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Abstract 

The droplet or cluster theory of condensation is reviewed critically and extend~d. 
It is shown to imply that the condensation point is marked by a singularity of the 
thermodynamic potential as conjectured by Mayer. The singularity turns out to be an 
essential singularity at which all derivatives of the thermodynamic variables remain 
finite. The theory also yields an understanding of the uniqueness of the critical 
point (in contrast to an extended critical region or Derby-hat type of behaviour) 
and leads to relations between the various critical point singularities. 

A one-dimensional model is described with a Hamiltonian containing short-range 
many-body potentials, The exact solution of the model is sketched and shown to ex
hibit condensation and critical phenomena for suitable (fixed) potentials. The 
analysis confirms the conclusions of the cluster theory and thereby lends support 
to the validity of its underlying assumptions. 

l. Introduction 

IN THIS lecture• I will review some old ideas concerning the theory of condensation and will 
describe some new work and new conclusions that may also throw light on the nature of .the 
critical region. To introduce our topic let us pick out some of the highlights in the histori
cal development. 

• This article is the text of a lecture given at the Centennial Conference on Phase Trans
formation held at the University of Kentucky, Lexington, Kentucky, 18th-20th March 1965. It 
is reproduced here essentially in the same form as presented and later circulated privately 
except for the addition of Appendix B. Attention should be drawn to the following more 
recent articles: (a) as regards the condensation point; J.S. LANGER, Ann. Phys . (N.Y.), 41 , 108 
(1967); (b) concerning critical point singularities, B. WIDOM, J. Chem. Phys. 43, 3892,3898 
(1965); C. DOMB and D.L. HUNTER, Proc . phys. Soc. 86, 1147 (1965); L.P. KADANOFF, Physics 2, 
263 (1966); A.Z. PATASHINSKII and V.L. POKROVSKII, Soviet Phys. JETP 23, 292 (1966); (c) in 
regard to related types of one-dimensional model: L.K. RUNNELS, J. Chem. Phys. 42, 212 
(1965); D. POLAND and H. SCHERAGA, J. Chem. Phys. 45, 1464 (1966); M.E. FISHER, J. Chem. 
Phys. 45, 1469 (1966). 



Onsager by his exact solution of the two-dimensional Ising model over twenty years ago [1] 
'demonstrated clearly how a phase transition would come out of statistical mechanics alone if 
only one were clever enough to compute the partition function precisely: there is no need of 
any additional assumptions, special procedures or the like. This is the philosophy to which I 
will adhere throughout, namely, to describe the equilibrium properties of a physical system we 
need only calculate the partition function and use the formalism of statistical mehcanics. 

In 1952 Yang and Lee [2], showed how the discontinuities and related ·mathematical singular
ities which characterize the thermodynamic potentials of systems exhibiting phase transitions 
could "grow" from the completely smooth and analytic partition functions of finite systems. 
This occurs , of course, only when one proceeds to the "thermodynamic limit" in which the volume 
of the system becomes infinite while the intensive variables remain finite. The analysis of Lee 
and Yang is very general and does not therefore reveal the detailed nature of the singularitie~ 
to be expected in any particular type of phase transition. 

More recently Kac, Uhlenbeck and Hemmer [3], have shown how the old ideas of van der Waals 
give some answers to the question of the nature of the condensation singularities, at least in 
the case of a system of particles interacting with very weak, long range attractive forces (in 
addition to the ever present strong short range repulsive forces). More precisely the van der 
Waals description of the condensation of a fluid becomes rigorously correct if the limi t of in
finitely long-range and infinitely weak attractive pair interaction forces is taken after the 
thermodynamic limit [3, 4). While it adds appreciably to our understanding of phase transitions, 
this conclusion is not entirely satisfying since the systems in which one sees condensation 
phenomena experimentally are characterized, in the main, by attractive forces of quite short 
range. One suspects (and indeed the soluble one-dimensional examples tell us) that the behaviour 
of such systems may be appreciably different. 

Thi~ observation forms the point of departure of the present discussion. We will endeavour 
to discover the type of analytic behaviour which occurs in the neighbourhood of a condensation 
point and will conclude that is probably quite different, and much more subtle, than the classi
cal van der Waals description would suggest. I will also have something to say about the nature 
and uniqueness of the critical point which marks the limit of the condensation points. Our theme 
will thus be one of "hunt the singularity"! 

2. Mayer's Conjecture 

Experimentally one observes that a system of molecules interacting through short range re
pulsive forces (giving the molecules an essentially incompressible "core") and short range 
attractive forces, will undergo an abrupt transformation from a gaseous to a liquid state (or 
to a solid state at low enough temperatures) even at very low (gaseous) densities. It is this 
low density condensation phenomena occurring well below the critical temperature, which we shall 
consider. It is significant, furthermore, that the isothermal compressibility of the gas 

(1) 

is observed to remain finite as the condensation point p = Pcr is approached (see Fig. 1). The 
symbols p, p and T denote, as usual, the pressure, density and temperature. 

If the system is allowed to go into a non-equilibrium state one can also find experimentally 
a metastable "continuation" of the gaseous isotherm into a region describing a supercooled 



vapour (see Fig. 1). Although, when suitable experimental precautions are taken, this isotherm 
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FIGURE 1 

An isotherm illustrating condensation in a real system . 

can be quite prolonged and reproducible it must be stressed that the system is no longer in a 
state of complete thermodynamic equilibrium. Furthermore it ma.Y be shown rigorously that such 
nonequilibrium metastable states cannot be found in a correct statistical mechanical calculation 
based on the total partition function for the system [5]. (If they are found the calculation has 
been incorrect! ) 

As is well known the van der Waals, and equivalent theories of condensation yield an isotherm 
with a "loop" (as shown in Fig. 2) that continues analytically through the condensation region 
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FIGURE 2 

Condensation in a van der Waals system. 

and even includes an "unstable" portion with negative compressibility. The correct equilibrium 
isotherm must be found by a Maxwell, or better, Gibbs construction which yields the horizontal 



•two-phase" portion of the isotherm so •cutting off" the "metastable" and •unstable" portions 
of the loop. (This construction comes automatically out of the rigorous Kac, Uhlenbeck and 
Hemmer theory [3, 4).) 

In consequence the gaseous isotherm remains perfectly smooth and analytic as the condensa
tion point is approached: there is no singularity (in the mathematical sense of a nonanalytic 
point) on the isotherm to "warn" of the onset of condensation. On the contrary the isotherm may 
be analytically continued to larger densities to yield the original looped isotherm. (The fact 
that the van der Waals type of theory describes a "metastable" continuation of the isotherm in 
this way is sometimes considered to be an advantage of the theory; in my opinion, however, the 
comments made above indicate that this is unjustified.) 

The converse suggestion, namely, that the gaseous isotherm should exhibit some sort of mathe
matical singularity at the condensation point, which could thus be located even if the two-phase 
and liquid parts of the isotherm were unknown, was made by Ma,yer [6]. He based his arguments on 
the fundamental expansions 
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p/kT = lT(z) = .L bzzl , 

z=1 
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and on the related virial expansion 

00 

p/kT = .L i3zpZ • 

Z=1 

(2) 

(3) 

(4) 

obtained by eliminating the activity z. Ma,yer tried to analyse the form of the cluster coeffi
cients bz for large l since one knows from the theory of analytic functions that this deter
mines the nature of the singularities of the function. The radius of convergence of a power 
series such as (2) is determined by the behaviour of the coefficients for large l through 

ro = lim inf I b z I - l/ l . (5) 
l ... 00 

On the circle of convergence. lzl = r0, there must be at least one singularity z0 of the func
tion lT(z) and no other singularities in the complex plane can lie closer to the origin. Further
more if the coefficients are of uniform sign for large l the dominant singularity z0 lies on 
the positive real axis. 

In its strong form we may express Mayer's conjecture by the assertion that a closest singu
larity z = z0 of lT(z) will lie on the positive real axis and will occur at the condensation 
point z = za. In this form the conjecture is quite possibly wrong in most realistic cases, since 
accumulating evidence suggests that the bz will oscillate in sign for large l (essentially owing 
to the repulsive cores of the molecular interactions) so that the singularity z0 determining 
the circle of convergence will lie on the negative real axis (i.e. in an unphysical region). 
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I want to consider, however, the more general form of the conjecture which asserts merely that 
the function n(z), defined by the power series (2) and its analytic continuation, has, on the 
real axis, a nearest sinfularity z = z1 which occurs at the condensation point z = za. We 
might then have z1 > lz0 , so that z1 lies outside the circle of convergence of (2), but since 
the series may be analytically continued along the real axis up to z1 this does not matter. 

Of course, the van der Waals theory constitutes a counterexample to this conjecture since the 
nearest singularity on the real z axis occurs beyond the condensation point i.e. z1 > za. In 
fact the value of z1 corresponds to the first point of infinite compressibility on the analyti
cally continued isotherm (which is sometimes termed the "limit of metastability of the gaseous 
phase"). In a review of this question Katsura [7] has argued that this should be the general 
case. As we have pointed out, however, the van der Waals and similar theories cannot be taken 
as guides on this point owing to the unrealistic nature of the interactions they imply. 

Another argument sometimes used suggests that the question of a singularity at z = za in the 
activity series is an artificial one since, it is asserted, the virial series might have no 
singularity at the corresponding condensation point p = Pa so that the singularity at za could 
be of no physical significance. As an example of this the ideal Bose-Einstein gas is cited. In 
that case the activity series has a singularity at the Bose-Einstein condensation point (i.e. 
z1 = za) but the virial series is quite analytic at the corresponding density (and the isotherm 
can be continued on to higher densities). When one looks more closely, however, one finds that 
this example is also artificial because of the special shape of the isotherm near condensation. 
At fixed T this is given by 

P =Pa - A(pa - p) 2 + .. . (6) 

which means that the isothermal compressibility becomes infinite ~ the condensation point is 
approached (see Fig. 3). 
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FIGURE 3 

Condensation in an ideal Bose-Einstein fluid. 

This feature is, of course, not found in real condensation processes. Conversely one ma.v 
prove quite easily (see Appendix A) that if at fixed temperature the pressure p(p) is 
analytic in the density at p = Pa and if 



Kr< Per - ) = lim Kr(p) < oo 
P .... Per- (7) 

then the pressure p(z) is also analytic in the activity at z = Zcr· This shows that if the 
compressibility remains finite as a condensation point is approached, then a singularity in the 
activity series necessarily implies one in the virial series. Thus one cannot •escape" a singu
larity and hence it presumably has some physical significance. 

3. Surface Tension and the Droplet Model 

When we ask for the nature of the condensation singularities in a system with predominantly 
short range forces we are hampered because, apart from some examples I will describe later, 
there are no known model systems which are exact.ly soluble and exhibit condensation. It is true 
that we know rigorously that a two-dimensional Ising system with nearest neighbour forces under
goes condensation but since Onsager' s solution is restricted, in "magnetic language", to zero 
field, that is in "fluid language" to z = Zcr('I'), one does not know what happens as the condensa
tion point is approached. One may get a physical idea as to the "cause" of condensation, how
ever, oy considering a real gas or, for that matter, a lattice gas or Ising model, at low 
densities and temperatures. €vidently most configurations of the system will consist of dis
tributions of isolated molecules well separated from one another. There will also be present, 
however, clusters of two, three or more molecules bound together more-or-less tightly by the 
attractive forces but isolated, for the most part, from other clusters. Clusters of different 
sizes will be in mutual statistical equilibrium, associating and disassociating, but even fairly 
large clusters resembling "droplets" of the liquid phase will have some, generally rather small, 
chance of occurring. 

Consider the potential energy Ez of such a not too small cluster of l molecules. This may be 
decomposed into a bulk term, determined by the binding energy per molecule in the liquid or 
condensed phase, say .E0 , and a remainder Wwhich is, evidently, associated with the loss of 
binding energy at the "surface" of the cluster. Thus 

E1 = l E0 + W (8) 

where W is positive and may be taken as proportional to a "suitably defined" surface area s of 
the cluster, that is 

w ~ ws. (9) 

For a lattice gas with nearest neighbour attractive forces the surface s may be defined un
ambiguously in terms of the numbers of "unsaturated bonds" surrounding the cluster (that is 
bonds between occupied and unoccupied sites) and the surface energy density w is similarly well 
defined. More generally, however, it is difficult to define s precisely in a way that is not 
somewhat arbitrary. Nevertheless for a large enough cluster (which is not too "drawn out" like 
a piece of seaweed for example!) the surface area is faily well defined. 

Now it is clear that the surface of a cluster gives it stability; because the surface energy 
is positive the cluster will, at low temperatures, tend to stay in compact configurations with 
relatively small surfaces. This ten,iency to shrink will, speaking loosely, be opposed by the 
entropy of the cluster which might similarly be expected to be of the form 

Sz = l S0 + ws (10) 



where So is the entropy per molecule in the bulk fluid. The surface entropy density ~ is a 
measure of the number of different configurations of the cluster which have the same surface 
area. If now the temperature is lowered (or, what is essentially equivalent, if the activity 
is raised) the entropy will be less important and it becomes advW!.tageous for clusters to com
bine to form droplets and for droplets to grow further by amalgamation thereby reducing the 
total surface area and hence lqwering the total energy. Indeed if conditions are sufficiently 
favourable the droplets should continue to grow rapidly to macroscopic size. A macroscopic 
droplet represents, of course, the liquid phase and so its presence indicates that condensation 
has taken place! 

This picture of the condensation of a gas w~s put forward apparentlv quite independently by 
Frenkel, Band and Bijl some twenty-seven years ago [8-lOj. Bijl's work was the earliest, being 
contained in his thesis presented in April 1938, but it was not otherwise published. The papers 
of Frenkel and Band both appeared early in 1939 in The Journal of Chemical Physics. Although 
the ideas are quite straightforward and would have been understood many years previously, the 
stimulus in all three cases seems to have come from Mayer's work on the activity and virial 
expansions where the coefficients are determined by the famous cluster integrals. (In Mayer' s 
theory, however, the "clusters" cannot be identified directly with real physical clusters as in 
the droplet picture. This seems to be the cost of making a fully rigorous and complete ex
pansion.) 

The essential correctness of the droplet explanation of the origin of condensation in a 
system with short range forces may be seen from the discussion of the existence of spontaneous 
magnetization in the plane Ising model ferromagnet given already in 1936 by Peierls [11]. The 
ideas of the surface tension and the entropy of clusters (in this case of 'overturned spins') 
play a crucial part in his argwnent although they are not expressed explicitly in this language. 
More recently R.B. Griffiths has adapted Peierls analysis to give a fully rigorous proof that 
condensation takes place in the Ising model [12]. The nature of the singularity, however, is 
still unrevealed. Furthermore the proof uses in an apparently essential way the symmetry of the 
Ising model under a change of sign of the field. Unfortunately more general models do not have 
such an exact symmetry although experimentally the shape of coexistence curves indicates a 
fairly precise symmetry between simple liquids and their vapours. 

To clothe the droplet or cluster theory in mathematical form and to explore its consequences 
- and its difficulties - let us construct the classical configurational partition function for 
a cluster of l molecules in a domain of volume V. We have 

q z ( 13, V) = /, f dr 1 . • . f dr l exp ( - f3U z) ( 11) 

where Uz = Ez is the potential energy of interaction and where the integrations are restricted 
to configurations in which the l molecules form a cluster. For definiteness we may suppose the 
pair interaction potential ~(r) has an attractive tail of range b so that ~(r) = 0 for r~ b 
and then define a "clustering distance" c so that if Ir i - r j \ < c 'the i-th and j-th 
molecules belong to the same cluster. It is, of course, natural to take c = b. We will simplify 
further by assuming the potential has an infinite hard core and an attractive square well, that 
is 

~( r) = (X) for r < a, 

= - ~o. a, ~ r < b (12) 

= 0, r ~ b. 



In this case the energy Ez of any configuration is an integral multiple of - ~0 . Furthermore if 
b/a is not too large the binding energy in the dense phase in three dimensions will be F0 = 
~(12 ~0 ) =6q>.o since hard spheres will pack with twelve nearest neighbours. The surface energy 
W may then be defined precisely through (8). Taking w = ~o so that W = ~0 s then defines the sur
face "area" s and shows it is an integer as in the lattice case. Inserting these relations in 
(11) we may write 

qz(13, V) ( l ) Zl3Eo-13ws g , s e (13) 
s 

where the combinatorial factor g(l, s) is the number (or more correctly the volume in d(l - 1) 

dimensional configuration space) of configurations of l indistinguishable molecules with a 
fixed centre of mass which form a cluster of surface area s. (For a lattice gas, of course, the 
configurations are discrete; conversely in a more general model one would have an integration 
over a continuous range of s.) The factor V comes from the integration of one coordinate over 
the volume with the neglect of boundary effects. 

Following De Boer's treatment [13] consider now the coefficient of zN in 

[/ = e XP [ i q z ' l l 
Z=1 

00 

= 1 +-1- ~ 
11 ~ 

(14) 

Evidently this coefficient consists of the sums of products of cluster partition functions 
formed by decomposing N identical molecules into clusters in all possible ways. If we now assume 
that: 
(A) the effects of excluded volume between clusters may be neglected, 
then this coefficient is simply the total configurational partition function ~(13, V). Thus 

00 

N=o 

which is recognised as the grand partition function ~(z, 13; V) for the system. For a large 
system the pressure is given in the standard way, by 

p / kT = (1/V) ln ~( z, 13; V) 

= L (qz/V)zl 

Z=1 

provided the series converges (see below), and hence the density is 

(15) 

(16) 



00 

p = < N > Iv ::::: 2 l ( q i IV) z l . 

z=1 
(17) 

One may readily check (for example by introducing separate activity coefficients zz for clusters 
of size l) that the partial number densities of Z-clusters, which are proportional to thA pro
bability of finding an Z-cluster, are just 

(18) 

By neglecting the interaction, that is essentially the excluded volume, between clusters the 
calculation of the equation of state has thus been reduced to the calculation of the single
cluster 'internal partition function' , qz/~ One feels that at low densities the excluded volume 
effects should not be important (although nearer the critical point they might be). Nevertheless 
the assumption (A) is obviously an important and potentially far reaching one and we will return 
to it later. To proceed further, however, the cluster partition function must be analysed in 
greater detail. 

4. Cluster Partition Function and Condensation 

Even for a lattice gas a full analysis of the combinatorial factor g(Z, s) entering in (13) 

seems very difficult. This is an important theoretical task central, as we will see, to the 
study of condensation. To see where the essential difficulties lie let us put 

Gz(l3) = 2 g(l, s)e-13ws (19) 

s 

(20) 

and observe firstly that the bulk entropy per particle S0 in a large cluster may be defined by 

S 0 (13) = k lim (1/l) ln Gz(l3) . ( 21) 
l -+ 00 

The existence of the limit in (21) can be proved rigorously by a generalised subadditive argu
ment based on decomposing a cluster of l particles into two clusters of l' and l - l' + 1 
particles with one particle in common. This justifies the assumption of a bulk contribution to 
the entropy, 

Secondly notice that the surface of a cluster cannot exceed some constant multiple of the 
number of particles (as is achieved by a cluster in the form of a string of beads, for example) 
nor can it be less than some minimum surface attained by some approximately spherical cluster. 
In d dimensions we thus have 

(22) 

where a1 and a2 are appropriate constants. Since the terms in (19) are all positive the stand
dard maximum term argument shows that 



(23) 

Suppose that the maximum is attained for s = s so thats= s(l; ~) is the most probable or, 
loosely, mean surface area. Then as l becomes large 

ln Gz(~) =ln g(l, s(l; ~)] -~ws(l; ~) +O(ln l). (24) 

For the present we now avoid the full weight of the combinatorial problem by arguing that at 
low temperatures the most important configurations will be those relatively compact, roughly 
globular arrangements which have surface areas not vastly greater than the minimum possible and 
hence, for large Z, increasing more slowly than l. We thus assume 

(Bi) the mean surface area s(l, ~) satisfies 

s< z; ~)/l .. o as l -+ ro (25) 

which is almost tantemount to the meaning of any well defined "surface". By virtue of the lower 
limit in (22} we may also assume that 

(B i) s ( l; ~)I 1 n l -+ ro as l -+ ro (26) 

These two assumptions are all that is essential for the main conclusions of the theory but 
in view of the bounds (22) and what has been said it is natural to expect more specifically 
that 

s ( l, ~) "' a 0 la (l-+O'.l) (27) 

with ao = a 0 (~) and a= a(~) satisfying 

o<a<l. (28) 

In particular at low temperatures one might eXPect the exponent a to be equal to (or close to) 
the value 2/3 for d = 3 while for d = 2 it should be 1/2. These specific assumptions were in 
fact made by the early workers. It seems quite possible however, that an "effective mean sur
face area • which took account of the interference between clusters at finite densities due to 
the excluded volume might lead to a smaller exponent. Conversely the vastly larger number of 
configurations which can occur with a larger area might tend to increase the value of a [14]. 
Consequently even if we accept (27) and (28) as a convenient and concrete expression of the 
basic assumptions (25) and (26), it seems better to leave the value of the exponent a as an 
open question (but see further below). 

From (21), (24) and (25) we see that k ln g[Z, s( l)] varies as lS0 for large l so that 
the difference defines a residual or "surface entropy". In fact this entropy will be associated 
directly with the many possible configurations of a section of the surface of a cluster (large 
in itself but small compared with the total surface). It is thus natural to assume finally that 

(B iii) the residual ·entropy satisfies 

k 1 n g [ l, s ( l)] - lS0 "' <.> s ( l) (29) 

The entropy per unit of surface oo is supposed finite but it could in principle be zero. (It 



might evidently, also, depend on temperature). 

We may summarize these considerations by writing 

ln Gz(j3) == l(So(k) - !J(w - ,_ T) s(l) - T ln l + ln qo. ( 30) 

in which we have also specifically recognized the existence of higher order terms proportional 
to ln l and of order unity. A logarithmic term was not included by the earlier workers and is 
not essential to our main considerations. However many studies of related combinatorial problems 
(in particular self-avoiding random walks) have shown that the asymptotic expansion should be 
expected to have this form with T a positive number of magnitude unity or greater but depending 
principally on the dimensionality [15, 16]. 

Substituting with (30) and (20) into the expression (16) for the pressure, and adopting the 
form (27) purely for simplicity, yields finally 

co 

p/kT = 'IT ( 13. z) = qo 2 Z-T X l C1 y l ( 31) 

z=1 

where 

y = z exp [13Eo + (S0 /k)] (32) . 
and 

x =exp[-aoj3(w- c.>T)], (33) 

so that y is proportional to the activity and x essentially measures the temperature (approach• 
ing zero as T-+ 0). This completes the mathematical derivation of the theory on the basis of 
assumptions (A) and (B). Let us turn now to the consequences. 

Consider the probability of finding a cluster of size l. By (18) and (30) this is proportional 
to 

(34) 

At low temperatures x is small and at low activities (and hence low densities) y is also small. 
In these circumstances Pl deca,ys rapidly to zero as l increases (see Fig. 4). As y approaches unity, how
ever, the decay becomes slower. When y = 1, pz still decays to zero but only as exp[-const. zaJ. 
(assuming, of course, that x < 1, that is, T <Tc = w/c.>). On the other hand when y is slightly 
larger than unity the probability at first decreases because of the factor xla but finally in
creases when the exponent (ln y) l dominates the exponent -lln x I za or, more generally, s(l) 
(see Fig. 4). The large (divergent) probability of very large clusters indicates, as observed 
before, that condensation has ta.ken place. Consequently we identify y = Ya = 1 as the condensa
tion point so. that 

za = exp [- j3(E0 - TS0 )] , (35) 

while the chemical potential at condensation is 

µa(T) = - E0 - TSo + ~ .kT d ln(h 2 /2'1TmkT) (36) 



If y is only slightly greater than Ycr• that is if µ - µcr(1) is very small, the minimum value 
of Pl can be extremely small since 

l min ~ [ ao ( w - c.i T) I ( µ - µcr ( T) ]
l/(1-cr) 

(37) 

will be very large. Consider a system in equilibrium at a chemical potential just less than 
µcr(7) in which µ is suddenly increased slightly (or, equivalently, in which µcr(7) is decreased 
slightly by cooling). Evidently even if the condensation point is passed the cluster distribu
tion pz for l < zminshould scarcely have to change as the system "relaxes" to its new equi
librium. Furthermore if the primary mechanism by which a cluster can grow is through a binary 
collision with a relatively small cluster or single molecule (as will surely be the case at low 
densities) w.e see that there is a "free energy barrier" at l = zmin; a cluster with a large 
value of l less than zmin will tend to "evaporate" or break up into smaller clusters rather 
than grow further. Only occasional chance fluctuations, which will be extremely infrequent when 
µ - µcr(1) (the "degree of supercooling") is small, will carry the system over the barrier. Even 
a single cluster with l > zmin will, however, tend to grow, increasingly rapidly as l increases, 
and thus consitutes a "nucleus" of the condensed phase. (Impurities, such as dust particles, 
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FIGURE 4 

Density of clusters of size l at an activity (a) below the condensation point, 
y < 1, (b) at the condensation point, y = 1, and (c) just above 

condensation at y > 1. 

may fulfill a similar role.) We can thus understand why a rather long lived metastable state 
may be observed when a pure gas is slightly supercooled. The extreme "limit of metastability" 
might be defined, somewhat arbitrarily, by the condition zmin ~ 1, which yields 

(38) 

Evidently metastability, and in fact condensation, cannot occur if the temperature exceeds 

(39) 

which may thus be identified as the critical temperature. (Recall that CAl might depend to some 
extent on temperature). 



Apart from certain refinements and generalizations we have so far essentially reproduced the 
droplet theory of condensation (and metastability!) as set out, for example, by Frenkel in his 
book [s]. Let us now enquire into the analytic properties of Ghe theory with Mayer's conjecture 
in mind. 

5. Analytic Cliaracter and the Critical Point 

For fixed x, that is fixed temperature, the radius of convergence of the series (31) is given 
by 

Yo = 1 i m I z -T x l Cf I -1 I z = li m I x I -1 I z 1- Cf = 1 ( 40) 
z -+ 00 z -+ 00 

for all x. The last equality follows from the assumption er < 1. More generally the same result 
follows for any s(l, ~) from the assumption (Bi). Since the terms in (31) are positive the 
point Yo = 1 must be a singularity of the function. Furthermore we see that it coincides with 
the previously identified condensation point Yer= 1. For this model, therefore Mayer's con
jecture is verified: the condensation activity Zcr is a singularity of the analytic function 
p(z)/kT. ~ 

What is the behaviour of the density, the compressibility etc. at the condensation point? To 
answer this question note that these variables can be expressed in terms of the derivatives 

00 

L (41) 

Z=l 

Thus the density and compressibility are given by 

(42) 

(The energy, specific heat, etc. may similarly be expressed in terms of derivatives with re
spect to x. ) At the condensation point we find 

00 

ir;n)(~) = 1T(n)(~. Zcr) = qo L zn-T xzcr. 

z=1 
Using the assumption a> 0 or more generally (B ii), it is not difficult to show that this 
series converges for all n provided only that 

x < Xe = 1, that is, T < Tc = w/ c.> • 

(43) 

(44) 

(For x > 1 the series (43) is evidently always divergent.) Thus, in particular, the com
pressibility remains finite on the condensation curve up to a temperature T = Tc which may hence 
be identified as the critical point in agreement with our previous conclusion. 

The fact that all the derivatives with respect ta z (for real z) remain finite at z = Zcr even 
though we have established that this is a singulatity of ir(z) might seem surprising at first 
sight. It merely means, however, that the singularity at z = Zcr is an essential singularity. 
(One may recall the function exp(-1/x2) for which all derivatives along the real axis vanish 



at x = 0). Evidently such a singularity can hardly be detected by direct therinodynamic measure
ments in the homogeneous phase since none of the thermodynamic functions will exhibit any in
finities or similar "anomalies" I [17] 

Since n(z) has an essential singularity at z = za it is impossible to analytically continue 
the function _t,hrough Za to find some real "metastable continuation" of the isotherm. This may 
be seen clearly if we estimate the derivatives at Za by approximating the sum in (43) by an 
integral, which is valid for x near unity. Thus for x < 1 and n > 1 - 1 we have 

and ma.king the substitution t = eza, where 

yields 

aoc.> 
e = ln x- 1 =- (T - T) 

kT c 

(45) 

(46) 

(47) 

For large n the gamma function varies as (nt)l/a. Consequently if the derivatives are used to 
construct a Taylor series expansion about za in powers of (ln z - ln Za) the coefficient of the 
n-th term will vary as (nt)<l-a)/a for large n. Since, by assumption, a is less than unity and 
since (n!)E diverges faster than sn for any s when Eis positive it follows that the Taylor 
series will never converge; that is, it has a zero radius of convergence. (For z < za and low 
enough Tit might, however, have an asymptotic character.) 

Although one cannot find a real analytical continuation of n(z) through z = za one may hope 
to construct a continuation of n(z) by passing around the singularity at Za· This task is con
sidered in Appendix B where it .. is shown that n( z) as defined by the expansion (31) extends into 
a function meromorphic in the entire complex z plane except for a cut along the real z axis from 
z = Za to oo. Across this cut the imaginary part of n(z) has a discontinuity which varies as 

n(z + ie) - n(z - ie) ~ C(z - Za) 10 -D/(z-zala• 
e , (z real) 

when z = ~ { z} -+ z a + , where C and D are constants and 

a•= a/(1 - a), ;• = (; - 1 + % a)/(1 - a). 

Evidently the discontinuity and all its derivatives vanish as z-+ za along the cut, which 
accounts for the extreme weakness of the singularity. 

(48) 

(49) 

Our analysis thus shows that the cluster model of condensation which, as we have argued, 
should be valid at low densities (and hence low temperatures) implies a singularity at the con
densation point and hence the nonexistence of a well defined real isotherm beyond condensation. 
Although one can be less confident of the correctness of the assumptions at higher temperatures 
it is of interest to pursue the consequences of the model in the vicinity of its critical point. 
We may hope to throw some light on the general theory of critical phenomena and on Mayer's well 
known hypothesis of some sort of extended critical region often referred to as the "Derby hat" 
phenomena. 



Firstly note that from (41) and (42) the critical point density will be 

00 

Pc = qo 2 Z 1-T (50) 

Z=1 

and for this to be finite we must have T > 2. From (42), (46) and (47) we see that provided 
T < 3 the compressibility at condensation diverges to infinity (as expected) like (Tc - 7)Y' 
with 

y' = ( 3 - T) I a • (51) 

(The notation y' for this exponent follows the standard scheme (18].) Evidently the nature of 
the critical point singular! ties in other variables will equally depend only on the two para
meters a and T. Thus the shape of the gaseous side of the "coexistence curve• is found to be 

(52) 

where 

f3 = (T - 2)/a , (53) 

The specific heat at constant critical density, which derives from Pa('/), diverges with an ex
ponent 

a' = 2 - (T - 1)/a (54) 

where a value a' = 0 must be interpreted as meaning a logarithmic law rather than a power law. 

The shape of the critical isotherm is given by 

Pc - P ~ (pc - p)S 

where, by putting x = 1 in (31), one easily finds 

5 = 1/(T - 2) . 

(55) 

(56) 

By a more complicated analysis one m~ also investigate the behaviour of the isotherms as the 
' critical point is approached from above at constant density Pc· One discovers tha~ the specific 

heat and compressibility exponents a and y above Tc, satisfy the symmetry relations 

a = a', y = y' . (57) 

The general appearance of the isotherms implied by the cluster model when 2 < T < 3 is 
sketched in Fig. 5. Apart from the absence of the "liquid" sections of the isotherms the overall 
behaviour is surprisingly like that of real fluids. 

Since all the critical point exponents depend on only two parameters any three of them must 
be related. Thus we find, for example [19], 

a' + 2[3 + y' = 2 (58) 

and 

y' = ~(5 - 1) . (59) 

These and other similar relations are satisfied exactly by the two-dimensional lattice gas with 



nearest neighbour interactions (Ising model) and, as far as the valu~~ are known accurately, by 
the three-dimensional model also [20]. They seem to be valid for real fluids although at Present 
the experimental data are not sufficiently precise for a stringent test. Interestingly they hold 
also for a van der Waals-like gas which may be regarded as an infinite-dimensional system. 

p 

FIGURE 5 

Isotherms following from the cluster theory of condensation showing the gaseous 
side of the coexistence curve and the critical point. 

Of course using known values for y, 5 and ~ etc. we may evaluate the parameters a and T and 
compare them with our expectations. For the plane Ising model we find from 

the values 

a= 1/5~ = 1/(y' + ~) and T = 2 + (1/5) = 2 + ~/(y' + ~) (60) 

8 
0.533 a = = 

l5 
and T = 2 

1 

15 
( 61) 

This value of a is surprisingly close to the value a=~ expected at low temperatures on naive 
geometrical grounds and tends to increase one's confidence in the underlying cluster picture. 
Presumably the difference aa = 0.033 is due to the neglected effects of excluded volume and to 
the statistical geometry of noncompact clusters. For the three-dimensional lattice gas there is 
some uncertainty due to lack of precise knowledge of the critical exponents. Present information 
is consistent with the ranges 

16 
a = = O. 640, (62) 

25 

to 

a= = 0.6153 .. , 
8 5 

(63) 
13 

T = 2 = 2. 192,,, 
26 

These values of a fall below the geometrical value a = 2/3 but only by a a~ 0. 027 to 0. 051. 
This is, however, a sure indication of the importance of the excluded volume effects since single 
cluster· geometrical factors would be expected only to increase a. The "classical" or 



van der Waals-like limit corresponds to 

2 
a = 3 and 1 

T = 2 -3 (64) 

This seems difficult to understand in a simple fashion in view of the expectation a ~ 1 for 
a~ oo, and may be an indication of a more thoroughgoing breakdown of the cluster picture in the 
critical region. 

Finally note that in all these cases we have a unique critical point rather than a critical 
region. Reference back to equation (43) and the accompanying argument shows that this follows 
quite generally from the two assumptions (B iii) that the surface entropy is proportional to the 
surface energy (~ = O would give Tc = OO), and (B ii) that the mean surface of a cluster of l 
atoms increases more rapidly than ln l. Conversely it is easy to see that if the surface entropy 
increased faster than the surface energy, the effective surface tension would be negative at all 
temperatures; small clusters would have no stability and a sharp condensation could not occur. 
Secondly suppose the surface energy and entropy increased only as fast as ln l. Then the con
vergence of the series (43), that is of then-th derivatives with respect to z at condensation, 
would depend on the order of the derivative considered. This in turn would mean °"that the 
temperatures at which a volume discontinuity appeared, at which the compressibility became in
finite, etc. would all be different. In other words the critical phenomena would take place over 
a range of different temperatures rather as suggested by Mayer. That this does not happen in 
practice is thus a reflection of the fact that the geometrical surface of a cluster of l 
particles (in two or more dimensions) increases faster than ln l (and probably as zcr with a< 1). 
A fuller description of this type of anomalous critical region will be given in the following 
sections in connection with an exactly soluble model displaying condensation to which we now 
turn. 

6. An Exactly Soluble Model 

As we have shown the cluster theory of condensation rests mainly on two assumptions: (A) that 
the interactions (in the form of excluded volume) between clusters can be neglected and (B) that 
the mean surface of a cluster has the e~pected properties and characterizes sufficiently well 
all clusters. In my opinion the second assumption is probably the more difficult one to justifY1 
To judge the validity of the first assumption we will describe a one-dimensional model in which 
the excluded volume may be rigorously taken into account. 

It is sometimes asserted that a one-dimensional model cannot display a phase transition (ex
cluding, that is, the procedure of taking some special limit after the thermodynamic limit as 
in the Kac-Uhlenbeck-Hemmer model (3)). This has only been justified, however, for systems with 
pair interactions of strictly finite range b and with similar three-body and many-body inter
actions up to some finite order; that is, all the forces vanish identically for separations 
greater than b [21]. Indeed it seems likely that a one-dimensional fluid of particles interact
ing with a pair potential decaying only as 1/rE will exhibit condensation if 1 < e < 2. This is 
suggested by the cluster argument, as we will outline, and also, as has been remarked by Kac 
[22), because the corresponding •sphericalized" lattice gas model still has a transition where
as the normal tendency of "sphericalization" seems to be to destroy transitions. At present, 
however, no such pair interaction model has been rigorously solved. We will consider instead a 
model in which the forces are of strictly finite range but many-body interactions of indefi· 
nitely great order are present. By strictly finite range we mean, as above, that if any group 



of N1 + N2 particle~ with total potential energy UN
1 

+N
2 

is separated into a group of N1 

particles and a group of N2 particles with a minimum separation R between particles in differ
ent groups exceeding b, then there is no mutual interaction, between the groups, that is 

R > b . ( 6 5) 

Explicitly we take a pair interaction potential 

u< 2 >(r) = qi 2 (r) = + ro 

a < r~b. (66) 

r ~ b 

so that the particles have a hard core of diameter a. We suppose for simplicity that the range 
satisfies 

b ::::;; 2a (67) 

so that the pair interactions arise only between nearest neighbours. In the interval a< r~ b 
the potential may be arbitrary provided it is bounded below. To define the many-body inter
actions we introduce, as in Section 3, a clustering distance c which might be taken equal to b 
although this is not necessary. Labelling the particles in sequeµce we say that pa.rticles j to 
j + k belong to the same cluster if / rj+1 - r; I ~ c, I rj+2 - rj+1 I ~ c, ... 

l rj+/c - rj+1t-1 I ~ c • The s-body potential is then taken as (s ~ 3) 

for s - 1 pairs i = 1, ... s ~ j = 1, ... s . (68) 

= 0, otherwise. 

Thus there is a constant s-body interaction energy coming into play between any succession of 
s-particles which belong to the same cluster but no interaction between particles in different 
clusters. For simplicity we will assume the q> 8 are all negative or zero (Le. the many-body 
forces are attractive). 

Consider the total energy of an (isolated) cluster of l particles. This will be 

l - 1 

Ez = 2 <J>2(ri+1 - ri) + (l - 2)q> 3 + (l - 3)qi 4 + ... + q>z . 

i=l 

Z -1 l 

= 2 <J>2(ri+1 - ri) + 2 (l + 1 - s)q> 8 • 

s=3 

(69) 



Evidently the energy per particle in an infinite cluster satisfies 

(70) 

For thermodynamic stability we must require [5] e00 > - ro or 

o:> 

~= .L (-q>s)<ro ( 71) 

s=3 

so that /cps/ must decrease faster than l/s. It should perhaps be stressed that the condition 
(71) together with the strictly finite range property (65), is sufficient to guarantee rigor
ously the existence of a limiting free energy with the usual thermodynamic properties even when 
q> s does not vanish for any s [5] . 

Now we may rewrite (69) in the form 

Z- l 

Ez = - l~ + .L q>2(ri+l - ' ri) + Wz 

i=l 

(72) 

(73) 

where the first term is recognised as a bulk energy while the surface energy is (neglecting a 
constant contribution) 

(74) 

It is easy to show that 

as l -+ oo (75) 

as expected [compare with (25)]. 

Notice at this point that if, in place of the many-body potentials, we had considered long
range pair interactions, we would have found precisely the same results (69) to (75) for the 
energy of an isolated cluster of l particles of uniform spacing d but with <l's replaced by 
cp 2 [(s - l)d]. Thus our many-body forces accurately imitate the effects of long-range pair inter
actions within a single cluster. They do not, however, reproduce the long-range attractive 
forces between different clusters that arise in the pair case; neglect of these would, of course, 
be expected to weaken any tendency towards condensation. On the other hand the repulsions, or 
excluded volume effects, between different clusters are given precisely by our potentials. 

If we accepted the arguments of the droplet theory of condensation we would conclude from 



(72) and (75) that t~ model would displa.y condensation provided that 

Wz/ln l .... oo as l .... oo. (76) 

There should then be no critical point since there is evidently no surface contribution to the 
entropy of ~-dimensional clusters (except perhaps for a constant contribution from the ends 
of the cluster). Consequently the entropy per unit surface, w would vanish and by (44) we would 
have Tc = oo. If Wz varied ~ ln l for large l we would expect the Derby-hat type of phenomena 
while if, on the other hand, 

Wz/lnZ .... o as l .... 00 (77) 

there would be no phase transition. As we will show these conclusions are confirmed in detail 
by the exact solution of the model! 

Before describing the solution note that from (73) we obtain 

q>s = Ws - 2Ws-l + Ws-2 

so that the conditions (75) and (76) become 

Sq> 8 -+ 0, as s .... 00 

and 

as s .... 00. 

respectively. For potentials decaying faster than 1/s2 no transition is thus expected. 

7. Analysis of the Model 

(78) 

(79) 

(80) 

We will sketch, without entertng into full details, the solution of the model with the 
potentials (66) to (68). As with most one-dimensional models it is advantageous to start with 
the grand partition function ~(~, z; L) for a length L and to compute its Laplace transform 

'f(~, z, s) = (81) 

which can be regarded as a generating function for all possible sets of clusters of all possible 
sizes and spacings. If we write 

J(~, s) = Le; e-sr e-~q>( r) dr (82) 

and 

(83) 

and define the generating function 



00 

H(~, z, s) = L z L e-l~~ [J(~, s)] l-1 e-~W( l) • (84) 

l=l 

which enumerates all possible single clusters with their "internal" Boltzmann factors, we can 
construct f(~, z, s) from the series 

f(~, z, s) = s-1 + s-1 Hs-1 + s-1 HK Hs-1 + s-1 HKHKH s-1 + ... (85) 

Here the first term accounts for all lengths of line with no clusters, the second term for all 
possible single clusters at all positions along the line, the third term for all pairs of 
clusters and so on. The solution of the problem is thus given formally by 

00 

f ( ~, Z , s) = S- 1 + S- 2 L [H ( ~, z , s) J m [K ( ~, s) ] m -
1 • ( 8 6 ) 

m=l 

The thermodynamic behaviour is obtained by noting, from the definition (81), that the 
abscissa of convergence, s 0 =so(~. z), of the transform f(s) determines the grand canonical 
potential since 

~p = ir(~, z) = lim (1/L) ln ::'.(~. z, L) = s0 (~, z) . 
L ... oo 

(87) 

The possibility of a phase transition may be seen immediately since, from (84) and (86), the 
breakdown of the convergence of f(s) for small 9t{s} is determined either by the 

Interior condition 

z e-~~ J(~. s) = u(~, z, s) = 1, (88) 

or by the 

Exterior condition 

H(~, z, s) K(~, s) = 1. (89) 

If, as s decreases from ro, one of these conditions is always encountered before the other there 
is no phase transition; a change over from one condition to the other will correspond to some 
sort of phase change. 

The second condition can be conveniently rewritten in terms of the "master function" 

00 

y ( ~. u) = L u l e -~ w ( l ) (90) 

z=1 

defined for lul < 1, which bears an obvious resemblance to the final form (31) of the grand 
potential in the droplet theory. In particular notice that "{(~. u) is always singular at u = 1. 
The exterior condition then becomes 

Y(~. u) = J(~, s)/K(~, s) = Q(~, s ) (91) 



where the function Q(j3, s) is easily shown to increase monotonically (and strictly) in s from 
the value Q(j3, 0) = 0. 

Since s0 is only determined implicitly by the equations it is simpler to choose s = j3p as an 
independent variable and to ask for the activity (or chemical potential or Gibbs free energy) 
as a function of 13 and s, that is, T and p. One readily finds from (88) 

ln z(j3, s) = In u(j3, s) - In J(j3, s) + j3i:D (92) 

and the equation of state is then 

v = v(j3, s) = (o/os) ln u(IJ, s) - (O/os) ln J((3, s) . (93) 

Now for small s = (3p the function u(!J, s) is determined through (91), the series (90) con
verging absolutely. As s increases u increases analytically towards unity. If the series (90) 
diverges at u = 1, that is if 

co 

=~ e -13 W ( l l = 
00 ' 

( 94) 

Z=1 

one easily sees that u(j3, s) remains less than unity for all s (i.e. all p) and there is no 
transition. If, one the other hand, Y<!3. 1 -) is finite then a transition occurs at a pressure 
i3Pa = sa determined by 

(95) 

For s ~ sa the function u has the constant value unity so that, by (92) the thermodynamic be
haviour is governed entirely by the "internal function" J(j3, s). 

We have thus found the conditions for a phase transition in our model. By studying the con
vergence of the series (94) it is bot difficult to show there is 

(a) no transition at any temperature 

Wz/ln l ~ 0 (l ~ oo) or -s 2q> 8 ~ 0 

(b) a transition at all temperatures 

Wz/ln l1 ~ oo ( l ~ oo) or -s2q> 8 ~ oo 

(c) a transition below a critical temperature 

if Wz/ln l or -s2q> 8 approach nonzero limits. 

( s ~ oo) ; (96) 

( s ~ oo) ; (97) 

(98) 

These results agree with the guesses based on the droplet theory. They may be summarized con
veniently by the formula for the critical temperature, namely, 

lim 
l ~ co 

Wz/ln l or lim -s2m 
TS • (99) 

s ~ co 

since cases (a) and (b) correspond merely to Tc =co or Tc = 0, respectively. 

The nature of the transition when it occurs depends, of course, on further details of Wz. 



From (93) the volume discontinuity at the transition is seen to be 

Av = Q'(j3, sa)/ '':{\(13, 1) (100) 

where Q' ( s) = oQ/o s > O and the derivatives of the master function are defined by 

(I) 

Y It ( 13, u) = .L z It u l e -13 It' ( l ) . (101) 

Z=1 

In case (b), which corresponds to the behaviour of surface energy exPected in two or more 
dimensions, there is always a volume discontinuity at the transition although it diminishes as 
the pressure increases. On the other hand the compressibility and all higher derivatives along 
the isotherm remain finite as the pressure increases towards Pa (since all the series (101) con
verge at u = 1). Nevertheless it is clear that the condensation point is a singular point of the 
isotherm, as Mayer conjectured although, as we would have anti·cipated, it is an essential singu
larity. This leading conclusion of the cluster theory is thus not invalidated by the full in
clusion of the excluded volume effects - at least not in this simple but rigorous model! 

The absence of a critical temperature in the case (b) stems as we mentioned it would, directly 
from the absence in the expression for the master function of any entropy factors with the same 
behaviour as Wz. We could at the cost of no longer having a model with a definite Hamiltonian, 
arbitrarily •assign" extra phase space to each cluster of l particles in such a way as to lead 
to an additional factor exP[(w'kw)Wz] in the l-th term of"!((3, u). We would then find a unique 
critical point at a temperature Tc = wl~. just as in the cluster theory except that the model 
now also describes the liquid phase. Apart from the liquid side of the coexistence curve (which 
is concave rather than convex due, essentially, to the neglect of "bubbles" in the liquid) the 
overall pattern of isotherms resembles that found in practice. In particular it is possible to 
pass continuously and smoothly from gas to liquid over the "top" of the critical point. This 
transition, however, is not fully analytic since one finds that the critical isotherm for v < vc 
is a line of essential singularity. Nothing of this is "visible", however, since all temperature 
or pressure derivatives are continuous through this isotherm! This means that in the model (no 
longer, we stress, a true Hamiltonian model) there is an absolute distinction between a gas and 
a liquid. Such a distinction does not, of course, occur with a van der Waals-like equation of 
state. The existence of some absolute difference between liquid and gas has often been con
jectured for real systems but has never been established convincingly. If the nature of·the 
transition between the states were of such an "infinite order" this is perhaps hardly surpriz
ing. I do not feel, however, that our result adds much plausibility to the speculation for real
istic models although it serves as a warning of what could happen! 

Finally let us investigate briefly the borderline case (c) where the model with a proper 
Hamiltonian does have a critical temperature. The main features follow from the observation that 
the number of derivatives (101) of the master function which remain finite at the transition 
point u = 1 depends on temperature. As soon as T drops below Tc, as defined in (99), all suffi
ciently high derivatives di verge which means that high derivatives along the isotherm are dis
continuous across a singular curve. in the (p, v) plane. However there is no volume discontinu
ity until the pressure drops to 1'c' =%Tel On the other hand the compressibility remains con
tinuous across the singular curve only down to a temperature of (2/3)Tc = (4/3)T~ below which 
point it becomes infinite as the transition is approached from the low density side. It remains 
infinite at the transition down to a temperature of (1/3)Tc = (2/3)T~ but becomes finite again 
as in a normal condensation process, at lower temperatures! One might indeed say that the 
"order• of the transition varies continuously with temperature. 



The general shape of the isothenns when 

1 
Wz = w ln l + 2(1 - "A) ln ln l, (l\ > 0), (102) 

is illustrated in Fig. 6. In this case the critical pressure is infinite while the gas side of 
the coexistence curve varies as <Tc' - 7)A when T approaches Tc' from below. It is quite 
possible, however, to have a "flat-topped" coexistence curve as suggested originally by Rice 
[23]. 

p 

v 

FIGURE 6 

Sketch of the isotherms of the exactly soluble one-dimensional model in the 
borderline case (c) when the surface energy is given by equation (102). 

This bewildering variety of peculiar possibilities is a further reflection of the arti
ficially weak nature of the surfdce energy in case (c). Such a logarithmically increasing sur
face energy can arise, I believe, only in one dimension. Geometry alone will lead to surface 
energies satisfying (97) that is condition (B ii) of Section 4, in two or more dimensions. 

The one-dimensional model can be generalized in various directions (in particular, the liquid 
and gaseous states may be treated more symmetrically) but the description of these developments 
must await another occasion. 

8. Conclusions 

My primary purpose in this lecture has been to show that the physical ideas of the droplet 
theory of condensation still deserve further exploration. The theory itself contains interesting 
and, I believe basically correct, implications regarding the nature of the condensation point 
and the critical point which do not seem to have been noticed previously. The predictions of an 
essential singularity at the condensation point, of the uniqueness of the critical point and of 
the inter-relations between the critical point singularities throw light on a number of long 
standing problems and conjectures. 

I hope by reformulating and extending the cluster theory I have exposed the most important 



problems concerning its foundations. The exactly soluble model which I described, although it 
is evidently artificial in a number of respects, lends support to the validity of the conclusions 
and underlying assumptions of the droplet theory. There seems to be a real possibility of 
establishing these foundations on a more rigorous basis. The subtle and complex possibilities 
already revealed by our analysis suggest~ that this may not be an easy task; it is, however, a 
worthwhile and important one. 
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APPENDIX A 

Proof of Theorem on Condensation Singularities 

Suppose we are given, at fixed temperature, the pressure as a function of the specific volume 
v, that is, 

p = P( v) 

and we wish to determine the grand potential 

~p = ir(ln z) 

and the density 

p = 1/v = l/v(ln z) = chr/olnz 

as functions of the activity z. We may revert (A.3) in the form 

ln z = L( v) 

and then solve formally for ir by integrating to obtain 

ir(ln z) = Jln z [l/L- 1 (ln z ')] d ln z 

Conversely from (A.3) 

1/v = ~(oP(v)/ov)(ov/o ln z) 

so that solving for the last derivative and integrating yields 

ln z - ln Za = ~ tva v'( ~: )dv' = ~[pv - PaVa -

which determines the function L(v) upto an additive constant. 

(A. 1) 

(A. 2) 

(A.3) 

(A.4) 

(A.5) 

(A.6) 

I 
11 

P< v ') dv '] , 
Va 

(A.7) 



This result ma.y be checked directly by thermodynamics since, in standard notation, 

while the chemical potential is 

= pv - Jv p(v')dv' 

since 

Recalling that ln z = 13 µ + constant shows the equivalence of (A. 9) to (A. 7). 

Now suppose that P( v) is analytic at i; = va =F 0 so that the power series 

CD 

p = Pa + .L an(v - va) n 

n=l 

(A.8) 

(A.9) 

(A. 10) 

(A. 11) 

is convergent for small enough (v - va). Substitution in (A.7) with Za = za etc. yields the con
vergent series 

00 

ln z = L(v) = ln Za + 13 .L n-l[nanva + (n - l)an_ 1](v - va)n (A. 12) 

n=1 

where ao = 0. Thus L(v) is analytic near v = va. 

Provided the coefficient of (v - va> in (A.12), namely 13a1va, doe~ not vanish, the function 
L(v) ma.y be reverted to yield v as a function of L = ln z, which is analytic in the neighbour
hood Of La = ln Za· The condition a1 ¥ 0 is equivalent to the finiteness of ov/op and hence 
of the compressibility, at va· Since va ¥ 0 the reciprocal is also analytic and consequently 
the integration in (A.5) yields n(z) as an analytic function of z near z0. 

If a1 = a2 = ... = ak-l = 0 and ak =F 0 so that the compressibility is infinite at the con
densation point one sees similarly that L- 1(ln z) is analytic in the variable (ln z - ln za)l/k 
so that n(z) has a simple branch point at z = Za· 

APPENDIX B 

Analytical Continuation of Droplet Model Grand Potential 

From (31) to (33) and (46) the grand potential, n = p/kT, for the droplet model is given by 
CD 

.L z-T e-0 la y l 1 

l=1 
y = z/za . (B. 1) 



Following van Kampen [24) we attempt to find a function f(t) such that 

lT(Z) = J~ e/- y j(t)dt . ( B. 2) 

Expanding formally in powers of y under the integral sign one finds that f(t) should satisfy 

) 

00 

e - l t f ( t ) d t = q 0 Z -T e -e l CJ • 

0 

Inverting this Laplace transform yields 

1 
f( t) = -

21T i 

for any c > 0. For 0 > 0 and 0 <CJ< 1 the integrand in (B.4) at p = c +is has the bound 

( 2 + 2)-T/2 -eJsJCJcos(lTCJ/2) ct q0 c s e e . 

Consequently f(t) is defined by (B.4) for all real t and in turn has a bound of the form 

f ( t) < Ae ct, A = A( c,CJ,T, 0). 

(B. 3) 

(B . 4) 

(B . 5) 

Since c mav be chosen less than unity the integral in (B.2) exists for ally except for y = 
9'{y} ~ 1, and, in fact, defines a function of y meromorphic in the cut plane. 

One may now re-expand (B.2) in powers of y and check that the remainder after n terms, namely 

J 
e-nt 

f( t) dt, 
et - y 

(B. 6) 

vanishes as n-+ roprovided JyJ < 1. Thus the integral (B. 2) does represent 1T(z) as defined by 
the series expansion (B. 1). Furthermore it evidently continues lT(z) to the whole z (or y) plane 
except for a cut along the real axis from z = zCJ to + oo, On the cut the real part of 1T(~) is 
obtained by taking the principal value integral in (B.2). On the other hand the discontinuity 
of the imaginary part of 1T(Z) across the cut at z = s > zCJ is given by 

1T(s + ie) - 1T(~ - ie) = 21Ti f[ln<VzCJ)], e -+ 0 . (B.7) 

To evaluate this discontinuity as ~ -+ za+ or y-+ 1 r. we use the method of steepest descents 
to perform the Laplace inversion (B.4) for small t. Making the substitution p = u/t brings the 
integrand to the form 

u-T exp[u - XuCJ], (B.8) 

where X = 0/ta is now the "large parameter". To sufficient approximation the saddle point is at 

u = u 0 = (CJX)l/(1-CJ) = (CJ0)1/(l-alt-a/(l-al. (B. 9) 

Finally changing variables again by putting u = u0(1 + iv) leaves, after removal of a constant 



factor, an integrand pf the form 

(1 + iv)-Texp{(a-1 - l)u0 [(1 + iv)a - 1 - aiv]} = exp[-%(a-l - l)u0v2J, (B. 10) 

which peaks sharply whea t-+ 0 so that u0 -+ ro. In all, we find as t-+ 0, 

[ ] ~ T" 2n /(t) = 2n/cr(l - a) (t/ae) (B. 11) 

where 

a• = a/ ( 1 - a), T• = ( T - 1 + % a) I ( 1 - a), (B. 12) 

and 

g = (1 - a)aa• el/(1-cr) . (B. 13) 
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