CLASE 22 - Viernes 18/06/2021

La clase pasada vimos:

Elemento de matriz del dipolo eléctrico

Ecuación de movimiento de la polarización interbanda

Polarización interbanda de partícula libre

En esta clase veremos:

Ecuación de Wannier

Excitones de Wannier

QEPA50

Ecuación de movimiento de la polarización interbanda

Modelo de dos bandas

$$\hbar \left[i \frac{d}{dt} - (\epsilon_{c,k} - \epsilon_{v,k}) \right] P_{vc,\mathbf{k}}(t) = \left[n_{c,\mathbf{k}}(t) - n_{v,\mathbf{k}}(t) \right] d_{cv} \mathcal{E}(t)
+ \sum_{\mathbf{k}',\mathbf{q}\neq\mathbf{0}} V_q \left(\langle a_{c,\mathbf{k}'+\mathbf{q}}^{\dagger} a_{v,\mathbf{k}-\mathbf{q}}^{\dagger} a_{c,\mathbf{k}'} a_{c,\mathbf{k}} \rangle + \langle a_{v,\mathbf{k}'+\mathbf{q}}^{\dagger} a_{v,\mathbf{k}-\mathbf{q}}^{\dagger} a_{v,\mathbf{k}'} a_{c,\mathbf{k}} \rangle
+ \langle a_{v,\mathbf{k}}^{\dagger} a_{c,\mathbf{k}'-\mathbf{q}}^{\dagger} a_{c,\mathbf{k}'} a_{c,\mathbf{k}-\mathbf{q}} \rangle + \langle a_{v,\mathbf{k}}^{\dagger} a_{v,\mathbf{k}'-\mathbf{q}}^{\dagger} a_{v,\mathbf{k}'} a_{c,\mathbf{k}-\mathbf{q}} \rangle \right) ,$$

Incógnitas:

$$\begin{cases} P_{vc,\mathbf{k}}(t) = \langle a_{v,\mathbf{k}}^{\dagger} a_{c,\mathbf{k}}(t) \rangle \\ \\ n_{\lambda,\mathbf{k}} = \langle a_{\lambda,\mathbf{k}}^{\dagger} a_{\lambda,\mathbf{k}} \rangle \end{cases}$$

Polarización: $P(t) = \sum_{\mathbf{k}} P_{cv,\mathbf{k}}(t) d_{vc} + \text{c.c.}$

Bandas de energía del sólido:

$$\begin{cases} E_{c,k} = \hbar \epsilon_{c,k} = E_g + \hbar^2 k^2 / 2m_c \\ E_{v,k} = \hbar \epsilon_{v,k} = \hbar^2 k^2 / 2m_v \end{cases}$$

REPASO

Ecuación de movimiento de la **polarización interbanda** en la Random-Phase Approximation (RPA)

$$\hbar \left[i \frac{d}{dt} - (e_{c,k} - e_{v,k}) \right] P_{vc,k}(t)$$

$$= \left[n_{c,k}(t) - n_{v,k}(t) \right] \left[d_{cv} \mathcal{E}(t) + \sum_{\mathbf{q} \neq \mathbf{k}} V_{|\mathbf{k} - \mathbf{q}|} P_{vc,\mathbf{q}} \right] . \quad (10.21)$$

dynamics of interband polarization (pair) function

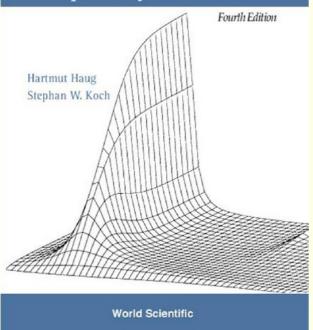
$$e_{\lambda,\mathbf{k}} = \epsilon_{\lambda,\mathbf{k}} + \Sigma_{exc,\lambda}(\mathbf{k})$$

Energías de partícula única renormalizadas

$$hbar{\Sigma}_{exc,\lambda}(k) = -\sum_{\mathbf{q}\neq\mathbf{k}} V_{|\mathbf{k}-\mathbf{q}|} n_{\lambda,\mathbf{q}}$$

Auto-energías en aproximación de Hartree-Fock

Quantum Theory of the Optical and Electronic Properties of Semiconductors



10.	Excitons	163
10.1	The Interband Polarization	164
10.2	2 Wannier Equation	169
10.3	B Excitons	173
	10.3.1 Three- and Two-Dimensional Cases	174
	10.3.2 Quasi-One-Dimensional Case	179
19	Semiconductor Bloch Equations	211

$$\hbar \left[i \frac{d}{dt} - (e_{c,k} - e_{v,k}) \right] P_{vc,\mathbf{k}}(t) = \left(f_{c,\mathbf{k}} - f_{v,\mathbf{k}} \right) \left[d_{cv} \mathcal{E}(t) + \sum_{\mathbf{q} \neq \mathbf{k}} V_{|\mathbf{k} - \mathbf{q}|} P_{vc,\mathbf{q}} \right]$$

La respuesta lineal corresponde a: $f_{c,k} \equiv 0$ and $f_{v,k} \equiv 1$ (semiconductor no excitado)

Tomando transformada de Fourier (tiempo):

$$\frac{1}{m_r} = \frac{1}{m_c} - \frac{1}{m_v}$$

$$\left[\hbar(\omega+i\delta)-E_g-\frac{\hbar^2k^2}{2m_r}\right]P_{vc,\mathbf{k}}(\omega) = -\left[d_{cv}\mathcal{E}(\omega) + \sum_{\mathbf{q}\neq\mathbf{k}}V_{|\mathbf{k}-\mathbf{q}|}P_{vc,\mathbf{q}}(\omega)\right], (10.31)$$

Tomando transformada de Fourier (espacio):

$$\frac{L^3}{(2\pi)^3}\int d^3k\dots$$

$$\frac{L^3}{(2\pi)^3} \int d^3k \dots \qquad f(\mathbf{r}) = \frac{L^3}{(2\pi)^3} \int d^3q f_{\mathbf{q}} e^{-i\mathbf{q}\cdot\mathbf{r}} \qquad f_{\mathbf{q}} = \frac{1}{L^3} \int d^3r f(\mathbf{r}) e^{i\mathbf{q}\cdot\mathbf{r}}$$

$$f_{\mathbf{q}} = \frac{1}{L^3} \int d^3r f(\mathbf{r}) e^{i\mathbf{q}\cdot\mathbf{r}}$$

$$\left[\hbar(\omega + i\delta) - E_g + \frac{\hbar^2 \nabla_{\mathbf{r}}^2}{2m_r} + V(r)\right] P_{vc}(\mathbf{r}, \omega) = -d_{cv} \mathcal{E}(\omega) \,\delta(\mathbf{r}) L^3$$
(10.34)

$$\left[\hbar(\omega + i\delta) - E_g + \frac{\hbar^2 \nabla_{\mathbf{r}}^2}{2m_r} + V(r)\right] P_{vc}(\mathbf{r}, \omega) = -d_{cv} \mathcal{E}(\omega) \,\delta(\mathbf{r}) L^3$$
(10.34)

Consideremos la ecuación homogénea:

$$-\left[rac{\hbar^2
abla_{\mathrm{r}}^2}{2m_r} + V(r)
ight]\psi_{
u}(\mathrm{r}) = E_{
u}\psi_{
u}(\mathrm{r})$$

ECUACIÓN DE WANNIER

$$P_{vc}(\mathbf{r},\omega) \longrightarrow \psi_{\nu}(\mathbf{r})$$

$$P_{vc}(\mathbf{r},\omega) \longrightarrow \psi_{\nu}(\mathbf{r})$$

$$\hbar(\omega + i\delta) - E_g \longrightarrow E_{\nu}$$

$$-\left[rac{\hbar^2
abla_{\mathrm{r}}^2}{2m_r} + V(r)
ight]\psi_{
u}(\mathrm{r}) = E_{
u}\psi_{
u}(\mathrm{r})$$

Sistema hidrogenoide

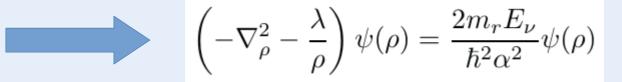
Masa reducida: protón — ► hueco (masa efectiva)

$$V(r)=rac{e^2}{\epsilon_0 r}$$
 $rac{rac{1}{m_r}=rac{1}{m_c}-rac{1}{m_v}}{m_v<0}$

Background dielectric constant

$$-\left[rac{\hbar^2
abla_{\mathrm{r}}^2}{2m_r} + V(r)
ight]\psi_{
u}(\mathrm{r}) = E_{
u}\psi_{
u}(\mathrm{r})$$

Rescaleo la distancia: ho=rlpha



Donde:
$$\lambda = \frac{e^2 2m_r}{\epsilon_0 \hbar^2 \alpha} = \frac{2}{\alpha a_0}$$

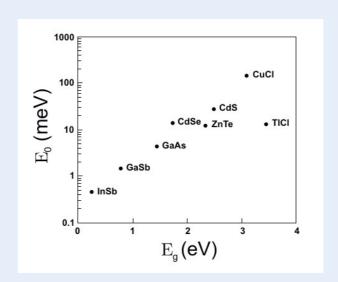
Radio de Bohr renormalizado:

$$a_0 = \frac{\hbar^2 \epsilon_0}{e^2 m_r}$$

Rydberg renormalizado:

$$E_0 = \frac{\hbar^2}{2m_r a_0^2} = \frac{e^2}{2\epsilon_0 a_0} = \frac{e^4 m_r}{2\epsilon_0^2 \hbar^2}$$

Binding energy experimental:



Se puede plantear el problema en 3D, 2D y 1D. El Laplaciano depende de la dimensionalidad:

$$\nabla_{\rho}^{2} = \frac{1}{\rho^{2}} \frac{\partial}{\partial \rho} \rho^{2} \frac{\partial}{\partial \rho} - \frac{\mathcal{L}^{2}}{\rho^{2}} \qquad \text{in } 3D$$

$$\nabla_{\rho}^{2} = \frac{1}{\rho} \frac{\partial}{\partial \rho} \rho \frac{\partial}{\partial \rho} - \frac{\mathcal{L}_{z}^{2}}{\rho^{2}} \qquad \text{in } 2D$$

$$\nabla_{\rho}^2 = \frac{\partial^2}{\partial \zeta^2} \qquad \text{in } q1D$$

$$\psi(\rho) = f_l(\rho) Y_{l,m}(\theta, \phi) \qquad \text{in } 3D$$
$$= f_m(\rho) \frac{1}{\sqrt{2\pi}} e^{im\phi} \qquad \text{in } 2D$$

Excitones

Excitones

Ecuación del sistema hidrogenoide adimensionalizado:

$$\left(\frac{1}{\rho^2}\frac{\partial}{\partial\rho}\rho^2\frac{\partial}{\partial\rho} + \frac{\lambda}{\rho} - \frac{1}{4} - \frac{l(l+1)}{\rho^2}\right)f_l(\rho) = 0 \quad \text{in} \quad 3D$$

$$\left(\frac{1}{\rho}\frac{\partial}{\partial\rho}\rho\frac{\partial}{\partial\rho} + \frac{\lambda}{\rho} - \frac{1}{4} - \frac{m^2}{\rho^2}\right)f_m(\rho) = 0 \quad \text{in} \quad 2D$$

Las soluciones **ligadas** son los **excitones de Wannier**.

$$E_n=-E_0rac{1}{n^2} \ ext{ with } n=1,2,\ldots$$

3D exciton bound-state energies

$$E_n = -E_0 \frac{1}{(n+1/2)^2}$$
 with $n = 0, 1, \dots$,

2D exciton bound-state energies

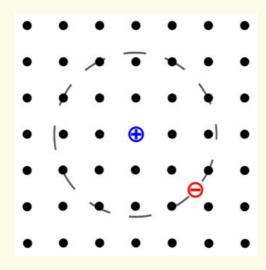
$$\begin{array}{c|ccccc}
\nu_{max} & n & f_{n,l}(\rho) = C\rho^l e^{-\frac{\rho}{2}} \sum_{\nu} \beta_{\nu} \rho^{\nu} & E_n \\
\hline
0 & 1 & f_{1,0}(r) = \frac{1}{a_0^{3/2}} 2 e^{-r/a_0} & E_1 = -E_0 \\
\hline
1 & 2 & f_{2,0}(r) = \frac{1}{(2a_0)^{3/2}} (2 - \frac{r}{a_0}) e^{-r/2a_0} & E_2 = -\frac{E_0}{4} \\
\hline
0 & 2 & f_{2,1}(r) = \frac{1}{(2a_0)^{3/2}} \frac{r}{\sqrt{3}a_0} e^{-r/2a_0} & E_2 = -\frac{E_0}{4} \\
\end{array} (10.67)$$

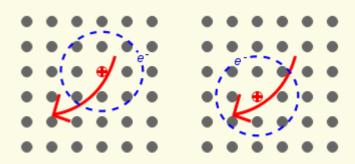
3D radial exciton wave functions

$$\begin{array}{c|ccccc}
\nu_{max} & n & f_{n,m}(\rho) = C\rho^{|m|} e^{-\frac{\rho}{2}} \sum_{\nu} \beta_{\nu} \rho^{\nu} & E_{n} \\
\hline
0 & 0 & f_{0,0}(r) = \frac{1}{a_{0}} 4e^{-2r/a_{0}} & E_{n=0} = -4E_{0} \\
\hline
1 & 1 & f_{1,0}(r) = \frac{4}{a_{0}3\sqrt{3}} \left(1 - \frac{4r}{3a_{0}}\right) e^{-\frac{2r}{3a_{0}}} & E_{1} = -\frac{4E_{0}}{9} \\
\hline
0 & 1 & \pm 1 & f_{1,\pm 1}(r) = \frac{16}{a_{0}9\sqrt{6}} \frac{r}{a_{0}} e^{-2r/3a_{0}} & E_{1} = -\frac{4E_{0}}{9} \\
\hline
\end{cases} .$$
(10.68)

2D radial exciton wave functions

Excitones de Frenkel





Excitones de Frenkel Materiales con constante dieléctrica chica, Energía grande, radio chico, fijos. Excitones de Wannier Radio grande, energía baja, móviles.

Resumen de la clase 21

Ecuación de Wannier

Excitones de Wannier