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Abstract. Phase transitions which occur at zero temperature when some non-thermal
parameter like pressure, chemical composition or magnetic field is changed are called
quantum phase transitions. They are caused by quantum fluctuations which are a
consequence of Heisenberg’s uncertainty principle. These lecture notes give a peda-
gogical introduction to quantum phase transitions. After collecting a few basic facts
about phase transitions and critical behavior we discuss the importance of quantum
mechanics and the relation between quantum and classical transitions as well as their
experimental relevance. As a primary example we then consider the Ising model in a
transverse field. We also briefly discuss quantum phase transitions in itinerant electron
systems and their connection to non-Fermi liquid behavior.

1 Introduction: From the melting of ice to quantum
criticality

When a piece of ice is taken out of the freezer, in the beginning its properties
change only slowly with increasing temperature. At 0°C, however, a drastic
change happens. The thermal motion of the water molecules becomes so strong
that it destroys the crystal structure. The ice melts, and a new phase of water
forms, the liquid phase. This process is an example for a phase transition. At the
transition temperature of 0°C the solid and the liquid phases of water coexist. A
finite amount of heat, the so-called latent heat, is necessary to transform the ice
into liquid water. Phase transitions which involve latent heat are usually called
first-order transitions.

Another well known example of a phase transition is the magnetic transition
of iron. At room temperature iron is ferromagnetic, i.e. it possesses a sponta-
neous magnetization. With increasing temperature the magnetization decreases
continuously. It vanishes at the Curie temperature of 770°C, and above this
temperature iron is paramagnetic. This is a phase transition from a ferro- to a
paramagnet. In contrast to the previous example there is no phase coexistence
at the transition temperature, the two phases rather become indistinguishable.
Consequently, there is no latent heat. This type of phase transitions are called
continuous transitions or second-order transitions. They are the result of a com-
petition between order and thermal fluctuations. When approaching the transi-
tion point the typical length and time scales of the fluctuations diverge, leading
to singularities in many physical quantities. The diverging correlation length at
a continuous phase transition was first observed in 1869 in a famous experiment
by Andrews [ﬂ] He discovered that the properties of the liquid and the vapor
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phases of carbon dioxide became indistinguishable at a temperature of about
31°C and 73 atmospheres pressure. In the vicinity of this point the carbon diox-
ide became opaque, i.e. it strongly scattered visible light, indicating that the
length scale of the density fluctuations had reached the wave length of the light.
Andrews called this special point in the phase diagram the critical point and the
strong light scattering in its vicinity the critical opalescence.

More formally one can define a phase transition as the occurrence of a singu-
larity in the thermodynamic quantities as functions of the external parameters.
Phase transitions have played, and continue to play, an essential role in shaping
our world. The large scale structure of the universe is the result of a sequence
of phase transitions during the very early stages of its development. Even our
everyday life is unimaginable without the never ending transformations of water
between ice, liquid and vapor. Understanding the properties of phase transitions
and in particular those of critical points has been a great challenge for theoret-
ical physics. More than a century has gone by from the first discoveries until a
consistent picture emerged. However, the theoretical concepts established during
this development, viz., scaling and the renormalization group @], now belong to
the central paradigms of modern physics.

In the last decade considerable attention has concentrated on a class of phase
transitions which are qualitatively very different from the examples discussed
above. These new transitions occur at zero temperature when a non-thermal
parameter like pressure, chemical composition or magnetic field is changed. The
fluctuations which destroy the long-range order in these transitions cannot be
of thermal nature since thermal fluctuations do not exist at zero temperature.
Instead, they are quantum fluctuations which are a consequence of Heisenberg’s
uncertainty principle. For this reason phase transitions at zero temperature are
called quantum phase transitions, in contrast to thermal or classical phase tran-
sitions at finite temperatures. (The justification for calling all thermal phase
transitions classical will become clear in Sec. E)

As an illustration of classical and quantum phase transitions we show the
magnetic phase diagram of the transition metal compound MnSi in Fig. m At
ambient pressure MnSi is a paramagnetic metal for temperatures larger than
T. = 30K. Below T, it orders ferromagneticallyﬂ but remains metallic. This
transition is a thermal continuous phase transition analogous to that in iron
discussed above. Applying pressure reduces the transition temperature, and at
about 14 kBar the magnetic phase vanishes. Thus, at 14 kBar MnSi undergoes
a quantum phase transition from a ferro- to a paramagnet. While this is a very
obvious quantum phase transition, its properties are rather complex due to the
interplay between the magnetic degrees of freedom and other fermionic excita-
tions (for details see [[]).

At a first glance quantum phase transitions seem to be a purely academic
problem since they occur at isolated parameter values and at zero temperature

! Actually, the ordered state is a spin spiral in the (111) direction of the crystal. Its
wavelength is very long (200 A) so that the material behaves like a ferromagnet for
most purposes.
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Fig. 1. Magnetic phase diagram of MnSi (after Ref. [E]) The peculiar behavior of the
magnetic susceptibility shown in the insets is a consequence of the interplay between
the magnetic and other fermionic degrees of freedom [H]).

which is inaccessible in an experiment. However, within the last decade it has
turned out that the opposite is true. Quantum phase transitions do have im-
portant, experimentally relevant consequences, and they are believed to provide
keys to many new and exciting phenomena in condensed matter physics, such
as the quantum Hall effects, the localization problem, non-Fermi liquid behavior
in metals or high-T, superconductivity.

These lecture notes are intended as a pedagogical introduction to quantum
phase transitions. In sectionﬂ we first collect a few basic facts about phase tran-
sitions and critical behavior. In section E we then investigate the importance of
quantum mechanics for the physics of phase transitions and the relation between
quantum and classical transitions. Section [ is devoted to a detailed analysis of
the physics in the vicinity of a quantum critical point. We then discuss two ex-
amples: In section ﬂ we consider one of the paradigmatic models in this field,
the Ising model in a transverse field, and in section H we briefly discuss quantum
phase transitions in itinerant electron systems and their connection to non-Fermi
liquid behavior.

Those readers who want to learn more details about quantum phase tran-
sitions and the methods used to study them, should consult one of the recent
review articles, e.g. Refs. @,E,ﬂ], or the excellent text book on quantum phase
transitions by Sachdev [f.
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2 Basic concepts of phase transitions and critical
behavior

In this section we briefly collect the basic concepts of continuous phase transi-
tions and critical behavior which are necessary for the later discussions. For a
detailed exposure the reader is referred to one of the text books on this subject,
e.g., those by Ma [fJ] or Goldenfeld [L]).

A continuous phase transition can usually be characterized by an order pa-
rameter, a concept first introduced by Landau [@ An order parameter is a
thermodynamic quantity that is zero in one phase (the disordered) and non-zero
and non-unique in the other (the ordered) phase. Very often the choice of an
order parameter for a particular transition is obvious as, e.g., for the ferromag-
netic transition where the total magnetization is an order parameter. Sometimes,
however, finding an appropriate order parameter is a complicated problem by
itself, e.g., for the disorder-driven localization-delocalization transition of non-
interacting electrons.

While the thermodynamic average of the order parameter is zero in the dis-
ordered phase, its fluctuations are non-zero. If the phase transition point, i.e.,
the critical point, is approached the spatial correlations of the order parameter
fluctuations become long-ranged. Close to the critical point their typical length
scale, the correlation length &, diverges as

§oc [t]7 (1)

where v is the correlation length critical exponent and ¢ is some dimensionless
measure of the distance from the critical point. If the transition occurs at a non-
zero temperature Tp, it can be defined as t = |T' — T,|/T,. The divergence of the
correlation length when approaching the transition is illustrated in Fig. E which
shows computer simulation results for the phase transition in a two-dimensional
Ising model.

In addition to the long-range correlations in space there are analogous long-
range correlations of the order parameter fluctuations in time. The typical time
scale for a decay of the fluctuations is the correlation (or equilibration) time 7.
As the critical point is approached the correlation time diverges as

Te 0 &7 oc [t (2)

where z is the dynamical critical exponent. Close to the critical point there is
no characteristic length scale other than £ and no characteristic time scale other
than TC.H As already noted by Kadanoff [E], this is the physics behind Widom’s
scaling hypothesis ], which we will now discuss.

Let us consider a classical system, characterized by its Hamiltonian

H(pi, qi) = Hyin(pi) + Hpot(g:) (3)

2 Note that a microscopic cutoff scale must be present to explain non-trivial critical
behavior, for details see, e.g., Goldenfeld [@} In a solid such a scale is, e.g., the
lattice spacing.
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Fig. 2. Snapshots of the spin configuration of a two-dimensional Ising model at different
temperatures (a black dot corresponds to spin up, an empty site means spin down).
From left to right: T'= 2T, T' = 1.31., T = Tc. The correlation length increases with
decreasing temperature and diverges at T' = T,.. Here the system fluctuates at all length
scales.

where ¢; and p; are the generalized coordinates and momenta, and Hy;, and
H,,,; are the kinetic and potential energies, respectively.ﬂ In such a system statics
and dynamics decouple, i.e., the momentum and position sums in the partition
function

7 — /Hdpie—Hkin/leT /quie_Hpot/kBT — Zkianot (4)

are completely independent from each other. The kinetic contribution to the
free energy density f = —(kgT/V)log Z will usually not display any singular-
ities, since it derives from the product of simple Gaussian integrals. Therefore
one can study phase transitions and the critical behavior using effective time-
independent theories like the classical Landau-Ginzburg-Wilson theory. In this
type of theories the free energy is expressed as a functional of the order parame-
ter M (r), which is time-independent but fluctuates in space. All other degrees of
freedom have been integrated out in the derivation of the theory starting from
a microscopic Hamiltonian. In its simplest form [ﬁ,@,@] valid, e.g., for an Ising
ferromagnet, the Landau-Ginzburg-Wilson functional @[M] reads

2

O[M] = /ddr M(r) (—% +t) M(r) +u/dd7’ M*(r) — B/ddr M(r),
z = / D[M]e~*M (5)

where B is the field conjugate to the order parameter (the magnetic field in case
of a ferromagnet).

3 Velocity dependent potentials like in the case of charged particles in an electromag-
netic field are excluded.
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Table 1. Definitions of the commonly used critical exponents in the ‘magnetic lan-
guage’, i.e., the order parameter is the magnetization m = (M), and the conjugate field
is a magnetic field B. t denotes the distance from the critical point and d is the space
dimensionality. (The exponent yp defined in (E) is related to 0 by yp =dd/(1+9).)

exponent definition conditions

specific heat ! cox |t|7 t—0,B=0
order parameter 16} m o (—t)? t — 0 from below, B =0

susceptibility ~ X o [¢]77 t—0,B=0

critical isotherm 0 B o |m|°sign(m) B—0,t=0

correlation length v o [t|7" t—0,B=0

correlation function n G(r) o |r|74F2m =0,B=0

dynamical z Te x &7 t—0,B=0

Since close to the critical point the correlation length is the only relevant
length scale, the physical properties must be unchanged, if we rescale all lengths
in the system by a common factor b, and at the same time adjust the external
parameters in such a way that the correlation length retains its old value. This
observation gives rise to the homogeneity relation for the free energy density,

f(t,B) =b"f(tb"/", Bb¥®). (6)

Here yp is another critical exponent and d is the space dimensionality. The scale
factor b is an arbitrary positive number. Analogous homogeneity relations for
other thermodynamic quantities can be obtained by differentiating the free en-
ergy. The homogeneity law ([J) was first obtained phenomenologically by Widom
[. Within the framework of the renormalization group theory [ﬂ] it can be
derived from first principles.

In addition to the critical exponents v, yp and z defined above, a number of
other exponents is in common use. They describe the dependence of the order
parameter and its correlations on the distance from the critical point and on
the field conjugate to the order parameter. The definitions of the most com-
monly used critical exponents are summarized in Table m Note that not all the
exponents defined in Table [l are independent from each other. The four thermo-
dynamic exponents «, (3,7, can all be obtained from the free energy (E) which
contains only two independent exponents. They are therefore connected by the
so-called scaling relations

2—a=20+~, 2—a=p06(0+1). (7)

Analogously, the exponents of the correlation length and correlation function are
connected by two so-called hyperscaling relations

2—a=dv, y=02-nv. (8)

Since statics and dynamics decouple in classical statistics the dynamical expo-
nent z is completely independent from all the others.
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The set of critical exponents completely characterizes the critical behavior
at a particular phase transition. One of the most remarkable features of continu-
ous phase transitions is universality, i.e., the fact that the critical exponents are
the same for entire classes of phase transitions which may occur in very different
physical systems. These classes, the so-called universality classes, are determined
only by the symmetries of the Hamiltonian and the spatial dimensionality of the
system. This implies that the critical exponents of a phase transition occurring
in nature can be determined exactly (at least in principle) by investigating any
simplistic model system belonging to the same universality class, a fact that
makes the field very attractive for theoretical physicists. The mechanism be-
hind universality is again the divergence of the correlation length. Close to the
critical point the system effectively averages over large volumes rendering the
microscopic details of the Hamiltonian unimportant.

The critical behavior at a particular transition is crucially determined by the
relevance or irrelevance of order parameter fluctuations. It turns out that fluctu-
ations become increasingly important if the spatial dimensionality of the system
is reduced. Above a certain dimension, called the upper critical dimension d,
fluctuations are irrelevant, and the critical behavior is identical to that predicted
by mean-field theory (for systems with short-range interactions and a scalar or
vector order parameter df = 4). Between d} and a second special dimension,
called the lower critical dimension d_ , a phase transition still exists but the crit-
ical behavior is different from mean-field theory. Below d_ fluctuations become
so strong that they completely suppress the ordered phase.

3 How important is quantum mechanics?

The question of to what extent quantum mechanics is important for understand-
ing a continuous phase transition is a multi-layered question. One may ask, e.g.,
whether quantum mechanics is necessary to explain the existence and the prop-
erties of the ordered phase. This question can only be decided on a case-by-case
basis, and very often quantum mechanics is essential as, e.g., for superconduc-
tors. A different question to ask would be how important quantum mechanics is
for the asymptotic behavior close to the critical point and thus for the determi-
nation of the universality class the transition belongs to.

It turns out that the latter question has a remarkably clear and simple an-
swer: Quantum mechanics does not play any role for the critical behavior if the
transition occurs at a finite temperature. It does play a role, however, at zero
temperature. In the following we will first give a simple argument explaining
these facts. To do so it is useful to distinguish fluctuations with predominantly
thermal and quantum character depending on whether their thermal energy
kpT is larger or smaller than the quantum energy scale fiw.. We have seen in
the preceeding section that the typical time scale 7. of the fluctuations diverges
as a continuous transition is approached. Correspondingly, the typical frequency
scale w. goes to zero and with it the typical energy scale

hwe o [t]V% . 9)
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Quantum fluctuations will be important as long as this typical energy scale
is larger than the thermal energy kpT. If the transition occurs at some finite
temperature T, quantum mechanics will therefore become unimportant for |¢| <
t, with the crossover distance ¢, given by

ty o< THVZ (10)

We thus find that the critical behavior asymptotically close to the transition is
entirely classical if the transition temperature 7T, is nonzero. This justifies to call
all finite-temperature phase transitions classical transitions, even if the proper-
ties of the ordered state are completely determined by quantum mechanics as is
the case, e.g., for the superconducting phase transition of mercury at T, = 4.2
K. In these cases quantum fluctuations are obviously important on microscopic
scales, while classical thermal fluctuations dominate on the macroscopic scales
that control the critical behavior. This also implies that only universal quanti-
ties like the critical exponents will be independent of quantum mechanics while
non-universal quantities like the critical temperature in general will depend on
quantum mechanics.

If, however, the transition occurs at zero temperature as a function of a non-
thermal parameter like the pressure p, the crossover distance t, equals zero since
there are no thermal fluctuations. (Note that at zero temperature the distance ¢
from the critical point cannot be defined via the reduced temperature. Instead,
one can define ¢t = |p — p¢|/pc.) Thus, at zero temperature the condition || < ¢,
is never fulfilled, and quantum mechanics will be important for the critical be-
havior. Consequently, transitions at zero temperature are called quantum phase
transitions.

Let us now generalize the homogeneity law (E) to the case of a quantum
phase transition. We consider a system characterized by a Hamiltonian H. In a
quantum problem kinetic and potential part of H in general do not commute. In
contrast to the classical partition function (@) the quantum mechanical partition
function does not factorize, i.e., statics and dynamics are always coupled. The
canonical density operator e~ /¥87T Jooks exactly like a time evolution operator
in imaginary time 7 if one identifies

1/kpT =7 = —iO/h (11)

where @ denotes the real time. This naturally leads to the introduction of an
imaginary time direction into the system. An order parameter field theory anal-
ogous to the classical Landau-Ginzburg-Wilson theory (ﬂ) therefore needs to be
formulated in terms of space and time dependent fields. The simplest example of
a quantum Landau-Ginzburg-Wilson functional, valid for, e.g., an Ising model
in a transverse field (see section [J), reads

1/ksT 92 92
@[M]:/O dT/ddrM(r,T)(—w—w—i—t)M(r,T) +

1/kpT 1/kpT
+ u/ dT/ddr M*(r,7) — B/ dT/ddT M(r,7) . (12)
0 0
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Let us note that the coupling of statics and dynamics in quantum statistical
mechanics also leads to the fact that the universality classes for quantum phase
transitions are smaller than those for classical transitions. Systems which belong
to the same classical universality class may display different quantum critical
behavior, if their dynamics differ.

The classical homogeneity law (E) for the free energy density can now easily
be adopted to the case of a quantum phase transition. At zero temperature
the imaginary time acts similarly to an additional spatial dimension since the
extension of the system in this direction is infinite. According to (E), time scales
like the zth power of a length. (In the simple example ([.d) space and time enter
the theory symmetrically leading to z = 1.) Therefore, the homogeneity law for
the free energy density at zero temperature reads

f(t,B) = b= f(pt/v Bpve) | (13)

Comparing this relation to the classical homogeneity law (ﬁ) directly shows that
a quantum phase transition in d spatial dimensions is equivalent to a classical
transition in d 4 z spatial dimensions. Thus, for a quantum phase transition
the upper critical dimension, above which mean-field critical behavior becomes
exact, is reduced by z compared to the corresponding classical transition. Note,
however, that the mapping of a quantum phase transition to the equivalent
classical transition in general leads to unusual anisotropic classical systems. Fur-
thermore, the mapping is valid for the thermodynamics only. Other properties
like the real time dynamics at finite temperatures require more careful consid-
erations (see, e.g., Ref. [{]).

Now the attentive reader may again ask: Why are quantum phase transitions
more than an academic problem? Any experiment is done at a non-zero tem-
perature where, as we have explained above, the asymptotic critical behavior is
classical. The answer is provided by the crossover condition (E) If the transition
temperature T, is very small quantum fluctuations will remain important down
to very small ¢, i.e., very close to the phase boundary. At a more technical level,
the behavior at small but non-zero temperatures is determined by the crossover
between two types of critical behavior, viz. quantum critical behavior at T' =0
and classical critical behavior at non-zero temperatures. Since the ‘extension
of the system in imaginary time direction’ is given by the inverse temperature
1/kpT the corresponding crossover scaling is equivalent to finite size scaling in
imaginary time direction. The crossover from quantum to classical behavior will
occur when the correlation time 7. reaches 1/kgT which is equivalent to the
condition ) By adding the temperature as an explicit parameter and taking
into account that in imaginary-time formalism it scales like an inverse time (E),
we can generalize the quantum homogeneity law (E) to finite temperatures,

f(t, B, T)=b" 2 f(t b /Y BbYe T b) (14)

Once the critical exponents z, v, and yp and the scaling function f are known
this relation completely determines the thermodynamic properties close to the
quantum phase transition.



10 Thomas Vojta

thermally | — -
T||disordered | ™. |Quantumcritical | .- T “.._ |Quantum critical| .-
s\\ /'t - ‘s\\\ ”)f kT N%w
,// kT }‘(")c \‘\\ (b) ,// c
()
critica thermall Ny quantum
/ uantum . y % .
@ ! ﬂisordered disordered W disordered
ordered /
0 0 @ *'

QCP order at T=0 QCP

Fig. 3. Schematic phase diagrams in the vicinity of a quantum critical point (QCP)
for situations where an ordered phase exists at finite temperatures (left) and situations
where order exists at zero temperature only (right). The solid line marks the boundary
between ordered and disordered phase. The different regions and paths (a) and (b) are
discussed in the text.

4 Quantum-critical points

We now use the general scaling picture developed in the last section to discuss the
physics in the vicinity of the quantum critical point. There are two qualitatively
different types of phase diagrams depending on the existence or non-existence of
long-range order at finite temperatures. These phase diagrams are schematically
shown in Fig. E Here p stands for the (non-thermal) parameter which tunes the
quantum phase transition. In addition to the phase boundary the phase diagrams
show a number of crossover lines where the properties of the system change
smoothly. They separate regions with different characters of the fluctuations.

The first type of phase diagrams describes situations where an ordered phase
exists at finite temperatures. As discussed in the last section classical fluctuations
will dominate in the vicinity of the phase boundary (in the hatched region in Fig.
ﬂ) According to (E) this region becomes narrower with decreasing temperature.
An experiment performed along path (a) will therefore observe a crossover from
quantum critical behavior away from the transition to classical critical behav-
ior asymptotically close to it. At very low temperatures the classical region may
become so narrow that it is actually unobservable in an experiment. In the quan-
tum disordered region (p > p., small T') the physics is dominated by quantum
fluctuations, the system essentially looks as in its quantum disordered ground
state at p > p.. In contrast, in the thermally disordered region the long-range
order is destroyed mainly by thermal fluctuations.

Between the quantum disordered and the thermally disordered regions is
the so-called quantum critical region [@], where both types of fluctuations are
important. It is located at the critical p but, somewhat counter-intuitively, at
comparatively high temperatures. Its boundaries are also determined by (E)
but in general with a prefactor different from that of the asymptotic classical
region. The physics in the quantum critical region is controlled by the quantum
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critical point: The system ’looks critical’ with respect to p (due to quantum
fluctuations) but is driven away from criticality by thermal fluctuations (i.e.,
the critical singularities are exclusively protected by the temperature T'). In an
experiment carried out along path (b) the physics will therefore be dominated
by the critical fluctuations which diverge according to the temperature scaling
at the quantum critical point.

The second type of phase diagram occurs if an ordered phase exists at zero
temperature only (as is the case for two-dimensional quantum antiferromagnets).
In this case there will be no true phase transition in any experiment. However, an
experiment along path (a) will show a very sharp crossover which becomes more
pronounced with decreasing temperature. Furthermore, the system will display
quantum critical behavior in the above-mentioned quantum critical region close
to the critical p and at higher temperatures.

5 Example: Transverse field Ising model

In this section we want to illustrate the general ideas presented in sections E and
by discussing a paradigmatic example, viz. the Ising model in a transverse field.
An experimental realization of this model can be found in the low-temperature
magnetic properties of LiHoF4. This material is an ionic crystal, and at suf-
ficiently low temperatures the only magnetic degrees of freedom are the spins
of the Holmium atoms. They have an easy axis, i.e. they prefer to point up or
down with respect to a certain crystal axis. Therefore they can be represented by
Ising spin variables. Spins at different Holmium atoms interact via a magnetic
dipole-dipole interaction. Without external magnetic field the ground state is a
fully polarized ferromagnet.ﬂ

In 1996 Bitko, Rosenbaum and Aeppli [@] measured the magnetic properties
of LiHoF, as a function of temperature and a magnetic field which was applied
perpendicular to the preferred spin orientation. The resulting phase diagram is
shown in Fig. E In order to understand this phase diagram we now consider
a minimal microscopic model for the relevant magnetic degrees of freedom in
LiHoF4, the Ising model in a transverse field. Choosing the z-axis to be the
Ising axis its Hamiltonian is given by

H=-JY 878;—h) S. (15)
(i) i

Here S? and S are the z and  components of the Holmium spin at lattice site
1, respectively. The first term in the Hamiltonian describes the ferromagnetic
interaction between the spins which we restrict to nearest neighbors for simplic-
ity. The second term is the transversal magnetic field. For zero field h = 0, the
model reduces to the well-known classical Ising model. At zero temperature all
spins are parallel. At a small but finite temperature a few spins will flip into

4 In the case of the dipole-dipole interaction the ground state configuration depends
on the geometry of the lattice. In LiHoF4 it turns out to be ferromagnetic.
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Fig. 4. Magnetic phase diagram of LiHoF, (after [@])

the opposite direction. With increasing temperature the number and size of the
flipped regions increases, reducing the total magnetization. At the critical tem-
perature (about 1.5 K for LiHoFy) the magnetization vanishes, and the system
becomes paramagnetic. The resulting transition is a continuous classical phase
transition caused by thermal fluctuations.

Let us now consider the influence of the transverse magnetic field. To do so,
it is convenient to rewrite the field term as

—hY S =-h) (S5 +5)) (16)

where S;r and S, are the spin flip operators at site ¢. From this representation
it is easy to see that the transverse field will cause spin flips. These flips are
the quantum fluctuations discussed in the preceeding sections. If the transverse
field becomes larger than some critical field k. (about 50 kOe in LiHoF4) they
will destroy the ferromagnetic long-range order in the system even at zero tem-
perature. This transition is a quantum phase transition driven exclusively by
quantum fluctuations.

For the transversal field Ising model the quantum-to-classical mapping dis-
cussed in section [ can be easily demonstrated at a microscopic level. Consider
a one-dimensional classical Ising chain with the Hamiltonian

N
Hy=—-JY S;Si . (17)
i=1
Its partition function is given by

N
N z z
Z ="Tr e*Hcl/T = Tr eJZizl S5; Si+1/T =Tr H Mi,iJrl 5 (18)
1=1
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where M is the so called transfer matrix. It can be represented as
/T e I/T JJT —2J/T g= —2J/T qa
M = o—J/T /T ) =€ (I+e S*) mexp(J/T +e S%) . (19)

Except for a multiplicative constant the partition function of the classical Ising
chain has the same form as that of a single quantum spin in a transverse field,
Hg = —h 5%, which can be written as

N
Z = Tre~Ha/Te = TyehS"/Ta = Ty [T 5"/ (M) (20)
i=1

Thus, a single quantum spin can be mapped onto a classical Ising chain. This con-
siderations can easily be generalized to a d-dimensional transversal field (quan-
tum) Ising model which can be mapped onto a (d+1)-dimensional classical Ising
model. Consequently, the dynamical exponent z must be equal to unity for the
quantum phase transitions of transverse field Ising models. Using a path integral
approach analogous to Feynman’s treatment of a single quantum particle, the
quantum Landau-Ginzburg-Wilson functional ([3) can be derived from () or
its higher-dimensional analogs.

6 Quantum phase transitions and non-Fermi liquids

In this section we want to discuss a particularly important consequence of quan-
tum phase transitions, viz. non-Fermi liquid behavior in an itinerant electron
system. In a normal metal the electrons form a Fermi liquid, a concept developed
by Landau in the 1950s [[[7]. In this state the strongly (via Coulomb potential)
interacting electrons essentially behave like almost non-interacting quasiparti-
cles with renormalized parameters (like the effective mass). This permits very
general and universal predictions for the low-temperature properties of metallic
electrons: For sufficiently low temperatures the specific heat is supposed to be
linear in the temperature, the magnetic susceptibility approaches a constant, and
the electric resistivity has the form p(T) = po + AT? (where py is the residual
resistance caused by impurities).

The Fermi liquid concept is extremely successful, it describes the vast ma-
jority of conducting materials. However, in the last years there have been exper-
imental observations that are in contradiction to the Fermi liquid picture, e.g.
in the normal phase of the high-T. superconducting materials [[§] or in heavy
fermion systems [[Ld]. These are compounds of rare-earth elements or actinides
where the quasiparticle effective mass is up to a few thousand times larger than
the electron mass.

Fig. E shows an example for such an observation, viz. the specific heat coef-
ficient C/T of the heavy-fermion system von CeCug_,Au, as a function of the
temperature T. In a Fermi liquid C/T should become constant for sufficiently
low temperatures. Instead, in Fig. E C/T shows a pronounced temperature de-
pendence. In particular, the sample with a gold concentration of z = 0.1 shows a
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Fig. 5. Specific heat coefficient C/T of CeCug—zAu, as a function of temperature T
for different gold concentration z (after [@])

logarithmic temperature dependence, C/T ~ log(1/T), over a wide temperature
range.

In order to understand these deviations from the Fermi liquid and in partic-
ular the qualitative differences between the behaviors at different z it is helpful
to relate the specific heat to the magnetic phase diagram of CeCug_,Au,, which
is shown in Fig. E Pure CeCug is a paramagnet, but by alloying with gold it can
become antiferromagnetic. The quantum phase transition is roughly at a critical
gold concentration of z. = 0.1 (and T = 0).

Let us first discuss the specific heat at the critical concentration xz, = 0.1.
A comparison with the schematic phase diagram in Fig. E shows that at this
concentration the entire experiment is done in the quantum critical region (path
(b)). When approaching the quantum critical point, i.e. with decreasing tem-
perature the antiferromagnetic fluctuations diverge. The electrons are scattered
off these fluctuations which hinders their movement and therefore increases the
effective mass of the quasiparticles. In the limit of zero temperature the effective
mass diverges and with it the specific heat coefficient C'/T.

In an experiment at a gold concentration slightly above or below the critical
concentration the system will be in the quantum critical region at high tem-
peratures. Here the specific heat agrees with that at the critical concentration.
However, with decreasing temperature the system leaves the quantum-critical
region, either towards the quantum disordered region (for z < z.) or into the
ordered phase (for > z.). In the first case there will be a crossover from the
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Fig. 6. Magnetic phase diagram of CeCug—,Au, (after [@]) I is the antiferromagnetic
phase, II the paramagnetic phase.

quantum critical behavior C'/T ~ log(1/T) to conventional Fermi liquid behav-
ior C/T = const. This can be seen for the x = 0 data in Fig. E In the opposite
case, ¢ > x. the system undergoes an antiferromagnetic phase transition at some
finite temperature, connected with a singularity in the specific heat. In Fig. ﬂ
this singularity is manifest as a pronounced shoulder.

In conclusion, the non-Fermi liquid behavior of CeCug_,Au, can be com-
pletely explained (at least qualitatively) by the antiferromagnetic quantum phase
transition at the critical gold concentration of . = 0.1. The deviations from the
Fermi liquid occur in the quantum critical region where the electrons are scat-
tered off the diverging magnetic fluctuations. Analogous considerations can be
applied to other observables, e.g. the magnetic susceptibility or the electric re-
sistivity.

7 Summary and Outlook

Quantum phase transitions are a fascinating subject in todays condensed matter
physics. They open new ways of looking at complex situations and materials
for which conventional methods like perturbation theory fail. So far, only the
simplest, and the most obvious cases have been studied in detail which leaves a
lot of interesting research for the future.

This work was supported in part by the DFG under grant Nos. Vo659/2 and
SFB393/C2 and by the NSF under grant No. DMR-98-70597.
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