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The field concept in Ampère’s magnetostatics
Artice M. Davisa�
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We update Ampère’s theory using vector notation and derive his expression for the force between
two current elements. We assume that the two elements are in different current loops and integrate
over one to obtain the force on a differential element in the second. This procedure allows us to
define the magnetic field in a natural manner and to derive the Lorentz force for a current segment.
We equate the magnetic moments of current and permanent magnet dipoles and show that Biot and
Savart could have performed their experiment using a small current loop, thus establishing the
Biot-Savart law as a consequence of Ampère’s theory. © 2009 American Association of Physics Teachers.
�DOI: 10.1119/1.3116090�
I. INTRODUCTION

Ampère, in a series of clever experiments and
conjectures1–4 in the 1820s, derived an expression for the
force between two current elements m� = Idl� and n� = I�dl��. In
vector notation the force F� mn�r�� on element m� caused by
element n� is

F� mn�r�� = K�2�m� · n��
r3 −

3�m� · r���n� · r��
r5 �r� , �1�

where r� is the position of element n� relative to element m�
and K is a constant to be determined by the choice of units.
Equation �1� is rarely used these days for several reasons.
Ampère’s derivation was complex,5 and commentators on his
work have mostly adopted his original style with its prolixity
of expression and coordinate-based mathematics. Those few
who use vector analysis are interested in research questions.
As a result there is no readily available clear exposition of
Ampère’s theory couched in modern terms.

An even more important shortcoming is Ampère’s failure
to incorporate the idea of a field.6 Nineteenth century physi-
cists were divided into two camps. Continental physicists
adopted the “action at a distance” viewpoint, whereas Eng-
lish investigators such as Maxwell followed Faraday’s lead
by thinking of interactions as being mediated by a field that
propagated through the ether. Ampère, being French, formu-
lated his interaction equation as an action at a distance.
When Michelson showed the nonexistence of the ether, it
became clear that Faraday and Maxwell were wrong. The
ether was discarded, but the idea of a field remained.

As a result, the pedagogical foundations of field theory
were arrived at in a disorganized way. It is now standard
practice in introductory texts that do not use relativity7,8 to
define the magnetic field B� using the Lorentz force law

F� �r�� = v� � B� s�r�� , �2�

where F� �r�� is the force per unit charge on a charge moving
with velocity v� and r� is the position of the charge relative to
an arbitrary origin. B� s�r�� is given by the Biot-Savart law

B� s�r�� = Ks�
C

I�dl� � R�

R3 , �3�

where R� =r�−r�� and dl�=dr�� is a differential length of a con-

ductor at position r� in the closed circuit C. This approach has
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several defects. Although the Lorentz force law can be de-
rived for constant v� from the Lorentz transformation of spe-
cial relativity, it has no experimental foundation9 within the
classical theory—it is an ansatz that is conceptually difficult
for a student to accept.

Another defect lies in the Biot-Savart law itself, which
does not involve Eq. �2�10 Biot and Savart used a magnetized
needle to investigate the force field of a long straight con-
ductor carrying a constant current. They then bent the con-
ductor so that it formed an angle near the needle and re-
peated their experiment. On the basis of their results they
hypothesized11 a relation that can be cast into the form of
Eq. �3� and a different Eq. �2�, namely

F� s�r�� = n0B� s�r�� , �4�

the force on a hypothetical magnetic pole of strength n0. Biot
and Savart actually only inferred Eq. �4� because the re-
sponse variable in their experiment was the torque on their
magnetic needle. As we will show, Eqs. �3� and �4� can be
used to derive the torque as

T� s�r�� = n� � B� s�r�� , �5�

where n� =n0d� is the dipole moment of the needle with pole
strength n0 and vector length d� . Thus, their B� s is a hybrid
field which gives the force on a hypothetical magnetic pole
of pole strength n0 through Eq. �4� rather than via the
Lorentz force of Eq. �2�. The latter in its current element
form F� �r��= Idl��B� s�r�� and Eq. �3� actually represent in mod-
ern notation a result that Grassman12 derived from Ampère’s
law in 1845 using somewhat dubious assumptions and math-
ematics.

One thing is clear: the provenance of the modern Biot-
Savart approach to teaching magnetostatics is far from clear.
In contrast, Ampère’s equation �1� is phrased in terms of
current elements and fits much better into our modern view
of magnetism. In this paper we will demonstrate that from an
appropriate perspective Ampère’s theory has none of the
shortcomings of the conventional approach. We will first
present a careful derivation of Eq. �1� using vector terminol-
ogy and the isotropy of physical space. In all other respects
we will maintain Ampère’s flow of logic. After deriving
Eq. �1�, we will apply it in integrated form to find the force
on a given current element due to a complete source circuit.
We show that this step leads naturally to the usual definition

of the magnetic field in Eq. �3� and to a simple derivation of
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the Lorentz force in Eq. �2�. The result is a logically coherent
approach to magnetostatics.13

We next apply our newly developed Ampérian field theory
to calculate the torque on a small current loop and use it to
show that Biot and Savart could well have used it in their
experiment, whose outcome can thus be interpreted as a veri-
fication of Ampére’s theory. We end the paper with a brief
discussion of the present status of magnetostatic field theory.

II. THE AMPÈRE FORCE LAW FOR A PAIR OF
CURRENT ELEMENTS

We will rely heavily upon the isotropy14 and homogeneity
of space which imply that our equations should be indepen-
dent of our choices of direction for the three orthogonal co-
ordinate axes and of the position of their origin. We can
express the idea of isotropy as follows. Suppose we have
derived a relation among m vector variables in the form

F�x�1,x�2, . . . ,x�m� = 0, �6�

where F is either a vector or scalar relation. Let Qv� ,� be an
operator that rotates any vector by an angle � about the axis
v� . If we can write

F�Qv� ,�x�1,Qv� ,�x�2, . . . ,Qv� ,�x�m� = 0 �7�

for any arbitrary choices for v� and �, then we say that the
relation �6� is isotropic. Furthermore, if

F�x�1 − x�0,x�2 − x�0, . . . ,x�m − x�0� = 0 �8�

for arbitrary choices of the shift parameter x�0, we say that F
is shift-invariant. Equations �7� and �8�, respectively, codify
the ideas of isotropy and homogeneity of space. We note that
rotating all vectors by the same amount about the same axis
is equivalent to rotating the basis vectors in the opposite
directions the same amount about the same axis. Thus, we
can interpret isotropy as either a rotation of all the vectors
involved or as a change from one orthonormal basis to an-
other with the same handedness.15

Our first use of isotropy lies in the very formulation of the
problem tackled by Ampère, which consists of determining
the interaction force of two arbitrarily situated differential
elements of current as shown in Fig. 1. We assume that the
position O� of the element n� = I�dl�� relative to the position O
of the element m� = Idl� is along their common x ,x� axis and

Fig. 1. Two arbitrarily situated current elements after the first application of
isotropy.
that m� lies in the xy plane. �Note that O� is also the origin of
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a “primed coordinate” system based at the current element
n� .� The problem is to find the force on m� caused by n� .

Two experiments by Ampère. Ampère devised a sequence
of four carefully conceived experiments16 to provide clues to
the nature of the force law. Figure 2 shows schematized
sketches of the first two experiments. In the experiment
shown in Fig. 2�a� he investigated the force that two closely
spaced parallel current-carrying fixed conductors exert on a
third parallel current-carrying conductor that is free to move.
He observed no effect, whereas each current alone caused the
mobile conductor to move. In the second experiment �shown
in Fig. 2�b�� he replaced one of the fixed conductors with a
zigzag conductor having small deviations from rectilinear.
Again he observed no effect. From the first experiment he
inferred that the force is reversed if the current in one of the
conductors is reversed; from the second experiment he in-
ferred that if both elements are decomposed into compo-
nents, then the total force on one element is the superposition
of all of the pairwise interaction forces acting individually.
He also deduced from these experiments and a few reason-
able assumptions that the force between two current ele-
ments is proportional to the product of their currents and also
to the product of their lengths.

Consequences of Newtonian postulates. As he stated sev-
eral times in his memoirs, Ampère was quite aware that it is
impossible to confirm conjectures about differential current
elements on the basis of experiments which must be made
with complete circuits. He strongly believed, however, that
the forces between them should obey Newton’s third law.
Therefore, he postulated that the total force on the system of
two elements should be zero and that there should be no net
torque that would cause a rotation. From these two assump-
tions he argued that the forces on the elements should be
equal and opposite and should lie along the vector r� in Fig. 1.
This assumption has some major consequences, as we will
see.

If we let F� �� represent the vector force that component �

of n� exerts on component � of m� , then some of the F� �� will
be zero. Consider, for instance, the force F� zx shown in Fig. 3.
Reversing the sign of I reverses the direction of both m� z and
F� zx. We apply our isotropy assumption by rotating the y, z

(b)(a)

Fig. 2. The first two of Ampère’s four experiments: �a� Experiment 1 and �b�
Experiment 2.
Fig. 3. Geometry of the n�x−m� z interaction.
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plane by 180° around the x ,x� axis. This rotation restores m� z

to its original direction, while affecting neither n�x nor −F� zx,
which implies that F� zx=−F� zx, or F� zx=0.

Now let’s apply the same type of reasoning to determine
F� xy, which is shown in Fig. 4. We reverse the sign of I��
which reverses n�y and F� xy, but has no effect on m� x. We again
rotate all vectors by 180° around the x ,x� axis, thus restoring
the original configuration of m� x and n�y. Because these opera-
tions do not affect the value of −F� xy, we must have F� xy

=−F� xy or F� xy =0. The same type of reasoning implies that
F� xz=0.

There are two components of m� and three components of n�
for a total of six possible interactions; three interactions are
zero, leaving three that are nonzero: F� xx ,F� zy ,F� zz. By invok-
ing superposition of the effects of these nonzero components,
we can write

F� mn = F� xx + F� zy + F� zz = �Fxx + Fzy + Fzz�êx. �9�

According to Ampère we know a bit more: each force is
proportional to the product of the currents and also to their
differential lengths, that is, to the product of the constituents
of m� and n� . Because each force is a function of the separa-
tion x, we can write Eq. �9� as

F� mn = ����x�mxnx + ��x�mzny + ��x�mznz�êx, �10�

where �� ,� ,� are functions of x to be determined. The lack
of an arrow on a term refers to the magnitude of the associ-
ated vector component. By adding and subtracting ��x�mxnx

and adding the zero quantity ��x�myny �my is zero because of
our choice of coordinate system�, we have

F� mn = ���x�mxnx + ��x�mzny

+ ��x��mxnx + myny + mznz��êx, �11�

where ��x�=���x�−��x�. By direct calculation, we can eas-
ily verify the validity of the following form of Eq. �11�:

F� mn = ���x��m� · êx��n� · êx� + ��x��n� � m� · êx�

+ ��x��m� · n���êx. �12�

More implications of isotropy. We will invoke isotropy
again, but before we do, a slight digression is helpful. Thus
far, we have referred everything to the orthonormal basis
B= �ê1 , ê2 , ê3	, where we have just substituted 1 for x, 2 for y,
and 3 for z to better express sums in terms of indices.
Suppose we now change to a new orthonormal basis
B�= �e1� , ê2� , ê3�	. We can express any vector êj� in B� in terms
of those in B by êj�=qijêi using the summation convention on
the indices �as we will continue to do�. Writing êj� · êk�
= �qijêi� · �qlkêl�=qijqlk�êi · êl� and using the orthonormality of
both bases, we have � jk=qijqlk�il=qijqik. We can express any
vector in terms of its B components by v� =viêi or in terms of

ˆ

Fig. 4. Geometry of n�y −m� z.
its B� components by v� =v j�ei�. This enables us to write
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viêi=v j�êi�=v j�qijêi, so the components are related by vi
=qijv j�.

Let’s see what happens to the scalar product when we
change bases. Given any two vectors expressed in terms of
the B basis by u� =uiêi and v� =v jê j, we define their scalar
product by u� ·v� =uivi. We rewrite it in terms of the B� basis as
u� ·v� =uivi=qijqikuj�vk�=� jkuj�vk�=uj�v j�, the penultimate equal-
ity being justified by the orthonormality of B�. Thus, the
inner product is invariant under a change from one orthonor-
mal basis to another.

The first and third terms in Eq. �12� involve scalar prod-
ucts. The second term includes a cross product. To investi-
gate it under a change of orthonormal basis we again choose
two vectors u� and v� as in our investigation of the scalar
product. Relative to B their vector product is

u� � v� = êi�ijkujvk, �13�

where �ijk is the Levi-Civita epsilon symbol, which is zero
unless i, j, and k are all distinct. If they are distinct, then
�ijk=1 if i , j ,k form an even permutation of 1, 2, 3 and
�ijk=−1 if the permutation is odd. If we insist that B� form a
right-handed system as is the case for B, then we must have
êj�� êk�= êi��ijk. Note that êj�� êk�= �qmjêm�� �qnkên�
=qmjqnk�êm� ên�=qmjqnk�êi�imn� because B is right-handed
and orthonormal. Thus, we can write

u� � v� = êi�imnumvn

= êi�imn�qmjuj���qnkvk��

= �qmjqnkêi�imn�uj�vk�

= �êj� � êk��uj�vk�

= êi��ijkuj�vk�. �14�

Equation �14� shows that the cross product is invariant under
an exchange of right-handed bases; this invariance, coupled
with the invariance of the scalar product, says that the second
term in Eq. �12� is also invariant. Hence, our interelement
force F� mn in Eq. �12� is invariant under a change of right-
handed orthornormal bases.

We can assume that x is positive in Fig. 1. If it were
negative, we would rotate our coordinate system by 180°
about the y axis, thus reversing the directions of both êx and
êz. This operation preserves the right-hand orientation of the
basis, but changes the sign of x. Thus, we can consider the
coefficients � ,� ,� in Eq. �12� to be functions of r= 
r�
=x. If
we perform a general rotation of axes êx transforms into êr,
where r�=xêx+yêy +zêz, and Eq. �12� assumes the form

F� mn = ���r��m� · êr��n� · êr� + ��x��n� � m� · êr�

+ ��x��m� · n���êr. �15�

Ampère’s third experiment. To evaluate the coefficients
��r� ,��r� ,��r� Ampère performed an experiment on three
coaxial rings, which we will call his “three ring experiment”
�see Fig. 5�. Rings a and c are fixed, ring b is free to move,
and all carry the same current. Let d be the diameter of ring
a. Ampère positioned the center of ring b at a distance z to
the right of a and gave it the diameter kd. He then adjusted
the diameter of ring c to be k times that of b, that is k2d, and
positioned its center a distance of kz to the right of b. Thus
ring c received the same scaling relative to b that b was

given relative to a. He discovered that ring b was in a posi-
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tion of stable equilibrium �if he moved it away from its ini-
tial location it returned there�. From this experiment he in-
ferred that a source conductor k times as far and k2 times as
long as another exerts the same force on a test conductor
provided the source currents are the same. Ampère conjec-
tured that the same scaling holds for components of current
elements.

We can apply the results of Ampère’s conclusions from
this experiment, as did Ampère, by invoking superposition to
find the coefficients one at a time. Thus, if we consider the
first term in Eq. �15� and apply Ampère’s conjecture, we can
write

��r��m� · êr��n� · êr� = ��kr��m� · êr��k2n� · êr� , �16�

or ��r�=k2��kr�. �Think of the left-hand side as the force on
ring b in Ampère’s three ring experiment due to ring a and
the right-hand side as the force on it due to ring c.� If
we rewrite Eq. �16� in the form ��kr�=��r�k−2 and take
the derivative of both sides with respect to k, we get
r���kr�=−2��r�k−3. Let k=1. Then r���r�=−2��r�, which
we can solve to obtain ��r�=a /r2, where a is an arbitrary
constant. The same analysis can be applied to each of the
other terms in Eq. �15�, thus transforming it into the form

F� mn = �a�m� · êr��n� · êr�
r2 +

b�n� � m� · êr�
r2 +

c�m� · n��
r2 �êr,

�17�

where a, b, and c are constants yet to be determined. We will
do so using Ampère’s fourth experiment.

Ampère’s fourth experiment. Ampère’s fourth experiment,
which we will call his “wire arc” experiment, is illustrated in
the sketch of Fig. 6. The thin radial line segments represent
fixed conductors insulated from each other, and the heavy
curved line segment represents a short conductor bent into an
arc which rests on the two fixed conductors and makes elec-
trical contact with them. The heavy vertical line represents a
nonconductive rod which pins the wire arc to a vertical post
�represented by the heavy dot� around which it is free to
pivot. The arc can therefore move tangentially, but cannot lift
up from the fixed conductors. A current I is established in the
loop consisting of the two fixed conductors and the wire arc.
When Ampère brought a closed current loop of arbitrary ge-
ometry near the wire arc, the latter did not move. This out-
come showed that the force on a differential element due to
an arbitrary closed conductor is always at right angles to the

Fig. 5. Geometry of Ampère’s three-ring experiment.
element.
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We will use the result of the wire arc experiment to estab-
lish the values of two of the constants a, b, and c. We use the
relation êr=r� /r to rewrite Eq. �17� in the form

F� mn = �a�m� · r���n� · r��
r5 +

b�n� � m� · r��
r4 +

c�m� · n��
r3 �r� . �18�

Because m� = Idl� and n� = I�dl��, Eq. �18� becomes

F� mn = II��a�dl� · r���dl�� · r��
r5 +

b�dl�� � dl� · r��
r4

+
c�dl� · dl���

r3 �r� . �19�

Recall that we have used isotropy to go to a basis in which r�
has a general direction. We now imagine the current element
n� to be a component of a complete loop C as shown in
Fig. 7 and change the notation slightly to n� = I�dr�. This no-
tational change means that Eq. �19� can be written in the
form

F� mn = II��a�dl� · r���dr� · r��
r5 +

b�dr� � dl� · r��
r4 +

c�dl� · dr��
r3 �r� .

�20�

For convenience we modify the second component by invok-
ing the identity

dr� � dl� · r� = dr� · dl� � r� �21�

to rewrite Eq. �20� as

Fig. 6. Geometry of Ampère’s wire arc experiment �top view�.

Fig. 7. The effect of a complete current loop on a differential current ele-

ment in another loop.
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F� mn = II��a�dl� · r���dr� · r��
r5 +

b�dr� · dl� � r��
r4 +

c�dl� · dr��
r3 �r� .

�22�

We now simplify the problem by invoking isotropy again,
and assume that the x axis is along m� . Ampère’s wire arc
experiment says that if we integrate the x component of the
force on m� �the component of the force parallel to m� �, then
the result will be zero. The integral around the contour C of
the x component of Eq. �22� is

�
C

Fx = II��
C
�ax�dl� · r���dr� · r��

r5

+
bx�dr� · dl� � r��

r4 +
cx�dl� · dr��

r3 �
= II��

C
�ax�dl� · r��r�

r5

+
bx�dl� � r��

r4 +
cxdl�

r3 � · dr� . �23�

Equation �23� has the form

�
C

Fx = II��
C

Q� �r�� · dr� , �24�

where

Q� �r�� =
ax�dl� · r��r�

r5 +
bx�dl� � r��

r4 +
cxdl�

r3 . �25�

In our new coordinate system we can write

dl� = dlêx, �26a�

r� = xêx + yêy + zêz, �26b�

dr� = dxêx + dyêy + dzêz. �26c�

Thus,

dl� · r� = xdl , �27a�

dl� � r� = dlêx � �xêx + yêy + zêz� = dl�yêz − zêy� . �27b�

Equation �25� then assumes the form

Q� �r�� =
ax2�xêx + yêy + zêz�

r5 dl

+
bx�yêz − zêy�

r4 dl +
cxêx

r3 dl

= �ax3

r5 +
cx

r3 �dlêx + �ax2y

r5 −
bxz

r4 �dlêy

+ �ax2z

r5 +
bxy

r4 �dlêz

= Q �r�ê + Q �r�ê + Q �r�ê . �28�
x � x y � y z � z
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The wire arc experiment implies that the integral in
Eq. �23� is zero for any contour C. We can therefore apply
Stokes’s theorem to assert that ��Q� �r��=0, which in rectan-
gular coordinates has the form

� � Q� �r�� = ��yQz − �zQy�êx − ��xQz − �zQx�êy

+ ��xQy − �yQx�êz = 0. �29�

Equation �29� implies that the individual components are
zero. The x component of the curl is

�� � Q� �x = �yQz − �zQy

= bxdl� 2

r4 −
4�y2 + z2�

r6 � , �30�

which implies that b=0. We use this value of b to calculate
the y component and obtain

�� � Q� �y = �zQx − �xQz = − �2a + 3c�xzdl
1

r5 . �31�

The only way the right-hand side of Eq. �31� can be zero is
for the coefficient to be zero. Hence c=2K and a=−3K,
where K is an arbitrary constant. With these values, the equa-
tion ���Q� �z=0 is satisfied identically. We use these results
in Eq. �22� and obtain

F� mn = KII��2�dl� · dl���
r3 −

3�dl� · r���dl�� · r��
r5 �r� . �32�

Equation �32� is the classical Ampère expression for the
force between two differential segments of current-carrying
conductor.

III. THE MAGNETIC FIELD
AND THE LORENTZ FORCE

We now pause briefly for a mathematical aside and
define17

f��r�� =
�a� · r��r�

r3 , �33�

and use the properties of differentials to write

df� =
�a� · dr��r�

r3 +
�a� · r��dr�

r3 −
3�a� · r��r�dr

r4 . �34�

We know that d�r2 /2�=rdr=r� ·dr�, so by multiplying and di-
viding the last term of Eq. �34� by r, we can write

df� =
�a� · dr��r�

r3 +
�a� · r��dr�

r3 −
3�a� · r���r� · dr��r�

r5 . �35�

The last term looks like one of the terms in the Ampère
force, and becomes more so when we let a� =dl� and recognize
that dr�=dl��. If we make these substitutions and solve for the
last term in Eq. �35�, we obtain

3�dl� · r���dl�� · r��r�
r5 =

�dl� · dl���r�
r3 +

�dl� · r��dl��

r3 − df��r�� . �36�
Substitution of this expression in Eq. �32� results in
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F� mn = KII�� �dl� · dl���r� − �dl� · r��dl��

r3 + df��r��� . �37�

Recalling the identity dl�� �dl���r��= �dl�·r��dl��− �dl�·dl���r� and

letting R� =−r�, we find that

F� mn = KII��dl� � �dl�� � R� �
R3 + df��R� �� . �38�

The total force F� m on the differential segment m� = Idl� at
the origin can be obtained by integrating around the closed
circuit C on which n� = I�dl�� is assumed to constitute an ele-
ment �see Fig. 7�. The result is

F� m = Idl� � �
C

K
dl�� � R�

R3 , �39�

where the exact differential df��R� � has integrated to zero. The
final step is to invoke the homogeneity of space, translate the
element m� to the general position r�, and let r�� be the vector
position of the source element n� relative to the origin. �We
have redefined the symbol r� to be consistent with the litera-
ture with the result that R� =r�−r�� in Eq. �39�.� The latter
becomes

F� m�r�� = Idl� � �K�
C

dl�� � R�

R3 �
= Idl� � �K�

C

dl�� � �r� − r���


r� − r�� 
3
� , �40�

which is the same form as Eq. �39� but with the new inter-
pretation for R� . If we define the magnetic field vector by

B� �r�� = K�
C

dl�� � R�

R3 = K�
C

dl�� � �r� − r���


r� − r�� 
3
, �41�

we can rewrite Eq. �40� in terms of the Lorentz force on a
current-carrying conductor of length dl�:

F� m�r�� = Idl� � B� �r�� . �42�

To evaluate the constant K we find the magnetic field a
perpendicular distance a from an infinitely long straight con-
ductor �see Fig. 8�. As shown in introductory texts, we can

Fig. 8. The magnetostatic field of an infinitely long straight conductor.
use Eq. �41� to derive
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B� =
2KI�

a
�− êz� . �43�

The force on a current element at a oriented parallel to the
long straight conductor and carrying current I in the same
direction is given by

F� m = Idyêy � B� =
2KII�

a
dy�− êx� . �44�

Thus, there is an attractive force of magnitude 2KII� /a per
unit length.

In SI units this result is used to define the Ampère of
current as follows: if I= I�=1 A, then the force per unit
length on a current element 2 m away from the infinite
length conductor is 10−7 N /m. This definition is equivalent
to requiring that K=10−7 N /A2. A factor of 4� is usually
included to simplify other more complicated, equations. We
therefore define 	0=4�K and rewrite Eq. �41� as

B� �r�� = �
C

	0I�dl�� � �r� − r���

4�
r� − r�� 
3
=

	0

4�
�

C

I�dl�� � R�

R3 , �45�

where 	0=4��10−7 N /A2. We have now completed a ma-
jor part of the task we set out to do: we have defined the
magnetostatic field and derived the Lorentz force law for a
current element completely within Ampère’s theory.

IV. DIPOLES, MAGNETIC MOMENT,
AND THE BIOT-SAVART LAW

Consider a small planar current loop C situated in a mag-
netic field. Assume that the small surface defined by C has a
unit normal ên consistent with the right-hand rule and the
orientation of C. The loop geometry is shown in Fig. 9.18 The
torque on a differential segment of this loop is

dT� = r� � F� m = r� � �Idr� � B� �r���

= Idr��r� · B� �r��� − IB� �r���r� · dr�� . �46�

Because r� ·dr�=d�r2 /2�, it will integrate to zero around a

Fig. 9. Relative orientations of a loop and its projection in a coordinate
plane.
closed loop. Thus, the total torque on the loop is given by
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T� = �
C

r� � F� m = I�
C

r� · B� �r��dr� . �47�

We will assume that the loop is so tiny that B� is constant over
its extent, which gives

T� = IBi�
C

xidr� = IBi��
C

xi dxj�êj , �48�

where B� =Biêi and x=x1, y=x2, and z=x3. Next, consider the
integral Iij =�Cxi dxj. The particular case in which xi=x1=x
and xj =x3=z is illustrated in Fig. 9, and the projection curve
is shown in more detail in Fig. 10. Note that if ên · êy 
0,
then C and Cy are both traversed in the positive direction
relative to the unit normals; if ên · êy �0, they are traversed in
opposite directions. For the case shown we have

�
C

xi dxj = �
Cy

x dz = − Ay , �49�

where the signed area Ay is positive if ên · êy 
0 and negative
if ên · êy �0. In general, we can write

�
C

xidxj = �ijkAk, �50�

where the signed area Ak is positive if ên · êk
0 and negative
if ên · êk�0. �Note that x1=x, x3=z, and Ay =A2 in Eq. �48� so
that the right-hand side is �132A2=−Ay.� Thus, Eq. �48� be-
comes

T� = IBi�ijkAkêj = Iêj� jkiAkBi = IA� � B� , �51�

where A� =Axêx+Ayêy +Azêz. If we define the magnetic mo-
ment by

	� = IA� , �52�

we have

T� = 	� � B� �r�� =
	0

4�
�

C

	� � �I�dl�� � R� �
R3 . �53�

We think of an elementary current dipole as being a small
current loop in which the area approaches zero while the
current approaches infinity in such a way that 	� = IA� remains
constant. Then Eq. �53� gives the torque on an elementary
dipole.

The Biot-Savart experiment. We next consider the Biot-
Savart experiment in which the field was measured by the
torque on a small permanent magnet. We will place ourselves
back in time, and look over the shoulders of Biot and Savart
as they perform their famous experiment. Because their sen-
sor is not a current element but a permanent magnet, we

Fig. 10. The projection of C onto the z-x plane.
allow for the fact that their magnetic field might be different
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from the one considered by Ampère. We will, along with
Biot and Savart, define the magnetic field in terms of the
force on a hypothetical magnetic pole. Thus, we define the
magnetic field vector B� S by

F� = n0B� S, �54�

where n0 is a constant—the “pole strength.”
Consider a small permanent magnet consisting of two

poles of opposite strengths �n0 separated by the small vector
distance d� is in a magnetic field as shown in Fig. 11. We
assume that d= 
d� 
 is so small that B� S is constant over the
extent of the dipole. Then we can write the torque on this
small dipole as

T� = �r� + d�/2� � F� − �r� − d�/2� � F� = d� � n0B� � = n0d� � B�.

�55�

We now define the magnetic moment of the small magnetic
dipole to be 	� �=n0d� and think of allowing the pole strength
to approach infinity while the separation approaches zero.

We will now show that the Biot-Savart law is consistent
with the theory expounded by Ampère. Biot and Savart hy-
pothesized Eq. �3� on the basis of their measurements, but
did not evaluate the constant KS. If we combine Eq. �3� with
Eq. �5�, we have

T� �r�� = KS�
C

n� � �I�dl�� � R� �
R3 . �56�

We next infringe upon history a bit and insist that Biot and
Savart repeat their experiment using Ampere’s current loop.
We insist, too, that they adjust its current in order for its
magnetic moment to be the same as that of their magnetic
needle. In symbolic terms we require that

n� = n0d� = IA� = 	� . �57�

We let the directions be the same and solve for n0:

n0 = IA/d . �58�

Equation �58� is equivalent to choosing the unit of n0 to be
the Ampère-meter. If we select the undetermined constant KS
to have the value

KS =
	0

4�
, �59�

then Eqs. �53� and �56� are identical. In other words, Biot

Fig. 11. Torque on a permanent magnetic dipole in a magnetic field.
and Savart could have performed their experiment with a
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small current loop and the outcome would have been un-
changed. Hence, the Biot-Savart law is included in that of
Ampère and affords experimental verification of the latter.

V. SUMMARY

We have developed an approach to magnetostatics based
entirely on Ampère’s theory and presented it in modern vec-
tor notation. This approach is consistent with the material
currently being taught in introductory courses, but has an
important advantage over the latter: unlike the Biot-Savart
approach, the Ampérian field theory includes a derivation of
the Lorentz force.

Although Ampère coined the term “electrodynamics,” the
field that he, Biot, and Savart investigated was the special
case currently termed “magnetostatics.” Thus, all of the ex-
periments of that time—and almost all of those performed
since then—are for constant �or slowly varying19� currents in
which the source circuit is closed. Although Coulomb’s law
has been verified to extreme precision, the Biot-Savart-
Ampère-Grassman law has not received the same attention.20

The Lorentz force law, which is commonly used in the con-
text of general time-varying fields, has apparently never been
verified under such general conditions.21 Finally, we observe
�as have many others�, that inferences about element pair
forces from macroscopic experiments made on complete cir-
cuits are merely that: inferences, not certitudes. In a math-
ematical context22 suppose a proposal is made that an ele-
ment pair force is given by F� mn�r� ,dl�,dr��, where m� = Idl� and
n� = I�dr�. Let dg��r�� be any exact differential. Then, as long as
we restrict ourselves to an appropriate region of space �say
one that is simply connected�, we will have

F� m = �
C

F� mn�r�,dl�,dr�� = �
C

�F� mn�r�,dl�,dr�� + dg�r��� . �60�

Any other element pair force that differs from the given one
by an exact differential will result in the same single element
force exerted by a complete circuit. That is, the element
pair force is not uniquely determined from macroscopic
experiments.
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