TEMAS DE FÍSICA PARA MATEMÁTICOS

1er. cuatrimestre 2013

3 - MECÁNICA

Problema 1:

Indicar, justificando, las componentes del impulso \mathbf{p} y del impulso angular \mathbf{M} que se conservan en el movimiento de una partícula en los siguientes casos:

- a) Campo de un plano homogéneo.
- b) Campo debido a dos cuerpos puntuales.
- c) Campo de un semiplano homogéneo.
- d) Campo debido a un cono homogéneo.

Problema 2:

Una partícula de masa m y velocidad inicial \mathbf{v}_1 pasa de un semiespacio en que su energía potencial es igual a U_1 y entra en otro en el cual su energí a potencial es igual a U_2 . Determinar el cambio en la dirección del movimiento de la partícula.

Problema 3:

La energía potencial de un cuerpo de masa m que realiza un movimiento unidimensional está dada por una función U(x) que tiene un único mínimo en el punto x_0 . El cuerpo tiene una energía inicial E tal que $E = U(x_1) = U(x_2)$, con $x_1 < x_0 < x_2$. Encontrar una expresión para el período del movimiento del cuerpo. Considérese por separado el caso particular en que $U(x) = \alpha(x - x_0)^2$, con $\alpha > 0$.

Problema 4:

Encontrar una expresión para el período de las oscilaciones de un péndulo plano en el campo gravitatorio terrestre, en función de su amplitud descripta por el ángulo máximo ϕ_0 . Mostrar explícitamente que para $\phi_0 \ll 1$ el período no depende de la amplitud.

Problema 5:

Escribir la lagrangiana para un péndulo plano cuyo punto de suspensión se desplaza uniformemente, con una frecuencia f, sobre una circunferencia vertical de radio R.

Problema 6:

- a) Considerése un sistema formado por una partícula de masa m_1 y otra de masa m_2 . Reducir el problema al del movimiento de un único cuerpo. Ayuda: elegir un sistema de referencia tal que el origen coincida con el centro de masa del sistema de los dos cuerpos.
- b) Considérese un sistema formado por una partícula de masa M y n partículas de masa m. Reducir el problema al del movimiento de las n partículas, escribiendo la lagrangiana del sistema en forma análoga a lo hecho en el problema de dos cuerpos.

Problema 7:

Encontrar la trayectoria de una partícula de masa m en un potencial central de la forma $U = \frac{1}{2}kr^2$, con k > 0.

Problema 8:

En el caso de una partícula en un campo central, la existencia de un "potencial centrífugo" que diverge cuando $r \to 0$ conduce a que no sea siempre posible alcanzar el centro. Mostrar cuáles son las condiciones sobre el potencial U(r) tales que se pueda alcanzar el centro.

Problema 9:

Integrar las ecuaciones de movimiento de una partícula en un campo central cuyo potencial es $U=-\alpha/r$, con $\alpha>0$. Discutir sobre las posibles órbitas del movimiento. Ayuda: puede ser útil analizar el potencial efectivo.

Problema 10:

Integrar las ecuaciones de movimiento de una partícula en un campo central cuyo potencial es $U = -\alpha/r^2$, con α positivo. Analizar los casos

$$E > 0,$$
 $l^2/2m > \alpha$
 $E > 0,$ $l^2/2m < \alpha$
 $E < 0,$ $l^2/2m < \alpha$

y mostrar que en los dos últimos la partícula alcanza el centro en un tiempo finito; calcular ese tiempo.

Problema 11:

Así como se demuestra la relación $t'/t = (l'/l)^{1-k/2}$ (donde k es el grado de homogeneidad de la energía potencial) entre los tiempos y las distancias de trayectorias

semejantes, encontrar las relaciones análogas para las velocidades, las energías y los impulsos angulares en relación con las distancias.