π), so the above
interaction term corresponds to a short-ranged density-density interaction; as usual, we will neglect the differences
that arise if the long-ranged Coulomb interaction is retained instead.)

7 Here and before we are assuming that the Jacobians from our gauge-fixings and changes of variables are trivial. That this is the case is
argued in S. Elitzur et al., Nuclear Physics B 326, 108 (1989). Another nice discussion in this paper is how, for the non-Abelian case,
the bulk can be understood as providing the Wess-Zumino term that keeps the edge theory gapless.
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D. Chern-Simons theory IV: connecting edge theory to observables

We give a quick overview of how the above theory leads to detailed predictions of several edge properties. The
general approach to treating one-dimensional electronic systems via free boson theories is known as “bosonization”,
and is the subject of several books. 8. While we will not calculate the main results in detail, it turns out that there is a
close similarity between the 1-dimensional free (chiral or nonchiral) boson Lagrangian and the theory of the algebraic
phase of the XY model studied previously.

The reason such a connection exists is simple: the Euclidean version of the nonchiral version of the above free boson
theory is just the 2D Gaussian theory. However, we know from the study of the XY model that subtleties such as
the Berezinskii-Kosterlitz-Thouless transition arise when the variable appearing in the Gaussian theory is taken to
be periodic, as when it describes an angular variable in that model. One of the surprising results we found was a
power-law phase with continuously variable exponents: the correlations of spin operators Sx + iSy = exp(iθ) go as a
power-law with the coefficient depending on the prefactor of the Gaussian.

The connection between the edge theory above and physical quantities is that the electron correlation function is
represented in the bosonized theory as eikφ: effectively φ describes a single quasiparticle and k quasiparticles make up
the electron. The electron propagator in momentum space is likewise here found to have an exponent that depends on
k: there is a factor of k2 from the k’s in the electron operator, and a factor of k−1 from the quasiparticle propagator
since k appears as a coefficient in the Lagrangian. The result is

G(q, ω) ∝ (vq + ω)k−1

vq − ω
. (97)

This describes an electron density of states N(ω) ∝ |ω|k−1, and this exponent can be measured in tunneling exponents:
dI/dV ∝ V k−1. As a sanity check, the k = 1 case describes a constant density of states and the predicted conduction
is Ohmic: I ∝ V .

Experimental agreement is reasonable but hardly perfect; at ν = 1/3 the observed tunneling exponent I ∝ V α

observes α ≈ 2.7, which is far from the Ohmic value (α = 1) but reasonably close to the predicted value α = 3. The
tunneling exponent also does not appear to be perfectly constant when one is on a Hall plateau, as the theory would
predict. Other measurements include “noise” measurements that attempt to see the quasiparticle charge directly, and
in recent years interferometry measurements that try to check more subtle aspects of the theory.

In closing we comment briefly on the generalization of the above Chern-Simons and edge theories to more compli-
cated (but still Abelian) quantum Hall states. These states, as suggested by the hierarchy picture, have multiple types
of “particles”, and two particles can have nontrivial statistics whether or not they belong to the same species. These
statistics are defined by a universal integer “K matrix” that can be taken as a fundamental aspect of the topological
order in the state. (Information must also be provided about the allowed quasiparticle types.) The resulting CS
theory is

L =
1

4π
KIJaIµ∂νa

J
λ (98)

This effective theory works for all but a few proposed quantum Hall states; we will discuss these exotic “non-Abelian”
quantum Hall states later.

Appendix A: Physical preliminaries

1. Landau theory of broken-symmetry phases

Most phases of matter, including solids, magnets, superconductors, superfluids, and many others, can be understood
in terms of “broken symmetry”. At high temperature, fluctuations are induced by the requirement to maximize
entropy, and these fluctuations tend to destroy order. As temperature is lowered, the energy gain from developing
order can overwhelm the entropy gain from disorder. A remarkable fact that only became clear after the solution
of the two-dimensional Ising model by Onsager in 1948 is that this energy-entropy competition can lead to a sharp
phase transition, described mathematically by a singularity in some derivative of the free energy that emerges in the
thermodynamic limit (the limit of an infinite number of degrees of freedom).

8 For example, M. Stone, Bosonization, World Scientific
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For our purposes, we need a way to describe such a breaking of symmetry mathematically. Rather than try to
describe every microscopic degree of freedom in a complicated interacting system, we will eventually follow Landau
and introduce a classical field theory in terms of some emergent or coarse-grained field that describes the type of order
we wish to study. To start, let us first consider an Ising model on a hypercubic lattice. Our microscopic description
is in terms of a discrete spin variable si = ±1 at each vertex, with the energy function

E = −J
∑
〈ij〉

sisj . (A1)

Here ij are nearest-neighbor sites and J is some interaction strength with units of energy. At temperature T = ∞,
the system is equally likely to be in any microstate. At T = 0, only two microstates occur: one with all spins up
and one with all spins down. The surprise is that, if the lattice of spins is in more than one dimension, there is a
nonzero temperature Tc, proportional to J , below which the zero-temperature description is qualitatively, but not
quantitatively correct. As an explicit example, one can construct the lattice mean-field description of the Ising model,
leading to the equation

m = tanh(zJm/(kBT ) + h) = tanh(βzJ + h), (A2)

where m = 〈si〉 is the average spin, β = 1/kBT , z is the number of nearest neighbors, h is a possible external magnetic
field (defined to include a factor β), and kB is Boltzmann’s constant; for a derivation, cf. Chaikin and Lubensky.
The behavior of this self-consistent equation changes at kBT = zJ , and the mean-field transition temperature is
Tc = zJ/kB or βc = (zJ)−1.

Physicists say that the system “breaks symmetry” below Tc and picks out a particular sign of the average spin m,
where the angle brackets denote thermal averaging. Mathematicians have more satisfactory definitions (because m
strictly speaking is always zero): one can look at either whether there is a nonzero correlation function 〈sisj〉 as i and
j become infinitely far apart, or look for a singularity in some derivative of the free energy (in a first derivative for
a first-order transition, in some higher derivative for a second-order transition). Even if m is always zero in terms of
the Boltzmann sum, physical systems do actually break symmetry, chiefly for dynamical reasons: for example, a bar
magnet of iron will in principle explore the whole phase space and flip its north and south poles, but the time it takes
to do so may be larger than the age of the universe. Hence we will mostly be content to discuss broken symmetry as
real, e.g., m 6= 0 in the Ising model, even if that is somewhat sloppy mathematically.

A powerful way to understand the broken symmetry is in terms of two symmetry groups: G, the high-temperature
symmetry group, and H, the residual symmetry group that survives in the low temperature phase. We define the
“order parameter manifold” as the quotient M = G/H, where “dividing by H” (taking cosets of H in G) means that
we identify two elements of G that differ by an element of H; note that this is not in general a group. The notion
of an “order parameter” is basic in Landau theory: it is the field we use to model all the complicated microscopic
states in terms of one, or a few, macroscopic variables. The idea of the order parameter manifold is that, for many
interesting phenomena, we do not care especially about the magnitude of the order parameter itself. We care instead
about the set of distinguishable low-temperature states at an arbitrary temperature in the ordered phase, which is
exactly M .

One reason the set M is important will become clear when we discuss topological defects in the next chapter.
Topological defects in an ordered phase can be classified using mappings from spheres in real space to the order
parameter manifold M , i.e., the homotopy groups πn(M). We will explain this result and see a number of examples;
two other reasons the manifold M is important in practice is that, since moving from one point in M to another is
näıvely a “soft” or massless fluctuation, while changing the magnitude of the order parameter is a “hard” or massive
fluctuation, using a field-theory description that involves only the degrees of freedom in M , known for historical
reasons as a “nonlinear σ-model”, is frequently useful.

Landau theory, which we will continue to discuss in the following section, is not restricted to second-order transitions
like those we have described above. Actually one of the most powerful predictions of Landau theory, questioned
theoretically in recent years, is that second-order transitions require a change of symmetry: more specifically, the
symmetry group H must be a subgroup of G or vice versa. Otherwise, Landau theory predicts a first-order phase
transition (first-order transitions are always allowed by symmetry, and can be understood simply as level crossings in
the free energy of two different phases).

2. Quantum and statistical path integrals

There are two field theories we will deal with in our treatment of broken-symmetry phases. The first is Landau-
Ginzburg theory, which can be understood as a power series and gradient expansion of the energy density in terms of
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an order parameter field. For the example of the Ising model, in zero magnetic field we can expand the energy density
in even powers of m(r):

ZLG =

∫
(Dm) e−β

∫
ddr a0+a1m

2+a2m
4+...+b0(∇m)2+.... (A3)

Here the measure of the integral can be defined more precisely in Fourier space, where omitting high-wavevector
components is typically necessary for a sensible theory (in condensed matter, this makes physical sense as a “short-
distance cutoff” below which the field m is not meaningful). This is a vastly simplified version of the original problem
in at least two ways: we are assuming that the integration over the coarse-grained order parameter field m(r), and
we are not doing any microscopic calculation of the coefficients that appear in the expansion.

A remarkable fact is that the above Landau-Ginzburg theory can be not just qualitatively correct but actually
exact for some properties, such as “critical exponents” near second-order phase transitions, even without a microscopic
calculation of the coefficients. Such properties are referred to as “universal”: universal properties depend on symmetry
and dimensionality but little else. For example, the liquid-gas critical point in the phase diagram of water has the same
critical exponents as the Ising phase transition in three dimensions. As a mathematical example of where universality
comes from, the terms beyond a2 in the above energy turn out not to impact critical exponents and selected other
properties, as long as the lower-order coefficients have appropriate signs. We will study one or two examples of critical
points later, concentrating on examples where topological considerations are important.

The Landau-Ginzburg theory could have been motivated as a high-temperature expansion: we are justified in
concentrating on low powers of m because at high enough temperature the order parameter should not be too large.
An alternate field theory, the nonlinear σ-model, can be viewed as an expansion starting from zero temperature.
We will concentrate on systems in which the zero-temperature phase breaks a continuous symmetry, so that M is
a continuous manifold; this includes, for example, Heisenberg and XY magnets, in which M = S2 and M = S1

respectively, but not Ising magnets, where M is a set with two elements. For an XY magnet 9, we can label a ground
state simply by an angle θ between 0 and 2π (the order parameter has a magnitude ∆ as well, but all ground states
have the same magnitude of the order parameter by symmetry).

When the temperature is slightly increased, fluctuations of the order parameter will take place. The nonlinear σ-
model is a theory that ignores fluctuations of the order parameter magnitude but captures fluctuations in its direction,
which are lower in energy or “softer”. More precisely, the nonlinear σ-model into a symmetric space M = G/H is
defined as a path integral over an M -valued field. For the XY case above, this can be written simply in terms of a
spatially varying angle θ(r):

ZNLσM =

∫
(Dθ) e−

∫
ddr g(∇θ)2 , (A4)

where we have incorporated β into the definition of the coupling g. We will return to this model once we have said
a bit more about topological defects; it turns out that for our XY example in two spatial dimensions, the physics
depends crucially on “vortices”, and in fact shows a phase transition that would not be present if, hypothetically, the
field θ were not periodic and Eq. A4 became just the Gaussian model.

We have written both of the above field theories in a classical or Euclidean representation, where A natural question
is how the partition function integral in such a theory is related to the quantum path integral that may be familiar
from an advanced course in quantum mechanics. The easiest example of the analytic continuation to imaginary
time that connects the two types of path integrals is for the harmonic oscillator. Its partition function at a finite
temperature T is

Zharmonic ≈
∫

dx(τ) e
∫ β
0
dτ ẋ2(τ)/2m+kx2/2, (A5)

where there are periodic boundary conditions on x(τ): x(β) = x(0). A worthwhile calculation (hint: simplify the
integral by considering Fourier components of x(τ)) leads to the result

Zharmonic =
1

2 sinh(β~ω/2)
=

∞∑
n=0

e−β~ω(n+1/2), (A6)

9 We choose the example of M = U(1) ∼= SO(2) here for a reason. It turns out that, for the nonlinear σ-model to include gapless
excitations, the form of the theory becomes more complicated. For Lie groups more complicated than U(1), an additional term of
topological origin is required, leading to the Wess-Zumino-Novikov Witten model that we discuss in Section .
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where the last expression is what we would calculate from the spectrum. Now analytically continuing this calculation
from imaginary time τ gives a trace of the

Zharmonic = Tr e−βH → Tr e−itH/~ =

∫
dx0 U(x0, t;x0, 0), (A7)

where in the last step we have used the position basis to put the result in terms of matrix elements of the unitary
time evolution operator U . Now the divergence of Z at real times t = 2πn/ω, for integer n, can be simply interpreted:
at these times all the energy eigenstates that appear in an arbitrary initial condition appear with exactly the same
phases, so the state is (aside from an overall phase factor) exactly the initial state, the time evolution operator is the
identity, and the trace diverges.


