"It was quite the most incredible event that has ever happened to me in my life. It was almost as incredible as if you fired a 15-inch shell at a piece of tissue paper and it came back and hit you." - E. Rutherford.

1 * Función de Green

Demostrar que $G_{\pm}(\mathbf{r}) = \frac{1}{4\pi} \frac{e^{\pm i\mathbf{k}\cdot\mathbf{r}}}{r}$ son funciones de Green del operador $\bar{\nabla}^2 + k^2$.

2 Scattering de Yukawa

Considere un potencial de Yukawa dado por

$$V(r) = V_0 \frac{e^{-\alpha r}}{r}$$

donde V_0 y α son positivos.

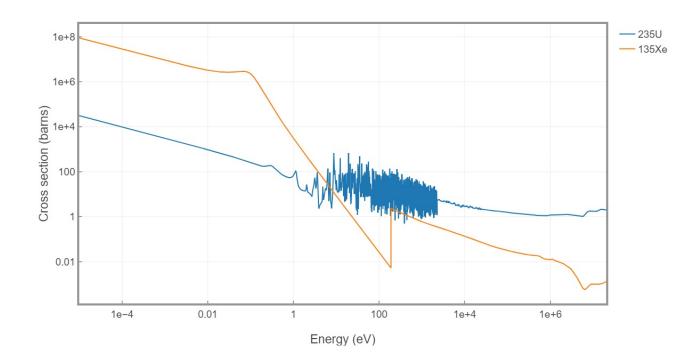
- (a) Grafique V(r) y compárelo con el potencial de Coulomb.
- (b) Calcule la amplitud de scattering correspondiente al potencial de Yukawa en la aproximación de Born. ¿Es correcto utilizar esta aproximación para el potencial de Coulomb?
- (c) Calcule la sección eficaz de Yukawa en la aproximación de Born en función del ángulo polar e intégrela para obtener la sección eficaz total.
- (d) Tome el límite $\alpha \to 0$ para la sección eficaz diferencial y muestre que se obtiene el resultado del scattering de Rutherford (clásico).

Ondas esféricas libres

Las ondas planas $\frac{e^{i\mathbf{p}\cdot\mathbf{r}/\hbar}}{(2\pi\hbar)^{3/2}}$ son autoestados del hamiltoniano de partícula libre con momento lineal definido p. Demostrar que las ondas esféricas libres

$$\varphi_{k,l,m}\left(r\right) = \sqrt{\frac{2k^2}{\pi}} j_l\left(kr\right) Y_{lm}\left(\theta,\phi\right)$$

también son autoestados del hamiltoniano de partícula libre con momento angular definido (es decir, son autoestados de \mathbf{L}^2 y L_z). $j_l(\rho) = (-1)^l \rho^l \left(\frac{1}{\rho} \frac{d}{d\rho}\right)^l \frac{\sin \rho}{\rho}$ son las funciones esféricas de Bessel.


Considere el potencial tipo esfera dura:

$$V(r) = \begin{cases} 0, & r > r_0, \\ \infty, & r < r_0 \end{cases}.$$

Calcule el phase shift para bajas energías $(kr_0 \ll 1 \rightarrow l = 0)$, la amplitud y sección eficaz de scattering. Verifique que la sección eficaz total es cuatro veces el área transversal de la esfera.

- 5 Considerar el problema de scattering de la onda p por un potencial tipo esfera dura (ver ejercicio anterior). Demostrar que el desfasaje $\delta_1(k)$ se comporta como $(kr_0)^3$ para k pequeño (por lo que es despreciable frente a $\delta_0(k)$ para bajas energías).
- 6 Considere el potencial de esfera blanda, es decir, el potencial de la esfera dura pero con un V_0 finito para $r < r_0$ y calcule la amplitud de scattering en la aproximación de Born.

- [7] Decidir si cada una de las siguientes afirmaciones es verdadera o falsa.
 - (a) Las ondas esféricas libres tienen momento lineal definido.
 - (b) La sección eficaz diferencial de scattering $\sigma\left(\theta,\phi\right)$ para un potencial central depende sólo del ángulo θ .
 - (c) Los gráficos representan la sección eficaz de absorción de neutrones para el $^{135}_{54}$ Xe y la de fisión para el $^{235}_{92}$ U medida en barns (1 barn = 10^{-24} cm²). Considerando que en los reactores de agua liviana las fisiones se producen mayoritariamente en el rango térmico ($E \lesssim 0.5 \,\mathrm{eV}$), y basándonos en estos gráficos, podemos decir entonces que la presencia de Xenón en el combustible nuclear es contraproducente para mantener la reacción en cadena.

