## More on Bessel functions

Infinite domain, $\delta$-function normalization
Consider Bessel's equation on the domain $0<\rho<$ as $R \rightarrow \infty$. Bessel's equation, (3.75) or (3.93), says

$$
\frac{1}{\rho} \frac{d}{d \rho}\left(\rho \frac{d J_{\nu}(k \rho)}{d \rho}\right)+\left(k^{2}-\frac{\nu^{2}}{\rho^{2}}\right) J_{\nu}(k \rho)=0 .
$$

As in class, multiply this equation by $\rho J_{\nu}\left(k^{\prime} \rho\right)$ and integrate from $\rho=0$ to $R$ :

$$
\int_{0}^{R} \rho d \rho J_{\nu}\left(k^{\prime} \rho\right)\left[\frac{1}{\rho} \frac{d}{d \rho}\left(\rho \frac{d J_{\nu}(k \rho)}{d \rho}\right)+\left(k^{2}-\frac{\nu^{2}}{\rho^{2}}\right) J_{\nu}(k \rho)\right]=0
$$

Integrate the first term by parts,

$$
\int_{0}^{R} \rho d \rho\left[-\frac{d J_{\nu}\left(k^{\prime} \rho\right)}{d \rho} \frac{d J_{\nu}(k \rho)}{d \rho}+\left(k^{2}-\frac{\nu^{2}}{\rho^{2}}\right) J_{\nu}\left(k^{\prime} \rho\right) J_{\nu}(k \rho)\right]=-\left[\rho J_{\nu}\left(k^{\prime} \rho\right) \frac{d J_{\nu}(k \rho)}{d \rho}\right]_{0}^{R}
$$

Exchanging the roles of $k$ and $k^{\prime}$, and subtracting leads to

$$
\left(k^{2}-k^{\prime 2}\right) \int_{0}^{R} \rho d \rho J_{\nu}\left(k^{\prime} \rho\right) J_{\nu}(k \rho)=\left[\rho J_{\nu}(k \rho) \frac{d J_{\nu}\left(k^{\prime} \rho\right)}{d \rho}-\rho J_{\nu}\left(k^{\prime} \rho\right) \frac{d J_{\nu}(k \rho)}{d \rho}\right]_{0}^{R}
$$

As $\rho \rightarrow 0$, both terms on the right-hand side have the same leading behavior, $\left(k k^{\prime} \rho^{2}\right)^{\nu} / \Gamma(\nu)$, and so cancel for any value of $\nu$. The next-leading terms go as $\left(k^{2}-k^{2}\right) r^{2}\left(k k^{\prime} \rho^{2}\right)^{\nu}$, and so do not cancel but vanish as $\rho \rightarrow 0$ for $\nu>-1$. The surface term on the right-hand side then contains only the contribution from $\rho=R$,

$$
\begin{equation*}
\int_{0}^{R} \rho d \rho J_{\nu}\left(k^{\prime} \rho\right) J_{\nu}(k \rho)=\frac{k^{\prime} R J_{\nu}(k R) J_{\nu}^{\prime}\left(k^{\prime} R\right)-k R J_{\nu}\left(k^{\prime} R\right) J_{\nu}^{\prime}(k R)}{k^{2}-k^{\prime 2}} \tag{1a}
\end{equation*}
$$

Using recursion relations, this can also be written

$$
\begin{equation*}
\int_{0}^{R} \rho d \rho J_{\nu}\left(k^{\prime} \rho\right) J_{\nu}(k \rho)=\frac{k^{\prime} R J_{\nu}(k R) J_{\nu-1}\left(k^{\prime} R\right)-k R J_{\nu}\left(k^{\prime} R\right) J_{\nu-1}(k R)}{k^{2}-k^{\prime 2}} . \tag{1b}
\end{equation*}
$$

Although $J_{\nu}(k R)$ vanishes as $R^{-1 / 2}$ for large $R$, the presence of the factor of $R$ means we must investigate in detail the behavior of the Bessel functions at large argument.
The Bessel functions for large argument are given in (3.91),

$$
J_{\nu}(k \rho) \rightarrow \sqrt{\frac{2}{\pi k R}} \cos \left(k R-\frac{\nu \pi}{2}-\frac{\pi}{4}\right) .
$$

Making use of the trig identity $\cos \alpha \cos \beta=\frac{1}{2}[\cos (\alpha-\beta)+\cos (\alpha+\beta)]$, either (1a) or (1b) then leads to

$$
\begin{equation*}
\int_{0}^{R} \rho d \rho J_{\nu}\left(k^{\prime} \rho\right) J_{\nu}(k \rho) \rightarrow \frac{\sin \left[\left(k-k^{\prime}\right) R\right]}{\pi \sqrt{k k^{\prime}}\left(k-k^{\prime}\right)}-\frac{\cos \left[\left(k+k^{\prime}\right) R-\nu \pi\right]}{\pi \sqrt{k k^{\prime}}\left(k+k^{\prime}\right)} . \tag{2}
\end{equation*}
$$

The first term "oscillates" as $R \rightarrow \infty$ and so "averages" to zero, unless $k=k^{\prime}$, when it becomes large, behavior we expect for a $\delta$-function; the second term "averages" to zero for all $k, k^{\prime}$. In more detail, the function

$$
\delta_{\epsilon}(x)=\frac{\sin (x / \epsilon)}{\pi x}
$$

has value $\delta_{\epsilon}=1 / \epsilon \pi$ at $x=0$, oscillates rapidly outside the interval $x= \pm \epsilon \pi$, and has integral

$$
\int_{-\infty}^{\infty} d x \delta_{\epsilon}(x)=1
$$

Thus, the limit $\epsilon \rightarrow 0$ is a representation of the Dirac $\delta$-function (cf. entry [34] in the MathWorld page on $\delta$-functions, http://mathworld.wolfram.com/DeltaFunction.html). This functional form also appears in time-dependent perturbation theory in quantum mechanics, where it gives the "energy-conserving" $\delta$-function. The limit in (2) then becomes

$$
\begin{aligned}
\int_{0}^{\infty} \rho d \rho J_{\nu}\left(k^{\prime} \rho\right) J_{\nu}(k \rho)= & \frac{1}{\sqrt{k k^{\prime}}} \lim _{R \rightarrow \infty}\left[\delta_{1 / R}\left(k-k^{\prime}\right)\right. \\
& \left.-\delta_{1 / R}\left(k+k^{\prime}-\frac{1}{R}\left(\nu-\frac{1}{2}\right) \pi\right)\right]=\frac{\delta\left(k-k^{\prime}\right)}{\sqrt{k k^{\prime}}}=\frac{\delta\left(k-k^{\prime}\right)}{k} .
\end{aligned}
$$

The second term does not contribute, because the argument never vanishes. I was assigned this problem when I was a graduate student, and I have written solutions to it at various times in the past, but this version is more correct than any of those earlier attempts. The figure shows both the exact $J_{\nu}$ result of (1a/b) (red) and the cosine approximation (2) for large argument (dotted, blue) plotted as a function of $k$ for $k^{\prime}=1, R=100$, and $\nu=1$.


## Green's function

Green's function constructions always follow a similar pattern. The Green's function is a solution to $\nabla^{2} G=\nabla^{\prime 2} G=-4 \pi \delta\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right)$, with the boundary condition that $G \rightarrow 0$ as $r \rightarrow \infty$ or $r^{\prime} \rightarrow \infty$. Since the $\delta$-function vanishes almost everywhere, we can expand $G(\boldsymbol{x})$ in the modes which are solutions to $\nabla^{2} G=0$,

$$
G(\boldsymbol{x})=\sum_{m=-\infty}^{\infty} \int_{0}^{\infty} d k A_{m}(k) J_{m}(k \rho) e^{i m \phi} e^{ \pm k z}
$$

where the coefficients $A_{m}(k)$ will depend on $\rho^{\prime}, \phi^{\prime}, z^{\prime}$. We could guess more about them, but the result will follow systematically from this starting point. The Bessel function satisfies the boundary condition $G \rightarrow 0$ as $\rho \rightarrow \infty$, but for the $z$-dependence we need different expressions for the two regions $z>z^{\prime}$ and $z<z^{\prime}$ :

$$
\begin{aligned}
& G^{<}(\boldsymbol{x})=\sum_{m=-\infty}^{\infty} \int_{0}^{\infty} d k A_{m}^{<}(k) J_{m}(k \rho) e^{i m \phi} e^{+k z} \quad\left(z<z^{\prime}\right), \\
& G^{>}(\boldsymbol{x})=\sum_{m=-\infty}^{\infty} \int_{0}^{\infty} d k A_{m}^{>}(k) J_{m}(k \rho) e^{i m \phi} e^{-k z} \quad\left(z>z^{\prime}\right)
\end{aligned}
$$

Except at $\rho=\rho^{\prime}, \phi=\phi^{\prime}$, the Green's function must be continuous at $z=z^{\prime}$, and so we must have $A_{m}^{<}(k) e^{+k z^{\prime}}=A_{m}^{>}(k) e^{-k z^{\prime}}=C_{m}(k)$. This leads to the single expression

$$
G(\boldsymbol{x})=\sum_{m=-\infty}^{\infty} \int_{0}^{\infty} d k C_{m}(k) J_{m}(k \rho) e^{i m \phi} e^{-k\left(z_{>}-z_{<}\right)}
$$

where $z_{<}$and $z_{>}$are the smaller and larger of $z, z^{\prime}$. The remainder of the construction uses the $\delta$-function information, $\nabla^{2} G=-4 \pi \delta\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right)$. Integrate this equation over $z$ from $z=z^{\prime}-\epsilon$ to $z=z^{\prime}+\epsilon$ for $\epsilon \rightarrow 0$ to obtain

$$
\begin{equation*}
\int_{z^{\prime}-\epsilon}^{z^{\prime}+\epsilon} d z \nabla^{2} G=\left[\frac{\partial G}{\partial z}\right]_{z=z^{\prime}-\epsilon}^{z=z^{\prime}+\epsilon}=-4 \pi \frac{\delta\left(\rho-\rho^{\prime}\right)}{\rho} \delta\left(\phi-\phi^{\prime}\right) \tag{*}
\end{equation*}
$$

(the $\rho$ and $\phi$ derivatives produce factors of $k$ and $m$ that are finite term by term, and so those contributions vanish as $\epsilon \rightarrow 0$ ). Exchanging the roles of $k$ and $\rho$ in part ( $a$ ), we have an expansion of $\delta\left(\rho-\rho^{\prime}\right)$ in Bessel functions, and the representation of $\delta\left(\phi-\phi^{\prime}\right)$ in $e^{i m \phi}$ is elementary. Writing both sides of $(*)$ as series expansions gives

$$
\begin{aligned}
& \sum_{m=-\infty}^{\infty} \int_{0}^{\infty} d k C_{m}(k) J_{m}(k \rho) e^{i m \phi} \frac{\partial}{\partial z}\left[e^{-k\left(z_{>}-z_{<}\right)}\right]_{z=z^{\prime}-\epsilon}^{z=z^{\prime}+\epsilon} \\
&=-4 \pi \int_{0}^{\infty} k d k J_{m}(k \rho) J_{m}\left(k \rho^{\prime}\right) \sum_{m=-\infty}^{\infty} \frac{1}{2 \pi} e^{i m\left(\phi-\phi^{\prime}\right)} .
\end{aligned}
$$

Writing the derivative explicitly and identifying coefficients of $J_{m}(k \rho) e^{i m \phi}$ on left and right hand sides we obtain

$$
\begin{aligned}
C_{m}(k)\left[\frac{\partial}{\partial z} e^{-k\left(z-z^{\prime}\right)}-\frac{\partial}{\partial z} e^{-k\left(z^{\prime}-z\right)}\right]_{z=z^{\prime}} & =-2 k C_{m}(k) \\
& =-4 \pi k J_{m}\left(k \rho^{\prime}\right) \frac{1}{2 \pi} e^{-i m \phi^{\prime}}
\end{aligned}=-2 k J_{m}\left(k \rho^{\prime}\right) e^{-i m \phi^{\prime}} .
$$

Thus, $C_{m}(k)=J_{m}\left(k \rho^{\prime}\right) e^{-i m \phi^{\prime}}$, and we have completed the Bessel function representation of the Green's function for free space,

$$
\frac{1}{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|}=\sum_{m=-\infty}^{\infty} \int_{0}^{\infty} d k J_{m}(k \rho) J_{m}\left(k \rho^{\prime}\right) e^{i m\left(\phi-\phi^{\prime}\right)} e^{-k\left(z_{>}-z_{<}\right)} .
$$

In class we constructed Green's functions for the square (see also JDJ Problem 2.15) and for the volume between two spherical surfaces (see also JDJ Section 3.9); and Jackson does a different Bessel function construction in Section 3.11.

## Some Bessel function relations

Take the Green's function and evaluate for $\boldsymbol{x}^{\prime} \rightarrow 0$. On the left-hand side

$$
\frac{1}{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|}=\frac{1}{\sqrt{\rho^{2}+\rho^{\prime 2}-2 \rho \rho^{\prime} \cos \left(\phi-\phi^{\prime}\right)+\left(z-z^{\prime}\right)^{2}}} \rightarrow \frac{1}{\sqrt{\rho^{2}+z^{2}}}
$$

while, since $J_{m}(x) \sim(x / 2)^{m}$, only $m=0$ contributes to the series on the right-hand side as $\rho^{\prime} \rightarrow 0$. Thus,

$$
\int_{0}^{\infty} d k J_{0}(k \rho) e^{-k|z|}=\frac{1}{\sqrt{\rho^{2}+z^{2}}}
$$

Now, evaluate this first result at $\rho=\sqrt{\rho^{2}+\rho^{\prime 2}-2 \rho \rho^{\prime} \cos \left(\phi-\phi^{\prime}\right)}$,

$$
\frac{1}{\sqrt{\rho^{2}+\rho^{\prime 2}-2 \rho \rho^{\prime} \cos \left(\phi-\phi^{\prime}\right)+z^{2}}}=\int_{0}^{\infty} d k J_{0}\left[k \sqrt{\rho^{2}+\rho^{\prime 2}-2 \rho \rho^{\prime} \cos \left(\phi-\phi^{\prime}\right)}\right] e^{-k|z|} .
$$

But, this is also just the Green's function evaluated at $z^{\prime}=0$, but arbitrary $\rho^{\prime}$,

$$
\frac{1}{\sqrt{\rho^{2}+\rho^{\prime 2}-2 \rho \rho^{\prime} \cos \left(\phi-\phi^{\prime}\right)+z^{2}}}=\sum_{m=-\infty}^{\infty} \int_{0}^{\infty} d k J_{m}(k \rho) J_{m}\left(k \rho^{\prime}\right) e^{i m\left(\phi-\phi^{\prime}\right)} e^{-k|z|} .
$$

The integral over $k$ amounts to a Laplace transform, and the theory of Laplace transforms assures us that the transformation is unique and invertible, and so the integrands on the right-hand side must be equal:

$$
J_{0}\left[k \sqrt{\rho^{2}+\rho^{\prime 2}-2 \rho \rho^{\prime} \cos \left(\phi-\phi^{\prime}\right)}\right]=\sum_{m=-\infty}^{\infty} J_{m}(k \rho) J_{m}\left(k \rho^{\prime}\right) e^{i m\left(\phi-\phi^{\prime}\right)}
$$

Evaluate the relation at the bottom of the previous page at $k \rho=k \rho^{\prime}=x, \phi-\phi^{\prime}=0$; recall that $J_{-m}(x)=(-1)^{m} J_{m}(x)$, and

$$
\sum_{m=-\infty}^{\infty} J_{m}^{2}(x)=\left[J_{0}(x)\right]^{2}+2 \sum_{k=1}^{\infty}\left[J_{k}(x)\right]^{2}=J_{0}(0)=1
$$

Take the result and evaluate for $\phi^{\prime}=0$ in the limit $\rho^{\prime}$ becomes large. In this limit the square root becomes

$$
\sqrt{\rho^{2}+\rho^{\prime 2}-2 \rho \rho^{\prime} \cos \phi+z^{2}}=\rho^{\prime}-\rho \cos \phi+\mathcal{O}\left(\frac{\rho^{2}}{\rho^{\prime}}\right)
$$

and the large argument limit of the Bessel functions then gives

$$
\sqrt{\frac{2}{\pi k \rho^{\prime}}} \cos \left(k \rho^{\prime}-k \rho \cos \phi-\frac{\pi}{4}\right)=\sum_{m=-\infty}^{\infty} J_{m}(k \rho) \sqrt{\frac{2}{\pi k \rho^{\prime}}} \cos \left(k \rho^{\prime}-\frac{m \pi}{2}-\frac{\pi}{4}\right) e^{i m \phi}
$$

correct up to terms of order $1 / \rho^{\prime}$. Use that $\cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta$, and equate separately the coefficients of $\cos \left(k \rho^{\prime}-\frac{\pi}{4}\right)$ and $\sin \left(k \rho^{\prime}-\frac{\pi}{4}\right)$ on each side (equality must hold for all values of $\rho^{\prime}$ ),

$$
\begin{aligned}
& \cos (k \rho \cos \phi)=\sum_{m=-\infty}^{\infty} J_{m}(k \rho) \cos \left(\frac{m \pi}{2}\right) e^{i m \phi} \\
& \sin (k \rho \cos \phi)=\sum_{m=-\infty}^{\infty} J_{m}(k \rho) \sin \left(\frac{m \pi}{2}\right) e^{i m \phi}
\end{aligned}
$$

Finally, add $i$ times the second to the first,

$$
e^{i k \rho \cos \phi}=\sum_{m=-\infty}^{\infty} J_{m}(k \rho) e^{i m \frac{\pi}{2}} e^{i m \phi}
$$

Take the real and imaginary parts of the complex exponential evaluated at $k \rho=x, \phi=0$ :

$$
\begin{gathered}
\operatorname{Re}\left[\sum_{m=-\infty}^{\infty} i^{m} J_{m}(x)\right]=\sum_{k=-\infty}^{\infty}(-1)^{k} J_{2 k}(x)=J_{0}(x)+2 \sum_{k=1}^{\infty}(-1)^{k} J_{2 k}(x)=\cos x \\
\operatorname{Im}\left[\sum_{m=-\infty}^{\infty} i^{m} J_{m}(x)\right]=2 \sum_{k=0}^{\infty}(-1)^{k+1} J_{2 k+1}(x)=\sin x
\end{gathered}
$$

## Integral representation

Take the complex exponential, evaluate at $k \rho=x$, multiply by $e^{-i m \phi}$, and integrate over $\phi$ :

$$
\int_{0}^{2 \pi} \frac{d \phi}{2 \pi} e^{-i m \phi}\left[\sum_{m^{\prime}=-\infty}^{\infty} i^{m^{\prime}} J_{m^{\prime}}(x) e^{i m^{\prime} \phi}\right]=i^{m} J_{m}(x)=\int_{0}^{2 \pi} \frac{d \phi}{2 \pi} e^{i x \cos \phi-i m \phi}
$$

