2 Quantization of the Electromagnetic Field

2.1 Basics

Starting point of the quantization of the electromagnetic field are Maxwell's equations in the vacuum (source free):

$$
\begin{align*}
\nabla \cdot B & =0 \tag{1}\\
\nabla \cdot D & =0 \tag{2}\\
\nabla \times E & =-\frac{\partial B}{\partial t} \tag{3}\\
\nabla \times H & =\frac{\partial D}{\partial t} \tag{4}
\end{align*}
$$

where $B=\mu_{0} H, D=\varepsilon_{0} E, \mu_{0} \varepsilon_{0}=c^{-2}$
In the Coulomb gauge E and B are determined by the vector potential A :

$$
\begin{align*}
& B=\nabla \times A \tag{5}\\
& E=-\frac{\partial A}{\partial t} \tag{6}
\end{align*}
$$

with the Coulomb gauge condition

$$
\begin{equation*}
\nabla \cdot A=0 \tag{7}
\end{equation*}
$$

one finds

$$
\begin{equation*}
\nabla^{2} A(r, t)=\frac{1}{c^{2}} \frac{\partial^{2} A(r, t)}{\partial^{2} t} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla^{2} E(r, t)=\frac{1}{c^{2}} \frac{\partial^{2} E(r, t)}{\partial^{2} t} \tag{9}
\end{equation*}
$$

$\left(\nabla \times(\nabla \times E)=\nabla(\nabla \cdot E)-\nabla^{2} E!\right)$
The function $A(r, t)$ can be decomposed as

$$
\begin{equation*}
A(r, t)=\sum_{k} c_{k} u_{k}(r) \widetilde{a}_{k}(t)+c_{k}^{*} u_{k}^{*}(r) \widetilde{a}_{k}^{*}(t) \tag{10}
\end{equation*}
$$

or with some convenient normalization (such that the $a_{k}(t)$ become dimensionless):

$$
\begin{equation*}
A(r, t)=-i \sum_{k} \sqrt{\frac{\hbar}{2 \omega_{k} \varepsilon_{0}}}\left[u_{k}(r) a_{k}(t)+u_{k}^{*}(r) a_{k}^{*}(t)\right] \tag{11}
\end{equation*}
$$

Plugging this into the wave equation for $A(r, t)$ gives:

$$
\begin{align*}
{\left[\nabla^{2}+\omega_{k}^{2} / c^{2}\right] u_{k}(r) } & =0 \tag{12}\\
{\left[\frac{\partial^{2}}{\partial^{2} t}+\omega_{k}^{2}\right] a_{k}(t) } & =0 \tag{13}
\end{align*}
$$

with

$$
\begin{align*}
& a_{k}(t)=a_{k} e^{-i \omega_{k} t} \tag{14}\\
& a_{k}^{*}(t)=a_{k}^{*} e^{i \omega_{k} t} \tag{15}
\end{align*}
$$

one has to find solutions for $u_{k}(r)$ which can be sinusoidal (e.g. in an optical cavity) or exponential (free runnig waves).

With periodic boundary conditons

$$
\begin{equation*}
u_{k}(r)=u_{k}(r+L \widehat{x})=u_{k}(r+L \widehat{y})=u_{k}(r+L \widehat{z}) \tag{16}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
u_{k}(r)=\widehat{\epsilon}_{k} \frac{1}{\sqrt{V}} e^{i k_{n} r} \tag{17}
\end{equation*}
$$

or

$$
\begin{equation*}
u_{k}(r)=\widehat{\epsilon}_{k} \frac{1}{\sqrt{V / 2}} \sin \left(k_{n} r\right) \tag{18}
\end{equation*}
$$

where $V=L^{3}$ and $k_{n}=2 \pi / L\left(n_{x} \widehat{x}+n_{y} \widehat{y}+n_{z} \widehat{z}\right)$ and the polarization vector $\widehat{\epsilon}_{k}$ $\left(\widehat{\epsilon}_{k} \cdot k_{n}=0\right)$.

Therefore:

$$
\begin{align*}
& A(r, t)=-i \sum_{k} \sqrt{\frac{\hbar}{2 \omega_{k} \varepsilon_{0} V}} \widehat{\epsilon}_{k}\left[a_{k} e^{-i \omega_{k} t+i k_{n} r}+c . c .\right] \tag{19}\\
& E(r, t)=\sum_{k} \sqrt{\frac{\hbar \omega_{k}}{2 \varepsilon_{0} V} \widehat{\epsilon}_{k}}\left[a_{k} e^{-i \omega_{k} t+i k_{n} r}+c . c .\right] \tag{20}\\
& H(r, t)=\frac{1}{\mu_{0}} \sum_{k} \sqrt{\frac{\hbar \omega_{k}}{2 \varepsilon_{0} V}}\left(k_{n} \times \widehat{\epsilon}_{k}\right)\left[a_{k} e^{-i \omega_{k} t+i k_{n} r}+c . c .\right] \tag{21}
\end{align*}
$$

The normalization constant

$$
\begin{equation*}
E_{0}=\sqrt{\frac{\hbar \omega_{k}}{2 \varepsilon_{0} V}} \tag{22}
\end{equation*}
$$

is the electric field per photon.
Since the a_{k}, a_{k}^{*} follow the equations of motion of an harmonic oscillator with coordinates:

$$
\begin{align*}
& q=\sqrt{\frac{\hbar}{2 m \omega}}\left(a+a^{*}\right) \tag{23}\\
& p=-i \sqrt{\frac{m \omega \hbar}{2}}\left(a-a^{*}\right) \tag{24}
\end{align*}
$$

the quantization is easily obtained by replacing the c-numbers with operators:

$$
\begin{align*}
a & \rightarrow \widehat{a} \tag{25}\\
a^{*} & \rightarrow \widehat{a}^{+} \tag{26}
\end{align*}
$$

which obey the commutation relations

$$
\begin{align*}
{\left[\widehat{a}_{m}, \widehat{a}_{n}^{+}\right] } & =\delta_{m n} \tag{27}\\
{\left[\widehat{a}_{m}, \widehat{a}_{n}\right] } & =0 \tag{28}\\
{\left[\widehat{a}_{m}^{+}, \widehat{a}_{n}^{+}\right] } & =0 \tag{29}
\end{align*}
$$

In the following the ^ above the operators is omitted for clarity.
The Hamiltonian of the quantized free electromagnetic field is thus:

$$
\begin{align*}
H & =\frac{1}{2} \int\left(\varepsilon_{0} E^{2}+\mu_{0} H^{2}\right) \tag{30}\\
& =\sum_{k} \hbar \omega_{k}\left(a_{k}^{+} a_{k}+1 / 2\right) \tag{31}
\end{align*}
$$

or with the number operator

$$
\begin{gather*}
n_{k}=a_{k}^{+} a_{k} \tag{32}\\
H=\sum_{k} \hbar \omega_{k}\left(n_{k}+1 / 2\right) \tag{33}
\end{gather*}
$$

2.2 Number States or Fock States

Number states or Fock states are eigenstates of the number operator \widehat{n}_{k} :

$$
\begin{equation*}
\widehat{n}_{k}\left|n_{k}\right\rangle=n_{k}\left|n_{k}\right\rangle \tag{34}
\end{equation*}
$$

The operators \widehat{a}_{k} and \widehat{a}_{k}^{+}are called annihilation and creation operators and have the following properties:

$$
\begin{align*}
\widehat{a}_{k}\left|n_{k}\right\rangle & =\sqrt{n_{k}}\left|n_{k}-1\right\rangle \tag{35}\\
\widehat{a}_{k}^{+}\left|n_{k}\right\rangle & =\sqrt{n_{k}+1}\left|n_{k}+1\right\rangle \tag{36}
\end{align*}
$$

Thus

$$
\begin{equation*}
\left|n_{k}\right\rangle=\frac{\left(\widehat{a}_{k}^{+}\right)^{n_{k}}}{\left(n_{k}!\right)^{1 / 2}}|0\rangle \tag{37}
\end{equation*}
$$

with the vacuum state $|0\rangle$.
The energy of a field in a Fock state $\left|n_{k}\right\rangle$ is:

$$
\begin{align*}
\left\langle n_{k}\right| H\left|n_{k}\right\rangle & =\sum_{k^{\prime}} \hbar \omega_{k^{\prime}}\left(\left\langle n_{k}\right| \widehat{a}_{k^{\prime}}^{+} \widehat{a}_{k^{\prime}}\left|n_{k}\right\rangle+1 / 2\right) \tag{38}\\
& =\hbar \omega_{k} n_{k}+H_{0} \tag{39}
\end{align*}
$$

The expectation value of the electric field of a Fock state vanishes:

$$
\begin{equation*}
\left\langle n_{k}\right| E\left|n_{k}\right\rangle=0 \tag{40}
\end{equation*}
$$

however

$$
\begin{equation*}
\left\langle n_{k}\right| E^{2}\left|n_{k}\right\rangle=\frac{\hbar \omega_{k}}{\varepsilon_{0} V}\left(n_{k}+1 / 2\right) \tag{41}
\end{equation*}
$$

There are non-zero fluctuations even for a vacuum field (vacuum fluctuations!)
A problem is the divergence of the energy for the vacuum state:

$$
\begin{equation*}
\langle 0| H|0\rangle=\sum_{k^{\prime}} \frac{1}{2} \hbar \omega_{k^{\prime}} \rightarrow \infty \tag{42}
\end{equation*}
$$

This is not a problem in practise, since experimentally only differences of energies are measured.

Some more properties of Fock states:

- Orthonormality

$$
\begin{equation*}
\langle n \mid m\rangle=\delta_{n m} \tag{43}
\end{equation*}
$$

- Completeness

$$
\begin{equation*}
\sum_{n_{k}=0}^{\infty}\left|n_{k}\right\rangle\left\langle n_{k}\right|=1 \tag{44}
\end{equation*}
$$

A generalization are multi-mode Fock states:

$$
\begin{equation*}
\left|n_{1}\right\rangle\left|n_{2}\right\rangle \ldots\left|n_{l}\right\rangle=\left|n_{1}, n_{2}, \ldots, n_{l}\right\rangle \tag{45}
\end{equation*}
$$

$$
\begin{align*}
a_{l}\left|n_{1}, n_{2}, \ldots, n_{l}, \ldots\right\rangle & =\sqrt{n_{l}}\left|n_{1}, n_{2}, \ldots, n_{l}-1, \ldots\right\rangle \tag{46}\\
a_{l}^{+}\left|n_{1}, n_{2}, \ldots, n_{l}, \ldots\right\rangle & =\sqrt{n_{l}+1}\left|n_{1}, n_{2}, \ldots, n_{l}+1, \ldots\right\rangle \tag{47}
\end{align*}
$$

Any multi-mode state $|\Psi\rangle$ can be written in the Fock representation (i.e. it can be expanded in a Fock state basis):

$$
\begin{align*}
|\Psi\rangle & =\sum_{n_{1}} \sum_{n_{2}} \ldots \sum_{n_{l}} \ldots c_{n_{1} n_{2} \ldots n_{l} \ldots}\left|n_{1}, n_{2}, \ldots, n_{l}, \ldots\right\rangle \tag{48}\\
& =\sum_{\left\{n_{k}\right\}} c_{\left\{n_{k}\right\}}\left|\left\{n_{k}\right\}\right\rangle \tag{49}
\end{align*}
$$

2.3 Coherent States

A special class of states are the so-called coherent states.
Definition A: Coherent states are produced by classical light sources:
The classical Interaction Hamiltonian for the interaction of a classical field (described by a classical vector poential) with a current (described by a classical current density $J(r, t))$ is:

$$
\begin{equation*}
V_{i n t}=\int J(r, t) A(r, t) d r \tag{50}
\end{equation*}
$$

The expression also holds if the classical field is replaced by a quantum field, i.e., a field with the vector potential

$$
\begin{align*}
A(r, t) & =-i \sum_{k} \sqrt{\frac{\hbar}{2 \omega_{k} \varepsilon_{0} V}} \widehat{\epsilon}_{k}\left[a_{k}(t) e^{-i \omega_{k} t+i k_{n} r}+c . c .\right] \tag{51}\\
& =-i \sum_{k} \frac{1}{\omega_{k}} E_{k} \widehat{\epsilon}_{k}\left[a_{k}(t) e^{-i \omega_{k} t+i k_{n} r}+c . c .\right] \tag{52}
\end{align*}
$$

Plugging this into the Schrödinger equation:

$$
\begin{equation*}
\frac{d}{d t}|\psi(t)\rangle=-\frac{i}{\hbar} V_{i n t}|\psi(t)\rangle \tag{53}
\end{equation*}
$$

and formally integrating yields:

$$
\begin{equation*}
|\psi(t)\rangle=\exp \left[-\frac{i}{\hbar} \int_{0}^{t} d t^{\prime} V_{\text {int }}\left(t^{\prime}\right)\right]|\psi(0)\rangle e^{i \varphi} \tag{54}
\end{equation*}
$$

The integration is not obvious since $A(r, t)$ and $A\left(r, t^{\prime}\right)$ do not commute. However, a correct calculation gives only an additional phase factor!

Therefore:

$$
\begin{equation*}
|\psi(t)\rangle=\prod_{k} \exp \left(\alpha_{k} a_{k}^{+}-\alpha_{k}^{*} a_{k}\right)|\psi(0)\rangle \tag{55}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha_{k}=\frac{1}{\hbar \omega_{k}} E_{k} \int_{0}^{t} d t^{\prime} \int d r \widehat{\epsilon}_{k} J(r, t) e^{i \omega_{k} t^{\prime}-i k r} \tag{56}
\end{equation*}
$$

If the initial state is the vacuum state $(|\psi(0)\rangle=|0\rangle)$ then $|\psi(t)\rangle$ is called a coherent state $\left|\left\{\alpha_{k}\right\}\right\rangle$.

$$
\begin{align*}
\left|\left\{\alpha_{k}\right\}\right\rangle & =\prod_{k}\left|\alpha_{k}\right\rangle \tag{57}\\
\left|\alpha_{k}\right\rangle & =\exp \left(\alpha_{k} a_{k}^{+}-\alpha_{k}^{*} a_{k}\right)|0\rangle_{k} \tag{58}
\end{align*}
$$

In the single mode case the operator $D(\alpha)$

$$
\begin{equation*}
D(\alpha)=\exp \left(\alpha_{k} a_{k}^{+}-\alpha_{k}^{*} a_{k}\right) \tag{59}
\end{equation*}
$$

is the displacement operator.

$$
\begin{equation*}
D(\alpha)|0\rangle=|\alpha\rangle \tag{60}
\end{equation*}
$$

Definition B: A coherent state is an eigenstate of the annihilation operator:

$$
\begin{equation*}
a|\alpha\rangle=\alpha|\alpha\rangle \tag{61}
\end{equation*}
$$

It is easy to show that $|\alpha\rangle$ can be written in a Fock basis as:

$$
\begin{equation*}
|\alpha\rangle=e^{-|\alpha|^{2} / 2} \sum_{n=0}^{\infty} \frac{\alpha^{n}}{\sqrt{n!}}|n\rangle \tag{62}
\end{equation*}
$$

Since

$$
\begin{equation*}
|n\rangle=\frac{\left(a^{+}\right)^{n}}{\sqrt{n!}}|0\rangle \tag{63}
\end{equation*}
$$

Figure 9: Photon number representation of coherent states for $n=1$ (a), $n=5$ (b), and $n=10$ (c)
it follows

$$
\begin{equation*}
|\alpha\rangle=e^{-|\alpha|^{2} / 2} e^{\alpha a^{+}}|0\rangle \tag{64}
\end{equation*}
$$

With

$$
\begin{equation*}
e^{-\alpha^{*} a}|0\rangle=|0\rangle \tag{65}
\end{equation*}
$$

the above equation can be written as

$$
\begin{equation*}
|\alpha\rangle=e^{-|\alpha|^{2} / 2} e^{\alpha a^{+}} e^{-\alpha^{*} a}|0\rangle \tag{66}
\end{equation*}
$$

Together with the Baker-Hausdorff formula one finally can write:

$$
\begin{equation*}
|\alpha\rangle=e^{-|\alpha|^{2} / 2} e^{\alpha a^{+}} e^{-\alpha^{*} a}|0\rangle=|\alpha\rangle=e^{\alpha a^{+}-\alpha^{*} a}|0\rangle=D(\alpha)|0\rangle \tag{67}
\end{equation*}
$$

Definition C: Another way to define the coherent state is to assume that a coherent state should "reproduce a classical state in the best possible fashion", i.e. the mean value of important observables, such as H, E, P, \ldots should equal the corresponding classical values:

$$
\begin{align*}
\langle\{\alpha\}| H|\{\alpha\}\rangle-H_{\text {vac }} & =H_{\text {classical }}(\{\alpha\}) \tag{68}\\
\langle\{\alpha\}| E|\{\alpha\}\rangle & =E_{\text {classical }}(\{\alpha\}) \tag{69}\\
\langle\{\alpha\}| P|\{\alpha\}\rangle & =P_{\text {classical }}(\{\alpha\}) \tag{70}
\end{align*}
$$

The equation for the electric field is for example:

$$
\begin{align*}
\langle\{\alpha\}| E|\{\alpha\}\rangle & =\langle\{\alpha\}| \sum_{k} E_{k} \widehat{\epsilon}_{k}\left(a_{k} e^{-i \omega_{k} t+i k r}+c . c\right)|\{\alpha\}\rangle \tag{71}\\
& =\sum_{k} E_{k} \widehat{\epsilon}_{k}\left(\alpha_{k} e^{-i \omega_{k} t+i k r}+c . c\right)=E_{\text {classical }}(\{\alpha\}) \tag{72}
\end{align*}
$$

Similar equations follow for the other observables.
It is obvious that the equation above holds if $|\alpha\rangle_{k}$ is an eigenstate of a_{k} !
To summarize, all definitions of the coherent state are equivalent.
In the next chapter we'll see why the coherent state is called coherent state.

2.4 Properties of Coherent States

- The mean number of photons in a coherent state is

$$
\begin{equation*}
\langle\alpha| a^{+} a|\alpha\rangle=|\alpha|^{2}=\langle n\rangle=\bar{n} \tag{73}
\end{equation*}
$$

The photon number distribution is a Poisson distribution:

$$
\begin{equation*}
p(n)=\langle n \mid \alpha\rangle\langle\alpha \mid n\rangle=\frac{|\alpha|^{2 n} e^{-\bar{n}}}{n!}=\frac{\bar{n}^{n} e^{-\bar{n}}}{n!} \tag{74}
\end{equation*}
$$

- A coherent state is a minimum uncertainty state.

$$
\begin{equation*}
\Delta p \Delta q=\frac{\hbar}{2} \tag{75}
\end{equation*}
$$

This follows from

$$
\begin{align*}
a & =\frac{1}{\sqrt{2 \hbar \omega}}(\omega q+i p) \tag{76}\\
a^{+} & =\frac{1}{\sqrt{2 \hbar \omega}}(\omega q-i p) \tag{77}
\end{align*}
$$

and

$$
\begin{align*}
\langle q\rangle & =\sqrt{\frac{\hbar}{2 \omega}}\left(\alpha+\alpha^{*}\right) \tag{78}\\
\langle p\rangle & =\sqrt{\frac{\hbar \omega}{2}}\left(\alpha-\alpha^{*}\right) \tag{79}\\
\left\langle p^{2}\right\rangle & =\frac{\hbar \omega}{2}\left(\alpha^{2}+\alpha^{* 2}+2 n+1\right) \tag{80}\\
\left\langle q^{2}\right\rangle & =\frac{\hbar}{2 \omega}\left(\alpha^{2}+\alpha^{* 2}+2 n+1\right) \tag{81}
\end{align*}
$$

Therefore

$$
\begin{align*}
(\Delta p)^{2} & =\left\langle p^{2}\right\rangle-\langle p\rangle^{2} \tag{82}\\
(\Delta q)^{2} & =\left\langle q^{2}\right\rangle-\langle q\rangle^{2} \tag{83}\\
\Delta p \Delta q & =\hbar / 2 \tag{84}
\end{align*}
$$

- The set of coherent states is a complete set:

$$
\begin{equation*}
\frac{1}{\pi} \int|\alpha\rangle\langle\alpha| d^{2} \alpha=1 \tag{85}
\end{equation*}
$$

- Two coherent states are not orthogonal:

$$
\begin{align*}
\left\langle\alpha \mid \alpha^{\prime}\right\rangle & =\exp \left(-\frac{1}{2}|\alpha|^{2}+\alpha^{\prime} \alpha^{*}-\frac{1}{2}\left|\alpha^{\prime}\right|^{2}\right) \tag{86}\\
\left|\left\langle\alpha \mid \alpha^{\prime}\right\rangle\right| & =\exp \left(-\left|\alpha-\alpha^{\prime}\right|^{2}\right) \tag{87}
\end{align*}
$$

If $\left|\alpha-\alpha^{\prime}\right|$ is very large then the two states are "nearly" orthogonal.
Coherent states are overcomplete (every state can be expanded in the $\{|\alpha\rangle\}$ basis, but not in a unique way.

2.5 Thermal State

A third class of quantum states of light are thermal states. These states are produced by thermal sources, e.g. a light bulb or a discharge lamp.

The photon number distribution of a thermal state is:

$$
\begin{equation*}
p(n)=\frac{1}{1+\bar{n}}\left(\frac{\bar{n}}{1+\bar{n}}\right)^{n} \tag{88}
\end{equation*}
$$

This follows directly from the Boltzmann distribution:

$$
\begin{equation*}
p(n)=\frac{\exp \left(-E_{n} / k_{B} T\right)}{\sum_{n}\left(-E_{n} / k_{B} T\right)} \tag{89}
\end{equation*}
$$

The mean number of photons in a thermal state obeys a Planck-distribution:

$$
\begin{equation*}
p(n)=\frac{1}{e^{\hbar \omega / k_{B} T}-1} \tag{90}
\end{equation*}
$$

The density operator of a thermal state is:

$$
\begin{equation*}
\rho_{\text {thermal }}(n)=\sum_{n} \frac{\bar{n}^{n}}{\bar{n}^{n+1}}|n\rangle\langle n| \tag{91}
\end{equation*}
$$

Figure 10 shows the photon number distribution for a thermal and a coherent state. Obviously, the thermal state has a wider photon number distribution.

Figure 10: Photon number representation of a thermal state (a) and a coherent state (b) for $\overline{\mathrm{n}}=10$

