Repaso de ley de Gauss y ley de Ampère.

- 1. En cada una de las siguientes distribuciones de carga:
 - a) Escribir la densidad de carga $\rho(\mathbf{r})$ para todo \mathbf{r}
 - b) Calcular el campo eléctrico, utilizando la ley de Gauss.
 - c) Calcular el potencial escalar $\phi(r)$.
 - i. Una esfera cargada uniformemente en volumen.
 - ii. Una esfera cargada uniformemente en superficie.
 - iii. Una esfera cargada en volumen con una densidad de carga
 - v. Dos planos paralelos, infinitos, cargados con densidades σ_1 y σ_2 . Considerar los casos especiales $\sigma_1 = \sigma_2$ y $\sigma_1 = -\sigma_2$.
 - vi. Un hilo cargado con densidad uniforme.
 - vii. Un cilindro infinito cargado uniformemente en volumen.
 - viii. Un cilindro infinito cargado uniformemente en superficie.
- 2. En cada una de las siguientes distribuciones de corriente:
 - a) Escribir la densidad de corriente $\mathbf{J}(\mathbf{r})$ para todo \mathbf{r} .
 - b) Utilizando transformaciones de simetría, determinar la dependencia funcional y las componentes del campo magnético.
 - c) Calcular el campo magnético mediante la ley de Ampère.
 - d) Calcular el potencial vector $\mathbf{A}(\mathbf{r})$.
 - i. Un hilo infinito por el que circula una corriente I.
 - ii. Un plano infinito con densidad de corriente superficial uniforme.
 - iii. Dos planos paralelos, infinitos, con corrientes superficiales uniformes de igual módulo y cuyas direcciones forman un ángulo α (considerar los casos particulares $\alpha=0$ y $\alpha=\pi$).
 - v. Un cilindro infinito con corriente uniforme en su interior.
 - vi. Un cilindro infinito, hueco, con densidad superficial de corriente uniforme paralela al eje del mismo.
 - vii. Un solenoide infinito con n vueltas por unidad de longitud, alimentado por una corriente I.
 - viii. Un toro de sección circular con un total de N vueltas. ¿Qué ocurre si la sección del toro es arbitraria?

- 3. Calcular, usando la ley de Biot—Savart, el campo magnético sobre el eje de una espira circular de radio a por la que fluye una corriente I. Obtener la forma aproximada del campo para puntos sobre el eje muy alejados de la espira. Calcular el momento magnético y relacionar con la expresión del campo obtenida para puntos lejanos.
- 4. Un disco de radio a, cargado con densidad superficial uniforme σ , rota con velocidad angular constante ω alrededor de su eje. Calcular el campo magnético sobre el eje y obtener su comportamiento para puntos lejanos. Por otro lado, calcular el momento magnético del disco y relacionarlo con la expresión del campo en puntos lejanos obtenida antes.
- 5. Se tienen dos hilos infinitos paralelos. Calcular la fuerza y la cupla que ejerce uno sobre el otro por unidad de longitud en los casos:
 - i. Los hilos están cargados con densidades lineales $\lambda_1=\lambda_2$ y $\lambda_1=-\lambda_2$.
 - ii. Por los hilos circulan corrientes $I_1 = I_2$ y $I_1 = -I_2$.