Ejercicio de Relatividad tipo parcial

October 31, 2017

Ejercicio: se tiene una partícula de carga q moviendose con una velocidad constante $\vec{v} = v_0 \hat{x}$ respecto del sistema laboratorio. Llamando S al sistema laboratorio y S' al sistema propio de la partícula:

- (a) Escriba el valor del cuadrivector corriente j^{μ} en los sistemas $S \vee S'$.
- (b) Calcule el cuadrivector potencial A^{μ} que se observa en S.
- (c) Utilizando los resultados del ítem anterior calcule los campos \vec{E} y \vec{B} en S.
- (d) Definiendo $\vec{r}_{\parallel} = (\vec{r} \cdot \hat{v})\hat{v}$ y $\vec{r}_{\perp} = \vec{r} \vec{r}_{\parallel}$, escriba la expresión límite de los campos \vec{E} y \vec{B} calculados en el ítem cuando $v \to c$. Exprese los campos en función de \vec{r}_{\parallel} y \vec{r}_{\perp} .
- (e) Compare la expresión obtenida en el ítem anterior con la correspondiente al campo de radiación de una partícula moviendose en una trayectoria acotada.

Resolución:

(a) En el sistema propio de la partícula, el cuadrivector corriente vendrá dado por $j'^{\mu} = cq\delta(\vec{r}')\delta^{\mu 0}$ con lo cual aplicando la transformación de Lorentz $\Lambda^{\mu}_{\nu}(-\vec{\beta})$ se obtiene que:

$$j^{\mu} = \Lambda^{\mu}_{\nu}(-\vec{\beta})j^{\nu} = (c\gamma q\delta(\vec{r} - \gamma v_0 t\hat{x}), \gamma v_0 q\delta(\vec{r} - \gamma v_0 t\hat{x}), 0, 0)$$

(b) De vuelta, en el sistema propio de la partícula, el cuadrivector potencial vendrá dado por $A'^{\mu}=(\frac{q}{r'},\vec{0})$. Aplicando la misma transformada de Lorentz a este cuadrivector, lo obtenemos en el sistema S:

$$A^{\mu} = \left(\frac{\gamma q}{[r_{\parallel}^2 + \gamma^2 (r_{\parallel} - v_0 t)^2]^{1/2}}, \frac{\gamma q v_0 \hat{x}}{[r_{\parallel}^2 + \gamma^2 (r_{\parallel} - v_0 t)^2]^{1/2}}\right)$$

(c) Utilizando las relaciones usuales entre los campos y los potenciales obtenemos que:

$$\begin{cases} \vec{E} = -\vec{\nabla}\phi - \partial_t \vec{A} = \frac{\gamma q (\vec{r} - v_0 t \hat{x})}{[r_\perp^2 + \gamma^2 (r_\parallel - v_0 t)^2]^{3/2}} \\ \vec{B} = \vec{\nabla} \times \vec{A} = \frac{\gamma q v_0 \hat{x} \times \vec{r}_\perp}{[r_\perp^2 + \gamma^2 (r_\parallel - v_0 t)^2]^{3/2}} \end{cases}$$

(d) En el límite $v_0 \to c$ se tiene que $\gamma \to \infty$. Por lo tanto en este límite, $\vec{E} \to \vec{0}$ siempre que $\vec{r}_{\parallel} \neq v_0 t$. Mientras que $\vec{E} = \vec{E}_{\perp} \to \infty$ cuando $\vec{r}_{\parallel} = v_0 t$.

Con lo cual el campo límite debe tener una pinta del estilo $\vec{E} = \vec{F}(\vec{r}_{\perp})\delta(r_{\parallel} - v_0 t)$. Para hallar \vec{F} , basta notar que para todo valor de v_0 se tiene que:

$$\int d(r_{\parallel}-v_0t)\vec{E}_{\perp} = 2\gamma q\vec{r}_{\perp}\int_0^{\infty}\frac{dy}{[r_{\perp}^2+\gamma^2y^2]^{3/2}} = 2\gamma q\vec{r}_{\perp}\frac{y}{r_{\perp}^2\sqrt{r_{\perp}^2+\gamma^2y^2}}\bigg|_0^{\infty} = \frac{2q\vec{r}_{\perp}}{r_{\perp}^2}$$

Entonces tenemos que tener que:

$$\lim_{v_0 \to c} \vec{E} = \frac{2q\vec{r}_{\perp}}{r_{\perp}^2} \delta(r_{\parallel} - v_0 t)$$

Y como $\vec{B} = \vec{v} \times \vec{E}$ para todo v_0 , entonces:

$$\lim_{v_0 \to c} \vec{B} = \frac{2qc\hat{x} \times \vec{r}_{\perp}}{r_{\parallel}^2} \delta(r_{\parallel} - v_0 t)$$

(e) Al igual que los campos de radiación, $|\vec{E}|=c|\vec{B}|$. También sucede que \vec{E} , \vec{B} y \vec{v} son mutuamente ortogonales y forman un sistema de mano derecha. Ambos decaen proporcionalmente a una distancia, sólo que estos campos van como $1/r_{\perp}$ mientras que los de radiación lo hacen como 1/r.