Teoría Avanzada de la Termodinámica – 2do cuatrimestre de 2020

Guía 8: Termodinámica de aquieros negros

- 1. Considere una estrella de masa M y radio menor a su radio de Schwarzschild, $R_s = 2GM/c^2$. Muestre que una partícula ubicada a distancia R del centro de la estrella, con $R < R_s$, no puede escapar al infinito.
- 2. Considere dos agujeros negros de masa M, inicialmente en reposo, que, debido a su atracción mutua, terminan colisionando dando lugar a un solo agujero negro de masa M'. En general se tiene $M' \leq 2M$, y la energía restante es radiada en forma de ondas gravitatorias. A partir del teorema del área, muestre que la energía radiada no puede ser mayor que el 29 % de la energía total inicial.
- 3. En relatividad general, la temperatura de un sistema en equilibrio no tiene por qué ser uniforme. Esto se conoce como el efecto Tolman. Para entenderlo de forma semi-newtoniana, consideremos un sistema aislado formado por dos subsistemas, 1 y 2, cada uno de ellos de volumen y número de partículas constantes. En el equilibrio se maximiza la entropía total $S = S_1 + S_2$, de manera que

$$dS = dS_1 + dS_2 = 0.$$

Teniendo en cuenta que $dS_i = dU_i/T_i$, donde U_i es la energía interna del subsistema i, y que $dU_2 = -dU_1$, de la ecuación de arriba se obtiene $T_1 = T_2$, es decir, la temperatura es uniforme. Ahora bien, en relatividad general la condición $dU_2 = -dU_1$ deja de ser cierta en presencia de un campo gravitatorio: por la equivalencia entre masa y energía, la energía interna U_i pesa igual que una masa U_i/c^2 , así que la conservación de la energía se expresa en la forma $dE_2 = -dE_1$, donde

$$E_i = U_i + \frac{U_i}{c^2} \phi_i$$

es la suma de la energía interna más la potencial gravitatoria (ϕ_i es el potencial gravitatorio del subsistema i). Esta descripción semi-newtoniana es válida sólo en el límite $\phi_i \ll c^2$, tomando el origen de potenciales en el infinito.

- a) Teniendo en cuenta lo anterior, calcule la relación entre T_1 y T_2 correspondiente al equilibrio térmico.
- b) La temperatura de la radiación de Hawking, $T=1/(8\pi M)$, es la que mide un observador muy lejos del agujero negro. ¿Cómo varía esta temperatura a medida que el observador se acerca al agujero negro?
- 4. La potencia radiada por un cuerpo negro a temperatura T está dada por la ley de Stefan-Boltzmann,

$$\frac{P}{A} = \sigma T^4,$$

donde A es el área del cuerpo negro y σ es la constante de Stefan-Boltzmann, cuyo valor en unidades $\hbar = c = k = 1$ es $\sigma = \pi^2/60$.

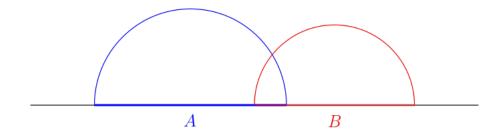
- a) Escriba la ecuación diferencial que describe la evolución en el tiempo de la masa de un agujero negro que se evapora.
- b) Calcule el tiempo que tarda en evaporarse completamente un agujero negro de masa inicial M, y estime su valor en segundos en el caso en que M es la masa del sol. Compare con la edad del universo, que es de unos 10^{17} segundos.
- 5. Supongamos que la radiación de Hawking está hecha de fotones. Los fotones son bosones ultrarrelativistas con potencial químico $\mu=0$ y degeneración de spin $g_s=2$, así que su función de partición grancanónica está dada por

$$\log \mathcal{Z} = -2 \int \frac{d^3 p d^3 q}{h^3} \log \left(1 - e^{-\beta cp} \right).$$

a) Calcule explícitamente esta integral, teniendo en cuenta que

$$\zeta(4) = \frac{1}{\Gamma(4)} \int_0^\infty dx \frac{x^3}{e^x - 1} = \frac{\pi^4}{90}.$$

- b) A partir de su resultado, obtenga la relación entre la entropía, la energía y la temperatura del gas de fotones.
- c) Considere un agujero negro a temperatura T, que en un breve intervalo de su proceso de evaporación pierde una masa dM. Muestre que se satisface la segunda ley generalizada, $dS_{BH} + dS_{\rm rad} \geq 0$, donde dS_{BH} es el incremento de entropía del agujero negro y $dS_{\rm rad}$ es la entropía de la radiación emitida.
- 6. En la figura se muestran dos regiones, A y B, del borde de AdS, y sus respectivas superficies de Ryu-Takayanagi.



A partir del dibujo, muestre que la fórmula de Ryu-Takayanagi implica la subaditividad fuerte de la entropía, $S(A \cup B) + S(A \cap B) \leq S(A) + S(B)$. No es necesario usar ninguna propiedad de la geometría de AdS.