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Abstract

An elegant but seldom appreciated effort to provide a mechanical model of equilibrium
thermodynamics dates back to the Helmholtz theorem (HT). According to this theorem, the
thermodynamic relations hold mechanically (without probabilistic assumptions) in the case of
one-dimensional monocyclic systems. Thanks to a discrete picture of the phase space,
Boltzmann was able to apply the HT to multi-dimensional ergodic systems, suggesting that the
thermodynamic relations we observe in macroscopic systems at equilibrium are a direct
consequence of the microscopic laws of dynamics alone. Here I review Boltzmann’s argument
and show that, using the language of the modern ergodic theory, it can be safely re-expressed
on a continuum phase space as a generalized Helmholtz theorem (GHT), which can be readily
proved. Along the way the agreement between the Helmholtz–Boltzmann theory and that of
P. Hertz (based on adiabatic invariance) is revealed. Both theories, in fact, lead to define the
entropy as the logarithm of the phase-space volume enclosed by the constant energy hyper-
surface (volume entropy).
r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The object of statistical mechanics is that of deriving macroscopic laws from
the underlying microscopic laws, thus its aim may be thought as that of provid-
ing a theoretical model which could possibly explain how macroscopic behaviour
emerges from the microscopic dynamics. Since the birth of statistical mechanics
a debate is going on regarding the conditions that are relevant for such emer-
gence. On one hand, many authors emphasize the role the very large number
of degrees of freedom may play, in other words, at some point, they invoke the
law of large numbers and the thermodynamic limit (TD limit): their approach
might be labelled as ‘‘statistical’’. On the other hand, many consider general
dynamical properties such as, for instance, ergodicity, mixing or sensitivity to initial
conditions, as fundamental ingredients: their viewpoint might be seen as mainly
‘‘mechanical’’.

Even though here the ‘‘mechanical’’ viewpoint has been adopted, it is plausible to
admit that neither a purely mechanical, nor a purely statistical theory would
probably be enough to account for the whole wide variety of macro-phenomena
observed in Nature. Nevertheless, as we shall see, it seems reasonable that, as far as
we are concerned only with equilibrium thermodynamics, and in particular with the
heat theorem, the laws of Hamiltonian mechanics alone, in the special case of ergodic
systems, may provide a satisfactory explanation.

This viewpoint has been recently suggested by Gallavotti (1999) in his
‘‘Short treatise of Statistical Mechanics’’, where the problem of the emergence
of equilibrium thermodynamics from the underlying micro-physics is addressed
by going back in time to the early Boltzmann and Helmholtz’ works
about monocyclic systems (Boltzmann, 1884, Helmholtz, 1884a,b). According to
Gallavotti the programme of Boltzmann was that of proving the validity of the heat
theorem:

dS ¼
dE þ PdV

T
(1)

in great generality, from the one-dimensional system to the 1023-dimensional one,
relying only on mechanical quantities which were to be named with suitable
thermodynamic names. The first half of the programme, namely, the one-
dimensional case, had been successfully treated by Helmholtz, and nowadays is
known (unfortunately just to a minority of physicists) as the Helmholtz theorem.1

With the introduction of the ergodic hypothesis Boltzmann paved the way towards
the study of the general multi-dimensional case. Gallavotti discusses this issue in a
clear way and shows that a generalization is possible which provides a mechanical,
size independent, foundation of equilibrium thermodynamics, based on Boltzmann’s
discrete picture of the phase space (Gallavotti, 1999, Section 9.1).

It is important to stress that there exist alternative mechanical approaches in the
literature. One of the most popular (especially within the German school, see e.g.

ARTICLE IN PRESS

1Not to be confused with the better known HT of classical electrodynamics.

M. Campisi / Studies in History and Philosophy of Modern Physics 36 (2005) 275–290276



(Münster, 1969; Becker, 1969)) can be traced back to Hertz (1910), who bases
statistical mechanics on the principle of adiabatic invariance, namely

DS ¼ 0, (2)

where the symbol DA denotes the change of the quantity A due to an
adiabatic transformation, and S is the entropy of the system. The adoption of this
principle eventually brought Hertz to the proposal, still not widely recognized
unfortunately, of the ‘‘volume entropy’’ (instead of the usual ‘‘surface entropy’’) as
the only form of entropy consistent with both adiabatic invariance and the
equipartition theorem (a modern exposition of this approach recently appeared in
Berdichevsky (1997)).

The volume entropy may play an important role also in more modern mechanical
approaches such as, for example, the dynamical Fokker–Planck equation approach
proposed by Bianucci, Mannella, West, and Grigolini (1995). These authors focused
on the linear response of a particle (the system of interest) coupled to a
Fermi–Pasta–Ulam chain with quartic interactions (the booster), and put forward
a mechanical expression of the system’s temperature which was found to be
consistent, apart from Oð1=NÞ corrections (interpreted as ‘‘dynamical’’ corrections),
with the adoption of the surface entropy (namely with Boltzmann’s counting
principle) for the unperturbed booster. Recent developments of their work (Adib,
2004) show, with the support of numerical simulations, that a correction is unneeded
provided that the surface entropy is replaced by the volume entropy.

In order to prevent possible misunderstandings of this work, it is necessary to
emphasize that, with respect to thermodynamics, this paper refers only to equilibrium
states and quasi-static transformations where the system remains arbitrarily close to
equilibrium. Having reduced the scope of the study to such cases, questions
regarding irreversible processes, out of equilibrium phenomena and the law of
entropy increase are far out of the scope of the present work. To be more precise, the
second law of thermodynamics is commonly understood as being composed of two
parts which conventionally will be referred here as ‘‘part A’’ and ‘‘part B’’. ‘‘Part A’’
states that there exists an integrating factor (1=T) such that dQ=T is an exact
differential ðdSÞ; whereas ‘‘part B’’ states that the change in entropy in a thermally
isolated system which undergoes a transformation between two equilibrium states is
non-negative (DSX0). ‘‘Part A’’ expresses the exactness of the heat differential (the
heat theorem), whose mechanical foundations are the object of this paper. ‘‘Part B’’,
a principle of entropy increase, is not addressed here.

The paper is organized as follows. Section 2 is a review of surface and volume
entropies: I briefly discuss their properties, mutual relationships, and their role in
statistical mechanics. Section 3 deals with the HT and its extensions to multi-
dimensional systems, developing Boltzmann’s argument leads to a straightforward
and easy to prove generalization, which employs the modern notion of ergodicity
and the volume entropy. Section 4 is devoted to some concluding remarks. An
appendix includes a brief discussion of how the theorem relates to the micro-
canonical ensemble.
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2. Surface and volume entropy

Usually two entropic functions are discussed in textbooks (see for instance
(Huang, 1963)) for thermally isolated systems: the surface entropy:

SOðE;V Þ ¼ log OðE;V Þ, (3)

where

OðE;V Þ ¼
Z

dC

h3N
d½E &Hðz;V Þ' (4)

and the volume2 entropy

SFðE;V Þ ¼ log FðE;V Þ, (5)

where

FðE;V Þ ¼
Z

dC

h3N
y½E &Hðz;V Þ'. (6)

The symbol d represents the one-dimensional Dirac’s delta-function, y represents the
Heavyside step-function; z ¼ ðp; qÞ is a point in the 6N-dimensional phase space C:
The Hamiltonian is Hðz;V Þ ¼ KðpÞ þ jðq;V Þ: The potential j includes both
particle–particle and container–particle interactions, the container ‘‘coordinate’’
(i.e., its volume V) is treated as an ‘‘external’’ parameter. h is a constant with the
dimensions of an action introduced as a convention.3 The quantity OðE;V Þ
represents the volume of the infinitesimally thin shell of constant energy E in the
phase space C (surface integral), while FðE;V Þ represents the volume of the region
enclosed by the hyper-surface of constant energy E (volume integral). Following
Khinchin (1949, see p. 32), we will assume the energy to have a lower bound, which
for convenience will be set equal to zero. It is important to notice that, with a further
assumption of ‘‘smoothness’’ of the hyper-surfaces of constant energy, the following
relation holds:

O ¼
q
qE

F. (7)

Also, in most cases, for very large N,

O(F. (8)

Both entropies are known to provide the correct thermodynamics (Huang, 1963).
Historically SO had been favored by theoreticians, nevertheless in practical
calculations SF is usually preferred for it is easier to evaluate. For the purposes of
this paper, it is worth discussing some properties of these two entropies in more
detail. This discussion helps confronting them, and introducing the HT.
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2.1. Properties of the surface entropy

From a formal point of view, the surface entropy plays an important role in
statistical mechanics for its close connection with the micro-canonical distribution.
Defining the micro-canonical distribution as following:

rmðz;E;V Þ
dC

h3N
¼

d½E &Hðz;V Þ'
normalization

dC

h3N
, (9)

the normalization factor would be given exactly by the surface integral O: This is why
often O is referred to as the partition function of the micro-canonical ensemble.
Thanks to Eq. (9) the surface integral enters explicitly in the expression of the micro-
canonical average of a physical quantity on the surface of constant energy i.e.,

hf im )
R

ðdC=h3NÞf ðzÞd½E &Hðz;V Þ'
OðE;V Þ

. (10)

From a mathematical perspective O also plays the role of the Jacobian of the change
of variables z ! E; which makes easy the evaluation of average values of
observables of the type f ðEðzÞÞ:

dC

h3N
¼ OðE;V ÞdE. (11)

Because of this relation O is also important in the passage from classical to quantum
statistical mechanics, in fact O counts the ‘‘density of states at a given energy’’
(degeneracy).

From a physical point of view, the surface entropy is interesting as, in the limit of
very large N, it approaches Boltzmann’s counting entropy (SW ¼ log W ) of the
given equilibrium state. Nevertheless the counting entropy is at the same time more
and less general than the surface entropy. More general in the fact that it applies
both to equilibrium and out of equilibrium states, whereas the surface entropy is
restricted to equilibrium; less general in the fact that, unlike the surface entropy, it
applies only to ideal gases (Uffink, 2004).

2.2. Properties of the volume entropy

After the seminal work of Hertz (1910), it is a known fact that the volume integral
F is an adiabatic invariant, and it has been recognized that this very fact plays a
significant role in the mechanical foundations of thermodynamics. To show this, let
us first provide a definition of adiabatic invariant. Let Hðz;V Þ be the Hamiltonian of
a system which depends on an external parameter whose value changes in time
according to some law: V ¼ V ðtÞ; and let t be the characteristic time of variation of
V. Through the dependence on V the Hamiltonian depends explicitly on time, hence
the energy is not conserved (work is performed on the system by changing the
parameter V from outside), accordingly the energy will change in time with some
temporal law EðtÞ:
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Definition 1. A function IðE;V Þ is named an adiabatic invariant if, in the limit of very
slow variation of V ðtÞ; namely as t ! 1; IðEðtÞ;V ðtÞÞ ! const:

Note that the qualifier ‘‘adiabatic’’ in the context of Hamiltonian mechanics has a
quite different meaning than in thermodynamics, where it is used as synonymous of
‘‘thermally isolated’’. For example, with reference to Definition 1, in mechanics an
adiabatic transformations is a very slow transformation during which the adiabatic
invariant remains constant. This meaning of ‘‘adiabatic’’ matches with that of the
thermodynamic expression ‘‘quasi-static’’, rather than ‘‘thermally isolated’’.4 In
other words, in studying thermodynamic systems as many-body mechanical systems
interacting with an externally driven field of forces, it is quite reasonable to model
quasi-static transformations as adiabatic processes (Toda, Kubo, & Saitô, 1983, see
Section 2.3.2). It is natural, then, to model the quantities which remain constant
along quasi-static transformations as mechanical adiabatic invariants.

Now consider ‘‘part B’’ of the second law of thermodynamics (see Section 1),
DSX0; and recall that the ‘‘¼’’ sign refers to quasi-static transformations: it is a
basic fact of thermodynamics that along a quasi-static transformation between two
equilibrium states of a thermally isolated system, the entropy (which, for the
exactness of the heat differential, is a function of E and V) is a constant. In modelling
this fact from a mechanical perspective, then, as Hertz has done, it is natural to
require the mechanical expression of entropy to be an adiabatic invariant. Hertz had
also shown that, for any number of degrees of freedom, the volume integral (Eq. (6))
is an adiabatic invariant provided that the system be ergodic.5 This means that the
candidate mechanical expression of entropy should be a function of F: S ¼ f ðFÞ: If
one takes a look at the equipartition theorem (which is valid independent of the
dimensionality of the system as well), the reason why Hertz was led to choose the
entropic function to be of the form of a logarithmic function becomes clear. Note in
fact that the equipartition theorem (Khinchin, 1949, p. 104), reads

hKim ¼
1

2
p *

qH
qp

! "

m
¼

3N

2

FðE;V Þ
OðE;V Þ

(12)

or equivalently (use Eq. (7))

2hKim
3N

# $&1

¼
q
qE

log FðE;V Þ. (13)

From this perspective, the equipartition theorem expresses a very general
dynamical–geometrical property of Hamiltonian systems which, as soon as we
agree to name the quantity ð2hKim=3NÞ as ‘‘temperature’’, reads as the fundamental
thermodynamic relation T&1 ¼ qS=qE . As a natural consequence, we have to agree

ARTICLE IN PRESS

4This is also reflected by the fact that a quasi-static process is understood as a so slow process that it can
be thought of as a virtual sequence of equilibrium states, as much as the adiabatic process is so slow that
the motion can be thought of as driven by a sequence of ‘‘frozen’’ (i.e. time independent) Hamiltonians
(Jarzynsky, 1992).

5This is why F is sometimes referred to, in literature, as the ergodic adiabatic invariant (Brown, Ott, &
Gregobi, 1987; Jarzynsky, 1992).
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to name the quantity log FðE;V Þ as ‘‘entropy’’. In sum, for ergodic systems, the
volume entropy has two remarkably good properties: it is an adiabatic invariant and
it is consistent with the equipartition theorem.

The approach of Hertz has been recently re-expressed by Berdichevsky (1997)
adopting a modern viewpoint. In particular, Berdichevsky showed that under the
hypothesis of metric indecomposability (see Definition 2 below) the volume entropy is
an adiabatic invariant and that any other adiabatic invariant is necessarily a function
of F only. This latter statement leaves no room for alternative definitions of entropy
within the approach of Hertz and it is in contrast with the claim by Toda et al.
(1983), that the surface integral is also an adiabatic invariant. Indeed, that the
surface integral is not in general an adiabatic invariant can be seen by considering as
a counter example the 1D harmonic oscillator (which is trivially ergodic) with slowly
varying frequency o: The ergodic adiabatic invariant in this case would be the action
variable F ¼ E=o (Landau & Lifshitz, 1960), therefore the surface integral O ¼
ðq=qEÞF ¼ 1=o; would be trivially non-constant. In the thermodynamic limit,
anyway, on the basis of Eq. (8), it is expected that the surface entropy approaches
adiabatic invariance.

3. Helmholtz’ theorem and generalization

In this section I will review the HT concerning one-dimensional systems and I will
follow the lines of Boltzmann–Gallavotti (Gallavotti (1999), Section 9.1) to show
how it can be employed in the general multi-dimensional case. By proceeding along
the same lines, I will show that, in the multi-dimensional case, the Helmholtz entropy
is nothing but the volume entropy of Hertz. This will provide the input for the
formulation of a general version of the theorem, expressed in the modern language of
ergodic theory, which can be readily proved.

3.1. Helmholtz’ theorem

As mentioned before, the aim of this theorem is that of providing a mechanical
model of thermodynamics based on one-dimensional systems. Boltzmann intended
to generalize such theory to multi-dimensional systems in order to unify micro- and
macro-physics in one consistent picture using ergodicity as the key tool.

The theorem applies to one-dimensional conservative systems in a confined
potential where there is only one periodic trajectory per energy level, i.e., it applies
to what Helmholtz called one-dimensional monocyclic systems (Gallavotti (1999),
p. 38). To cite some examples, the harmonic oscillator and a particle in a box
are one-dimensional monocyclic systems, a particle inside a double well potential
is not because under a certain energy value there are two distinct trajectories
per energy level. Roughly speaking the theorem applies to one-dimensional
Hamiltonian systems with a U-shaped potential. Let us recall the theorem without
proof:
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Theorem 1 (Helmholtz). Let Hðp; q;V Þ ¼ p2=2mþ jðq;V Þ be the Hamiltonian of a
one-dimensional monocyclic system. Let a state be characterized by the set of
quantities:

E ¼ total energy ¼ K þ j,
T ¼ twice the time average of the kinetic energy ¼ 2hKit,
V ¼ the external parameter,

P ¼ minus the time average of
qj
qV

¼ &
qj
qV

! "

t

, ð14Þ

then the differential

dE þ PdV

T
(15)

is exact,6 and SHðE;V Þ;7 defined as

SHðE;V Þ ¼ log 2

Z xþðE;V Þ

x&ðE;V Þ

dx

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mðE & jðx;V ÞÞ
p

(16)

is the generating function, i.e.,

dSH ¼
dE þ PdV

T
, (17)

where the symbols x+ðE;V Þ denote the turning points of the trajectory, i.e., the roots of
the equation E & jðx;V Þ ¼ 0:

As the reader can easily note, this theorem says that there is a class of mechanical
systems which provide a model of thermodynamic behaviour. Once we attach the
thermodynamic names of temperature and entropy to T and SH; respectively,

8 the
thesis reads exactly as ‘‘part A’’ of the second law of thermodynamics (see Section 1).
For such systems, the heat theorem holds as a consequence of Hamiltonian
mechanics alone.

3.2. Generalized Helmholtz’ theorem

3.2.1. Discrete version
According to Gallavotti’s reconstruction of Boltzmann’s ergodic hypothesis

(Gallavotti (1999), see Section 9.1 and Appendix 9.A.3), thanks to a discrete picture
of phase space, Boltzmann saw how the HT could be applied to multi-dimensional
systems. The argument of Gallavotti goes as follows: imagine that we divide the
phase space in cells of same size and then consider the time evolution of the system as
a map which transforms a cell into another, that is a permutation of the phase space
cells on the hyper-surface of constant energy. This permutation is in general
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6This is often referred to as the heat theorem (Gallavotti (1999)).
7The subscript H stands for Helmholtz.
8P can be proved to be the average momentum transfer to the confining walls per unit time, therefore it

has its own mechanical interpretation of pressure.
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decomposable in sub-permutations, or cycles, involving only a fraction of the total
cells. This happens, for instance, when extra integrals of motion are present besides
the energy: cells with different values of these integrals do not transform into each
other but just among themselves defining the aforementioned cycles. The discrete
ergodic hypothesis of Boltzmann–Gallavotti (the reader may find a detailed account
in (Gallavotti (1999), Section 1.3)) is that there is only one cycle per energy level, i.e.,
that the discrete trajectory visits all the phase space points (cells) with a given energy.
A system satisfying such a hypothesis will be referred to as a discrete ergodic system
in this paper. For such systems, the motion can be followed along a curvilinear
abscissa running along the trajectory itself, reducing the dynamics of the multi-
dimensional system to that of a one-dimensional monocyclic system to which the HT
can be applied. More explicitly, let us discretize the phase space in hyper-cubic cells
of volume h3N ¼ ðDqDpÞ3N : Consider the trajectory in the discrete configuration
space as an ordered sequence of cells labelled by a counter j, and let ‘ ¼ jDq be the
distance travelled by the representative point (‘ is, so to speak, a ‘‘discrete curvilinear
abscissa’’). Let us now define the sequence

‘ ! qð‘Þ (18)

which assigns the cell centred at q to the travelled distance ‘: The representative point
spends different times in different cells. Denoting the sojourn time in the jth cell with
the symbol Dtj ; allows to define the velocity _‘¼: Dq=Dtj associated with ‘: For such a
discrete system then, the conservation of energy would read

1

2m
p2‘ þ jðqð‘Þ;V Þ ¼ E, (19)

where p‘ ¼ m_‘: If the original system is a discrete ergodic system, the above equation
describes the motion of a one-dimensional system living in the phase space ð‘; p‘Þ;
where it draws one closed trajectory for each energy specification: namely it is a one-
dimensional monocyclic system. Therefore, the HT applies suggesting that

‘‘Thermodynamic relations are [. . .] very general and simple consequences of the
structure of the equations of motion: they hold for small and large systems, from
one degree of freedom [. . .] to 1023 degrees of freedom [. . .]’’ (Gallavotti (1999),
p. 266)

which is a remarkable result indeed because it implies that an expression for the
entropy in terms of the Hamiltonian must exist for any system size. Such a
mechanical expression of entropy, namely the multi-dimensional counterpart of the
Helmholtz entropy (Eq. (16)), is missing in the Boltzmann–Gallavotti argument, but
it can be found by continuing their argument. Let us express the Helmholtz entropy
associated with a discrete ergodic system, we have9

SHðE;V Þ ¼ log

Z NDq

0

d‘
h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m½E & jðqð‘Þ;V Þ'
p

. (20)
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0 d‘f ð‘Þ is a convenient notation for Dq
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j¼0f ðjDqÞ:
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where NDq is the total distance travelled in one cycle. Note that the right hand side
of Eq. (20) depends explicitly on the sequence qð‘Þ which afterwards can be
computed only after integrating the complete set of Hamilton’s equation, which, as
N gets large, becomes a practically impossible task. In order to evaluate SH we will
use the following ‘‘trick’’. As noticed before, the dynamics of the system can be
alternatively depicted either in the 6N-dimensional phase space G or in the two-
dimensional phase space ð‘; p‘Þ: If we express the kinetic energy in both
representations, we get

1

2m
p2‘ ¼

1

2m

X

3N

i¼1

p2i . (21)

By taking the time average and then applying the equipartition theorem (Eq. (13)) to
both sides of Eq. (21) we get (remembering that on the left we are dealing with a one-
dimensional system, whose curve of constant energy ‘‘encloses’’ an area A, and on
the right we have a 3N-dimensional system whose hyper-surface of constant energy
encloses a volume F):

3N
q
qE

log AðE;V Þ ¼
q
qE

log FðE;V Þ. (22)

Then, by integration (with the condition AjE¼0 ¼ FjE¼0) follows the simple formula:

log F ¼ 3N log A. (23)

Note that the area under the trajectory in the phase space of a one-dimensional
system can be expressed as the action integral (Landau & Lifshitz, 1960):

A ¼
I

p‘ d‘
h

. (24)

On the other hand p‘ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m½E & jðqð‘Þ;V Þ'
p

; hence log A is the Helmholtz entropy,
therefore

SFðE;V Þ ¼ 3NSHðE;V Þ. (25)

This result is surprising as it reveals that (apart from the multiplicative factor) the
Helmholtz entropy of a discrete ergodic systems is nothing but the volume entropy,
therefore the volume entropy generates the heat differential of discrete ergodic
systems. The result is important both from a theoretical viewpoint as it constitutes a
link between the mechanical approach of Helmholtz–Boltzmann to that of Hertz,
and from a practical viewpoint because it allows to calculate SH without solving
Hamilton’s equations.

It is important to stress that Eqs. (19)–(25) are all discrete equations, and as such,
hold to good approximation only for fine enough discretizations.

3.2.2. Continuum version
In order to pass to the continuum let us focus on Eq. (25) and note that, though

SH requires a discrete space to be well-defined (how could otherwise the one-
dimensional phase trajectory fill the 6N & 1-dimensional hyper-surface?), the volume
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entropy appearing on the left-hand side of Eq. (25) can be safely defined on the
continuum (which is indeed the usual case). This suggests (a) to consider the volume
entropy as a good continuum counterpart of the Helmholtz entropy of a discrete
ergodic system, and (b) that a general formulation of the HT may be attempted
which does not rely on a discrete structure. Proceeding in this direction would
require in particular the employment of a notion of ergodicity based on the
continuum instead of the Boltzmann–Gallavotti discrete one.

The notion of metric indecomposability seems to be very well suited for this
purpose. Let us recall that in the modern ergodic theory (Khinchin, 1949),

Definition 2. A portion P of the phase space is called metrically indecomposable, if:

, P is invariant under the Liouville evolution induced by H, and
, P cannot be represented in the form P ¼ P1 þP2; where P1 and P2 are invariant
disjoint subsets of positive measure.

Two remarks are needed at this point: (1) metric indecomposability extends the
notion of one-dimensional monocyclicity to any dimension, (2) metric indecompo-
sability extends the Boltzmann–Gallavotti discrete notion of ergodicity to the
continuum. The first remark follows from the fact that in the case of one-
dimensional monocyclic systems, any hyper-surface of constant energy in the phase
space (they are indeed curves) is metrically indecomposable. This is a consequence of
the fact that each trajectory draws one complete constant energy curve. For example,
for a non-monocyclic system like a particle inside a double well potential, all the
curves with lower energy than a certain value are in fact decomposable in two sub-
curves drawn by distinct trajectories with same energy. The second remark follows as
one notes that the Boltzmann–Gallavotti ergodicity expresses the impossibility of
decomposing the time-evolution permutation into sub-permutations as much as
metric indecomposability expresses the impossibility of decomposing the Liouville
flow into disjoint sub-flows: they express the same concept onto a discrete and a
continuum space respectively.

Two analogous remarks apply to the volume entropy: ð10Þ the volume entropy is
the generalization of the Helmholtz entropy (Eq. (16)) to any dimension, ð20Þ the
volume entropy is the generalization of discrete ergodic systems’ entropy (Eq. (20))
to the continuum. Remark ð10Þ follows by direct check that the volume entropy in 1D
is equal to the Helmholtz entropy, by integration over dp one gets

Z

dxdp

h
y E &

p2

2m
& jðx;V Þ

# $

¼ 2

Z xþðE;V Þ

x&ðE;V Þ

dx

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mðE & jðx;V ÞÞ
p

. (26)

Remark ð20Þ has been already discussed (see point (a) above).
It is not a surprise, then, that volume entropy and metric indecomposability can be

employed to formulate a generalized Helmholtz theorem (GHT), which on one hand
extends the HT to any dimension, and on the other extends the Boltzmann–Galla-
votti ideas to the continuum:
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Theorem 2 (Helmholtz, generalized). Let Hðp; q;V Þ be the Hamiltonian of a
mechanical system with 3N degrees of freedom. Let any hyper-surfaces of constant
energy in the 6N-dimensional phase space C be metrically indecomposable. Let a state
be characterized by the set of quantities:

E ¼ total energy ¼ K þ j,
T ¼ twice the time average of the kinetic energy per degree of freedom

¼ ð2hKit=3NÞ,
V ¼ the external field,

P ¼ time average of & qj=qV ¼ &hqj=qVit, ð27Þ

then, the differential

dE þ PdV

T
(28)

is exact, and the volume entropy,

SFðE;V Þ ¼ log FðE;V Þ, (29)

is the generating function, i.e.

dSF ¼
dE þ PdV

T
. (30)

Proof. The differential of SFðE;V Þ is:

dSF ¼
qSF

qE
dE þ

qSF

qV
dV , (31)

using the definition of Eqs. (5) and (6)

qSF

qE
¼

1

F
q
qE

Z

dC

h3N
y½E &Hðz;V Þ'

# $

¼
1

F

Z

dC

h3N
d½E &Hðz;V Þ'

# $

¼
O
F
, ð32Þ

qSF

qV
¼

1

F
q
qV

Z

dCy½E &Hðz;V Þ'
# $

¼ &
1

F

Z

dCd½E &Hðz;V Þ'
q
qV

Hðz;V Þ
# $

¼ &
O
F

qH
qV

! "

m
, ð33Þ

where use is made of Eqs. (3) and (10) and of the relation d
dE y ¼ d: For Birkhoff’s

ergodic theorem (Khinchin, 1949), metric indecomposability of the hyper-surface of
constant energy implies that the time average of any summable phase function f over
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(almost) any trajectory belonging to the hyper-surface, does not depend on the
trajectory itself and is equal to its phase average i.e.,10

hf it ¼ hf im. (34)

Thanks to Eq. (34), we can interchangeably use the subscript m or t for the averages.
This implies

&
qH
qV

! "

m
¼ &

qH
qV

! "

t

¼ P. (35)

Thanks to the equipartition theorem (Eq. (13)), we also get

F
O
¼

2hKim
3N

¼
2hKit
3N

¼ T . (36)

Combining all these together the thesis straightforwardly follows:

dSF ¼
1

T
dE þ

P

T
dV . (37)

4. Concluding remarks

It is worth to notice that the GHT can be easily extended to any number of
external ‘‘coordinates’’ k ¼ ðl1; l2; . . . ; lrÞ: By defining the conjugate ‘‘forces’’ with:

Pj ¼ &
qHðz; kÞ

qlj

! "

t

; j ¼ 1 . . . r, (38)

the theorem would read

dSF ¼
dE þ

P

Pj dlj
T

. (39)

An important fact is that, adopting the Helmholtz–Boltzmann viewpoint, we
can derive equilibrium thermodynamics from mechanics without incurring in the
‘‘methodological paradox’’, mentioned by Khinchin (1949, p. 41), of neglecting inter-
molecular interactions. Indeed, we are forced to include the interaction term in the
Hamiltonian, otherwise the system would fail to be ergodic and Boltzmann’s ideas
(either in their original or modern form) would not apply. This is because ergodicity
means a situation of complete non-integrability,11 which ultimately stems from the
impossibility of reducing the system (through a canonical transformation) to a
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Birkhoff ergodic systems.

11The presence of integrals of motion besides the energy, in fact, would decompose the surface of
constant energy.
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simpler one with no interactions. In this sense, the ‘‘disaster’’ of non-integrability
surprisingly turns out, indeed, to be the savior: in the very case when the possibility
of a microscopic description is completely out of our reach, the thermodynamic one
is made available.

Remarkably, the GHT tells that the heat theorem holds mechanically for Birkhoff
ergodic systems of any size, which, therefore, provide a good mechanical model
of thermodynamics. Taking Gallavotti’s reconstruction as starting point, the
Helmholtz–Boltzmann theory has been re-expressed within the frame of the
modern ergodic theory and has been found to agree with Berdichevsky (1997)
reconstruction of Hertz’ theory: both deal with Birkhoff ergodic systems12 and
through different paths (in one case the starting point is the requirement that the
entropy generate the heat differential, in the other case the entropy is required to
be an adiabatic invariant) reach the same mechanical expression of entropy,
hence the same thermodynamics. Adopting Hertz’ approach the heat theorem
would follow as a corollary, adopting that of Helmholtz–Boltzmann adiabatic
invariance would follow. Both theories, remarkably, are based on microscopic
dynamics and the ergodic hypothesis only: never statistical notions (like probability
distributions or the law of large numbers) are invoked, in this sense the GHT is a
theorem of ergodic Hamiltonian mechanics which has a straightforward thermo-
dynamic interpretation.

As stressed in the Introduction, the present paper has dealt only with equilibrium
thermodynamics and in particular with ‘‘part A’’ of the second law, hence
no conclusion can be drawn about the law of entropy increase on the basis of the
GHT. Nevertheless, since the two parts of the second law are necessarily
interconnected, the latter might prove useful in addressing the law of entropy
increase from a novel viewpoint, which will have a mechanical basis, but this time, in
principle, will benefit from statistics as well. Further studies will be devoted to
develop such viewpoint.

By re-expressing Gallavotti’s reconstruction of Boltzmann’s ideas in the language
of the modern ergodic theory, and noting that they agree with those of P. Hertz and
followers, I hope this work will help stimulate a broader interest in this mechanical
approach to thermodynamics which, despite of its formal elegance, simplicity and
richness, seems to have escaped the attention of a large part of the modern scientific
community.
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Appendix A. Generalized Helmholtz theorem and the micro-canonical orthode

Though the mechanical viewpoint has been adopted in this paper, some results
found here may be employed in the theory of statistical ensembles as well, this is
because, thanks to the ergodic hypothesis, micro-canonical and time averages
coincide. This appendix is devoted to a quick indication of how the GHT relates to
the problem of orthodicity of statistical ensembles as raised by Boltzmann himself
(Boltzmann, 1884). A detailed discussion of this topic, including the interpretation of
stationary distributions as thermodynamic equilibrium states, is out of the scope of
this work.13 Here, the focus is only on the fact that formally the condition of
orthodicity of the micro-canonical ensemble coincides with the thesis of the GHT
(Eq. (28)). In general, if k is a distribution belonging to a statistical ensemble e;14 and
if a state is defined by the quantities

Ek ¼ hHik Tk ¼
2hKik
3N

Vk ¼ hVik Pk ¼ &
qj
qV

! "

k
, (A.1)

where h*ik denotes k average

Definition A.1. The ensemble e is named an orthode if an infinitesimal change of k
within e15 would cause infinitesimal changes in the state in such a way that the
differential:

dEk þ Pk dVk

Tk
(A.2)

is exact, at least in the TD limit (N ! 1; and N=V ; U=V ! const). If the
differential (A.2) is exact for any number of degrees of freedom e is named an exact
orthode.

If we apply this definition to the micro-canonical ensemble, the requirement of
orthodicity would read

2K

3N

! "&1

m
dE &

qH
qV

! "

m
dV

 !

¼ exact differential,

which, thanks to the equivalence of micro-canonical and time averages, formally
coincides with the thesis of the GHT (28). Boltzmann (1884) claimed that both
canonical and micro-canonical ensembles are exact orthodes. A proof that the latter
is an orthode appears in (Gallavotti, 1999, see Eq. (2.2.12) and Section 2.6) where the
surface entropy differential has been found to be equal to the heat differential up to
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13The reader may find a detailed discussion in (Gallavotti (1999), Section 1.9).
14For example the distribution of Eq. (9) belongs to the micro-canonical ensemble.
15This is performed by changing the parameters upon which k depends: for example E and V in the case

of micro-canonical ensemble, T and V in the case of canonical ensemble.
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0ð1=NÞ corrections, i.e.

dSO ¼
2K

3N

! "&1

m
dE &

qH
qV

! "

m
dV

 !

þ 0
1

N

# $

.

On the contrary, as from the proof of the GHT, the differential of the volume
entropy is exactly equal to the heat differential, i.e.,

dSF ¼
2K

3N

! "&1

m
dE &

qH
qV

! "

m
dV

 !

,

which confirms Boltzmann’s claim. As a consequence, the volume entropy is the
exact entropy associated with the micro-canonical orthode.
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Boltzmann, L. (1884). Über die Eigenschaften monocyklischer und anderer damit verwandter Systeme.

Crelles Journal, 98, 68–94 (also in Boltzmann, L. (1909). Wissenschaftliche Abhandlungen (Vol. 3,
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Hertz, P., (1910). Über die mechanischen Grundlagen der Thermodynamik. Annalen der Physik,
33(Leipzig), 225–274, 537–552.

Huang, K. (1963). Statistical mechanics (2nd ed.). Singapore: Wiley.
Jarzynsky, C. (1992). Diffusion equation for energy in ergodic adiabatic ensambles. Physical Review A, 46,

7498–7509.
Khinchin, A. I. (1949). Mathematical foundations of statistical mechanics. New York: Dover.
Landau, L. D., & Lifshitz, E. M. (1960). Mechanics. Oxford: Pergamon.
Münster, A., (1969). Statistical thermodynamics (Vol. 1). Berlin: Springer.
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