Dinámica de vórtices

En el estado mixto de un superconductor de tipo II, sin defectos, con simetría de traslación, la configuración de mínima energía es un arreglo triangular periódico de vórtices.

Red de vórtices

Magnetización de equilibrio

Para $\kappa >> 1 M \sim 0 y B \sim \mu_0 H$

El rol de los defectos estructurales

B

Si hay defectos, R = 0 para $J < J_{C}$

Los defectos rompen la simetría de traslación! Hay sitios energéticamente más favorables (centros de anclaje). Si $F_{I} < F_{A}$ no se mueven.

determina J_C.

Densidad de corriente crítica: J_c Critical Current I_c (Amp) J_c (Amp/cm²) Current J_c can be huge: 2x10⁶ A/cm² Wire section able to transport 1000 Amp: NhT MgB 4.2 K 4.2 K 40 mm² 0.1 mm² 01 mm² 7 mm²

0.05 mm²

J_c en SAT

Comparación entre Nb₃Sn y MgB₂

Dinámica de vórtices

Soluciones numéricas, simulaciones

Experimento

Régimen de estado crítico • Domina la fuerza de anclaje • E (J) altamente no lineal • $f_P + J \times \phi_0 = 0$

Modelo de Bean:

1) E(J) =

2) El movimiento es instantáneo ; $t_{mov} = 0$ (<< t medición)

3) Las fluctuaciones térmicas son despreciables

- 0 si J < J_c (los vórtices están anclados)

∞ si J > J_c (los vórtices se mueven)

Η

Λ

Н

Magnetización en el modelo de Bean

Imágenes de penetración de flujo por MO

MEISSNER STATE

LOW FIELDS

BEAN-TYPE PENETRATION

Magnetización en el modelo de Bean

Algunas soluciones analíticas:

E.H. Brandt, PRB **52** (15442), 1995

Magnetización más allá del caballo esférico: factores geométricos

En ausencia de fuerzas de anclaje en volumen, la magnetización puede presentar histéresis por cuestiones geométricas (barreras de superficie)

(1), (4), and (5).

FIG. 3. Irreversible magnetization curves $-M(H_a)$ of pin-free circular disks and cylinders with aspect ratios b/a = 0.08, 0.15, 0.25, 0.5, 1, 2, 5, and ∞ in axial field (solid lines). In these type-II superconductors the irreversibility is due to a purely geometric edge barrier for flux penetration. The dashed curves are the reversible magnetization curves of the corresponding ellipsoid defined by Eqs.

Magnetización más allá del caballo esférico

Magnetización más allá del caballo esférico

FIG. 4. Magnetization curves of a thick disk with aspect ratio b/a = 0.25 for various degrees of volume pinning, $J_c = 0$, 0.25, 0.5, 1, 1.5, 2, 3, 4 in units H_{c1}/a , and for various sweep amplitudes. The inner loop belongs to the pin-free disk $(J_c=0)$, the outer loop to strongest pinning. Also shown is the reversible magnetization curve of the corresponding ellipsoid (dashed curve). All loops are symmetric, $M(-H_a) = -M(H_a)$.

En superconductores con pocos Jc baja, la magnetización reversible es comparable o mayor que la irreversible y hay que tener en cuenta ambas.

Curvas de magnetización en un monocristal de NbSe₂

Anomalías no tan anómalas

FLUX AVALANCHES

LOW TEMPERATURES

Relajación térmica

$"Jc(t)" = J(t_{exp})$

 χ_{ac} es la TF de M(t)

 2π χ'_n πh_{ac}

Susceptibilidad alterna

$M(t) \cos(nwt) d(wt)$

M(t) sin(nwt) d(wt)

Susceptibilidad AC en el régimen de Estado Crítico

Susceptibilidad alterna

H provee los vórtices, h_{ac} los mueve

Susceptibilidad alterna Ec. de movimiento para la dinámica oscilatoria para un elemento de vórtice desplazado en *u* de la posición *r*: $f_P(r,u) + - \eta du/dt + J(r,u) \times \phi_0 + f_T = 0$

H_{ac} chicos $f_{P}(r,u) = u \alpha_{L}$ Régimen lineal

 χ' alta — menor curvatura

(mayor anclaje)