6 Comentarios

Sobre los signos relativos entre diagramas

En QED se trabaja con campos espinoriales y ya hemos visto que hay que tener cuidado porque las contracciones de Wick de estos campos pueden dar lugar a signos relativos entre los distintos diagramas que contribuyen a la amplitud de un proceso. Recordemos que hay que mirar si la reordenación de los espinores corresponde a una permutación par o impar. Veamos unos cuantos ejemplos.

– Scattering de Bhabha: $e^+e^- \rightarrow e^+e^-$

– Scattering de Møller: $e^-e^- \rightarrow e^-e^-$

- *Scattering de Compton:* $e\gamma \rightarrow e\gamma$ (¡no hay cambio de signo!)

Sobre partículas idénticas

Recordemos también que si hay dos partículas idénticas en el estado final (por ejemplo, $\gamma\gamma$, e^+e^+ , e^-e^-) la sección eficaz total es

$$\sigma = \frac{1}{2} \int d\Omega \, \frac{d\sigma}{d\Omega} \,. \tag{6.64}$$

Sobre la simetría de *crossing* y las variables de Mandelstam

Los elementos de matriz de procesos tales como $1 + 2 \rightarrow 3 + 4$ y $1 + \overline{3} \rightarrow \overline{2} + 4$ están relacionados mediante la llamada simetría de *crossing*: la matriz *S* es la misma reemplazando los momentos convenientemente. En este caso,

$$k_1, k_2 \rightarrow p_1, p_2 \xleftarrow{crossing} k_1, -p_1 \rightarrow -k_2, p_2$$
 (6.77)

Antes de poner algunos ejemplos de procesos cuyas amplitudes están relacionadas por la simetría de *crossing*, conviene introducir las *variables de Mandelstam* que resultan muy cómodas para describir la cinemática de los procesos de dos cuerpos \rightarrow dos cuerpos y facilitan mucho la aplicación de esta simetría. Para el proceso del ejemplo anterior,

$$s = (k_1 + k_2)^2 = (p_1 + p_2)^2$$

$$t = (k_1 - p_1)^2 = (p_2 - k_2)^2 \qquad (s, t, u) \xleftarrow{crossing}_{k_2 \leftrightarrow -p_1} (t, s, u) \qquad (6.78)$$

$$u = (k_1 - p_2)^2 = (p_1 - k_2)^2$$

Es fácil comprobar que $s + t + u = \sum_i m_i^2$, la suma del cuadrado de las masas de las cuatro partículas externas. Así, en términos de variables de Mandelstam, la cinemática del proceso que hemos calculado antes en detalle, $e^+e^- \rightarrow \mu^+\mu^-$, queda

$$q^2 = s$$
, (6.79)

$$(p_1k_1) = (p_2k_2) = (m^2 + M^2 - t)/2$$
, (6.80)

$$(p_1k_2) = (p_2k_1) = (m^2 + M^2 - u)/2$$
, (6.81)

$$(p_1 p_2) = (s - 2M^2)/2$$
, (6.82)

$$(k_1k_2) = (s - 2m^2)/2 \tag{6.83}$$

que conduce a

$$\widetilde{\sum_{r_i}} \sum_{s_i} |\mathcal{M}(e^+e^- \to \mu^+\mu^-)|^2 = \frac{8e^4}{s^2} \left[\left(\frac{t}{2}\right)^2 + \left(\frac{u}{2}\right)^2 \right] .$$
(6.84)

Se dice que este proceso tiene lugar en *canal s*. La simetría de *crossing* nos permite encontrar la amplitud del proceso "cruzado" $e^+\mu^- \rightarrow e^+\mu^-$ intercambiando *s* con *t* en la expresión anterior,

$$\widetilde{\sum_{r_i}} \sum_{s_i} |\mathcal{M}(e^+ \mu^- \to e^+ \mu^-)|^2 = \frac{8e^4}{t^2} \left[\left(\frac{s}{2}\right)^2 + \left(\frac{u}{2}\right)^2 \right] , \qquad (6.85)$$

que tiene lugar en *canal t*:

Otros ejemplos, en los que contribuyen dos canales, son:

 $e^-\gamma \rightarrow e^-\gamma$

Aniquilación $e^+e^- \rightarrow \gamma\gamma$