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PREFACE

The quantum theory of condensed matter (i.e. solids and liquids) has been domi-
nated by two main themes. The first one is band theory and perturbation theory. It
is loosely based on Landau's Fermi liquid theory. The second theme is Landau's
symmetry-breaking theory and renormalization group theory. Condensed matter
theory is a very successful theory. It allows us to understand the properties of
almost all forms of matter. One triumph of the first theme is the theory of semi-
conductors, which lays the theoretical foundation for electronic devices that make
recent technological advances possible. The second theme is just as important. It
allows us to understand states of matter and phase transitions between them. It is
the theoretical foundation behind liquid crystal displays, magnetic recording, etc.

As condensed matter theory has been so successful, one starts to get a feeling
of completeness and a feeling of seeing the beginning of the end of condensed
matter theory. However, this book tries to present a different picture. It advocates
that what we have seen is just the end of the beginning. There is a whole new world
ahead of us waiting to be explored.

A peek into the new world is offered by the discovery of the fraction quantum
Hall effect (Tsui et al, 1982). Another peek is offered by the discovery of high-Tc

superconductors (Bednorz and Mueller, 1986). Both phenomena are completely
beyond the two themes outlined above. In last twenty years, rapid and exciting
developments in the fraction quantum Hall effect and in high-Tc superconductivity
have resulted in many new ideas and new concepts. We are witnessing an emer-
gence of a new theme in the many-body theory of condensed matter systems. This
is an exciting time for condensed matter physics. The new paradigm may even
have an impact on our understanding of fundamental questions of nature.

It is with this background that I have written this book.1 The first half of this
book covers the two old themes, which will be called traditional condensed matter
theory.2 The second part of this book offers a peek into the emerging new theme,
which will be called modern condensed matter theory. The materials covered in
the second part are very new. Some of them are new results that appeared only a
few months ago. The theory is still developing rapidly.

1 When I started to write this book in 1996, I planned to cover some new and exciting develop-
ments in quantum many-body theory. At that time it was not clear if those new developments would
become a new theme in condensed matter theory. At the moment, after some recent progress, I myself
believe that a new theme is emerging in condensed matter theory. However, the theory is still in the
early stages of its development. Only time will tell if we really do get a new theme or not.

2 Some people may call the first theme traditional condensed matter theory and the second theme
modern condensed matter theory.
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After reading this book, I hope, instead of a feeling of completeness, readers
will have a feeling of emptiness. After one-hundred years of condensed matter the-
ory, which offers us so much, we still know so little about the richness of nature.
However, instead of being disappointed, I hope that readers are excited by our
incomplete understanding. It means that the interesting and exciting time of con-
densed matter theory is still ahead of us, rather than behind us. I also hope that
readers will gain a feeling of confidence that there is no question that cannot be
answered and no mystery that cannot be understood. Despite there being many
mysteries which remain to be understood, we have understood many mysteries
which initially seemed impossible to understand. We have understood some fun-
damental questions that, at the beginning, appeared to be too fundamental to even
have an answer. The imagination of the human brain is also boundless.3

This book was developed when I taught the quantum many-body physics course
between 1996 and 2002 at MIT. The book is intended for graduate students who
are interested in modern theoretical physics. The first part (Chapters 2-5) cov-
ers traditional many-body physics, which includes path integrals, linear responses,
the quantum theory of friction, mean-field theory for interacting bosons/fermions,
symmetry breaking and long-range order, renormalization groups, orthogonality
catastrophe, Fermi liquid theory, and nonlinear -models. The second part (Chap-
ters 6-10) covers topics in modern many-body physics, which includes fractional
quantum Hall theory, fractional statistics, current algebra and bosonization, quan-
tum gauge theory, topological/quantum order, string-net condensation, emergent
gauge-bosons/fermions, the mean-field theory of quantum spin liquids, and two-
or three-dimensional exactly soluble models.

Most of the approaches used in this book are based on quantum field theory
and path integrals. Low-energy effective theory plays a central role in many of our
discussions. Even in the first part, I try to use more modern approaches to address
some old problems. I also try to emphasize some more modern topics in traditional
condensed matter physics. The second part covers very recent work. About half of
it comes from research work performed in the last few years. Some of the second
part is adapted from my research/review papers (while some research papers were
adapted from parts of this book).

The book is written in a way so as to stress the physical pictures and to stress the
development of thoughts and ideas. I do not seek to present the material in a neat
and compact mathematical form. The calculations and the results are presented
in a way which aims to expose their physical pictures. Instead of sweeping ugly
assumptions under the rug, I try to expose them. I also stress the limitations of
some common approaches by exposing (instead of hiding) the incorrect results
obtained by those approaches.

3 I wonder which will come out as a 'winner', the richness of nature or the boundlessness of the
human imagination.
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Instead of covering many different systems and many different phenomena,
only a few simple systems are covered in this book. Through those simple systems,
we discuss a wide range of physical ideas, concepts, and methods in condensed
matter theory. The texts in smaller font are remarks or more advanced topics,
which can be omitted in the first reading.

Another feature of this book is that I tend to question and expose some
basic ideas and pictures in many-body physics and, more generally, in theoreti-
cal physics, such as 'what are fermions?', 'what are gauge bosons?', the idea of
phase transition and symmetry breaking, 'is an order always described by an order
parameter?', etc. Here, we take nothing for granted. I hope that those discussions
will encourage readers to look beyond the nice mathematical formulations that
wrap many physical ideas, and to realize the ugliness and arbitrariness of some
physical concepts.

As mathematical formalisms become more and more beautiful, it is increas-
ingly easy to be trapped by the formalism and to become a 'slave' to the formalism.
We used to be 'slaves' to Newton's laws when we regarded everything as a col-
lection of particles. After the discovery of quantum theory,4 we become 'slaves'
to quantum field theory. At the moment, we want to use quantum field theory
to explain everything and our education does not encourage us to look beyond
quantum field theory.

However, to make revolutionary advances in physics, we cannot allow our
imagination to be trapped by the formalism. We cannot allow the formalism to
define the boundary of our imagination. The mathematical formalism is simply a
tool or a language that allows us to describe and communicate our imagination.
Sometimes, when you have a new idea or a new thought, you might find that you
cannot say anything. Whatever you say is wrong because the proper mathematics
or the proper language with which to describe the new idea or the new thought
have yet to be invented. Indeed, really new physical ideas usually require a new
mathematical formalism with which to describe them. This reminds me of a story
about a tribe. The tribe only has four words for counting: one, two, three, and
many-many. Imagine that a tribe member has an idea about two apples plus two
apples and three apples plus three apples. He will have a hard time explaining
his theory to other tribe members. This should be your feeling when you have a
truly new idea. Although this book is entitled Quantum field theory of many-body
systems, I hope that after reading the book the reader will see that quantum field
theory is not everything. Nature's richness is not bounded by quantum field theory.

I would like to thank Margaret O'Meara for her proof-reading of many chap-
ters of the book. I would also like to thank Anthony Zee, Michael Levin, Bas
Overbosch, Ying Ran, Tiago Ribeiro, and Fei-Lin Wang for their comments and

4 The concept of a classical particle breaks down in quantum theory. See a discussion in Section
2.2.
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suggestions. Last, but not least, I would like to thank the copy-editor Dr. Julie
Harris for her efforts in editing and polishing this book.

Lexington, MA Xiao-Gang Wen
October, 2003
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1

INTRODUCTION

1.1 More is different

• The collective excitations of a many-body system can be viewed as parti-
cles. However, the properties of those particles can be very different from the
properties of the particles that form the many-body system.

• Guessing is better than deriving.

• Limits of classical computing.

• Our vacuum is just a special material.

A quantitative change can lead to a qualitative change. This philosophy is
demonstrated over and over again in systems that contain many particles (or many
degrees of freedom), such as solids and liquids. The physical principles that gov-
ern a system of a few particles can be very different from the physical principles
that govern the collective motion of many-body systems. New physical concepts
(such as the concepts of fermions and gauge bosons) and new physical laws and
principles (such as the law of electromagnetisnl) can arise from the correlations of
many particles (see Chapter 10).

Condensed matter physics is a branch of physics which studies systems of many
particles in the 'condensed' (i.e. solid or liquid) states. The starting-point of current
condensed matter theory is the Schrodinger equation that governs the motion of a
number of particles (such as electrons and nuclei). The Schrodinger equation is
mathematically complete. In principle, we can obtain all of the properties of any
many-body system by solving the corresponding Schrodinger equation.

However, in practice, the required computing power is immense. In the 1980s,
a workstation with 32 Mbyte RAM could solve a system of eleven interacting elec-
trons. After twenty years the computing power has increased by 100-fold, which
allows us to solve a system with merely two more electrons. The computing power
required to solve a typical system of 1023 interacting electrons is beyond the imag-
ination of the human brain. A classical computer made by all of the atoms in our
universe would not be powerful enough to handle the problem/' Such an impos-
sible computer could only solve the Schrodinger equation for merely about 100

5J It would not even have enough memory to store a single state vector of such a system.
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particles.6 We see that an generic interacting many-body system is an extremely
complex system. Practically, it is impossible to deduce all of its exact properties
from the Schrodinger equation. So, even if the Schrodinger equation is the correct
theory for condensed matter systems, it may not always be helpful for obtaining
physical properties of an interacting many-body system.

Even if we do get the exact solution of a generic interacting many-body system,
very often the result is so complicated that it is almost impossible to understand
it in full detail. To appreciate the complexity of the result, let us consider a tiny
interacting system of 200 electrons. The energy eigenvalues of the system are dis-
tributed in a range of about 200 eV. The system has at least 2200 energy levels. The
level spacing is about 200 eV/2200 = 10-60 eV. Had we spent a time equal to the
age of the universe in measuring the energy, then, due to the energy-time uncer-
tainty relation, we could only achieve an energy resolution of order 10-33 eV. We
see that the exact result of the interacting many-body system can be so complicated
that it is impossible to check its validity experimentally in full detail.7 To really
understand a system, we need to understand the connection and the relationship
between different phenomena of a system. Very often, the Schrodinger equation
does not directly provide such an understanding.

As we cannot generally directly use the Schrodinger equation to understand an
interacting system, we have to start from the beginning when we are faced with a
many-body system. We have to treat the many-body system as a black box, just
as we treat our mysterious and unknown universe. We have to guess a low-energy
effective theory that directly connects different experimental observations, instead
of deducing it from the Schrodinger equation. We cannot assume that the theory
that describes the low-energy excitations bears any resemblance to the theory that
describes the underlying electrons and nuclei.

This line of thinking is very similar to that of high-energy physics. Indeed,
the study of strongly-correlated many-body systems and the study of high-energy
physics share deep-rooted similarities. In both cases, one tries to find theories
that connect one observed experimental fact to another. (Actually, connecting one
observed experimental fact to another is almost the definition of a physical theory.)
One major difference is that in high-energy physics we only have one 'material'
(our vacuum) to study, while in condensed matter physics there are many different
materials which may contain new phenomena not present in our vacuum (such
as fractional statistics, non-abelian statistics, and gauge theories with all kinds of
gauge groups).

6 This raises a very interesting question—how docs nature do its computation? How does nature
figure out the state of 1023 particles one second later? It appears that the mathematics that we use is
too inefficient. Nature does not do computations this way.

7 As we cannot check the validity of the result obtained from the Schrodinger equation in full
detail, our belief that the Schrodinger equation determines all of the properties of a many-body
system is just a faith.
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1.2 'Elementary' particles and physics laws are emergent phenomena

• Emergence—the first principle of many-body systems.

• Origin of 'elementary' particles.

• Origin of the 'beauty' of physics laws. (Why nature behaves reasonably.)

Historically, in our quest to understand nature, we have been misled by a funda-
mental (and incorrect) assumption that the vacuum is empty. We have (incorrectly)
assumed that matter placed in a vacuum can always be divided into smaller parts.
We have been dividing matter into smaller and smaller parts, trying to discover
the smallest 'elementary' particles—the fundamental building block of our uni-
verse. We have been believing that the physics laws that govern the 'elementary'
particles must be simple. The rich phenomena in nature come from these simple
physics laws.

However, many-body systems present a very different picture. At high ener-
gies (or high temperatures) and short distances, the properties of the many-body
system are controlled by the interaction between the atoms/molecules that form
the system. The interaction can be very complicated and specific. As we lower
the temperature, depending on the form of the interaction between atoms, a crys-
tal structure or a superfluid state is formed. In a crystal or a superfluid, the only
low-energy excitations are collective motions of the atoms. Those excitations are
the sound waves. In quantum theory, all of the waves correspond to particles, and
the particle that corresponds to a sound wave is called a phonon.8 Therefore, at
low temperatures, a new 'world' governed by a new kind of particle—phonons—
emerges. The world of phonons is a simple and 'beautiful' world, which is very
different from the original system of atoms/molecules.

Let us explain what we mean by 'the world of phonons is simple and beauti-
ful ' . For simplicity, we will concentrate on a superfluid. Although the interaction
between atoms in a gas can be complicated and specific, the properties of emergent
phonons at low energies are simple and universal. For example, all of the phonons
have an energy-independent velocity, regardless of the form of the interactions
between the atoms. The phonons pass through each other with little interaction
despite the strong interactions between the atoms. In addition to the phonons, the
superfluid also has another excitation called rotons. The rotons can interact with
each other by exchanging phonons, which leads to a dipolar interaction with a force
proportional to 1/r4. We see that not only are the phonons emergent, but even the
physics laws which govern the low-energy world of the phonons and rotons are
emergent. The emergent physics laws (such as the law of the dipolar interaction
and the law of non-interacting phonons) are simple and beautiful.

8 A crystal has three kinds of phonons, while a superfluid has only one kind of phonon.
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I regard the law of 1/r4 dipolar interaction to be beautiful because it is not
1/r3, or 1/r4-13, or one of billions of other choices. It is precisely 1/r4, and so
it is fascinating to understand why it has to be 1/r4. Similarly, the 1/r2 Coulomb
law is also beautiful and fascinating. We will explain the emergence of the law of
dipolar interaction in superfluids in the first half of this book and the emergence of
Coulomb's law in the second half of this book.

If our universe itself was a superfluid and the particles that form the superfluid
were yet to be discovered, then we would only know about low-energy phonons.
It would be very tempting to regard the phonon as an elementary particle and the
1/r4 dipolar interaction between the rotons as a fundamental law of nature. It is
hard to imagine that those phonons and the law of the 1/r4 dipolar interaction
come from the particles that are governed by a very different set of laws.

We see that in many-body systems the laws that govern the emergent low-
energy collective excitations are simple, and those collective excitations behave
like particles. If we want to draw a connection between a many-body system and
our vacuum, then we should connect the low-energy collective excitations in the
many-body system to the 'elementary' particles (such as the photon and the elec-
tron) in the vacuum. But, in the many-body system, the collective excitations are
not elementary. When we examine them at short length scales, a complicated non-
universal atomic/molecular system is revealed. Thus, in many-body systems we
have collective excitations (also called quasiparticles) at low energies, and those
collective excitations very often do not become the building blocks of the model at
high energies and short distances. The theory at the atomic scale is usually com-
plicated, specific, and unreasonable. The simplicity and the beauty of the physics
laws that govern the collective excitations do not come from the simplicity of the
atomic/molecular model, but from the fact that those laws have to allow the collec-
tive excitations to survive at low energies. A generic interaction between collective
excitations may give those excitations a large energy gap, and those excitations will
be unobservable at low energies. The interactions (or physics laws) that allow gap-
less (or almost gapless) collective excitations to exist must be very special—and
'beautiful'.

If we believe that our vacuum can be viewed as a special many-body mate-
rial, then we have to conclude that there are no 'elementary' particles. All of the
so-called 'elementary' particles in our vacuum are actually low-energy collective
excitations and they may not be the building blocks of the fundamental theory.
The fundamental theory and its building blocks at high energies9 and short dis-
tances are governed by a different set of physical laws. According to the point of
view of emergence, those laws may be specific, non-universal, and complicated.

9 Here, by high energies we mean the energies of the order of the Planck scale Mp = 1.2 x
1019 GeV.
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The beautiful world and reasonable physical laws at low energies and long dis-
tances emerge as a result of a 'natural selection': the physical laws that govern the
low-energy excitations should allow those excitations to exist at low energies. In a
sense, the 'natural selection' explains why our world is reasonable.

Someone who knows both condensed matter physics and high-energy physics
may object to the above picture because our vacuum appears to be very different
from the solids and liquids that we know of. For example, our vacuum contains
Dirac fermions (such as electrons and quarks) and gauge bosons (such as light),
while solids and liquids seemingly do not contain these excitations. It appears
that light and electrons are fundamental and cannot be emergent. So, to apply
the picture of emergence in many-body systems to elementary particles, we have
to address the following question: can gauge bosons and Dirac fermions emerge
from a many-body system? Or, more interestingly, can gauge bosons and Dirac
fermions emerge from a many-boson system?

The fundamental issue here is where do fermions and gauge bosons come
from? What is the origin of light and fermions? Can light and fermions be an
emergent phenomenon? We know that massless (or gapless) particles are very rare
in nature. If they exist, then they must exist for a reason. But what is the reason
behind the existence of the massless photons and nearly massless fermions (such
as electrons)? (The electron mass is smaller than the natural scale—the Planck
mass—by a factor of 1022 and can be regarded as zero for our purpose.) Can
many-body systems provide an answer to the above questions?

In the next few sections we will discuss some basic notions in many-body sys-
tems. In particular, we will discuss the notion that leads to gapless excitations and
the notion that leads to emergent gauge bosons and fermions from local bosonic
models. We will see that massless photons and massless fermions can be emergent
phenomena.

1.3 Corner-stones of condensed matter physics

• Landau's symmetry-breaking theory (plus the renormalization group the-
ory) and Landau's Fermi liquid theory form the foundation of traditional
condensed matter physics.

The traditional many-body theory is based on two corner-stones, namely
Landau's Fermi liquid theory and Landau's symmetry-breaking theory (Landau,
1937; Ginzburg and Landau, 1950). The Fermi liquid theory is a perturbation
theory around a particular type of ground state—the states obtained by filling
single-particle energy levels. It describes metals, semiconductors, magnets, super-
conductors, and superfluids. Landau's symmetry-breaking theory points out that
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the reason that different phases are different is because they have different symme-
tries. A phase transition is simply a transition that changes the symmetry. Landau's
symmetry-breaking theory describes almost all of the known phases, such as soh'd
phases, ferromagnetic and anti-ferromagnetic phases, superfluid phases, etc., and
all of the phase transitions between them.

Instead of the origin of light and fermions, let us first consider a simpler prob-
lem of the origin of phonons. Using Landau's symmetry-breaking theory, we can
understand the origin of the gapless phonon. In Landau's symmetry-breaking the-
ory, a phase can have gapless excitations if the ground state of the system has a
special property called spontaneous breaking of the continuous symmetry (Nambu,
1960; Goldstone, 1961). Gapless phonons exist in a solid because the solid breaks
the continuous translation symmetries. There are precisely three kinds of gapless
phonons because the solid breaks three translation symmetries in the x, y, and z
directions. Thus, we can say that the origin of gapless phonons is the translational
symmetry breaking in solids.

It is quite interesting to see that our understanding of a gapless excitation—
phonon—is rooted in our understanding of the phases of matter. Knowing light to
be a massless excitation, one may perhaps wonder if light, just like a phonon,
is also a Nambu-Goldstone mode from a broken symmetry. However, exper-
iments tell us that a gauge boson, such as light, is really different from a
Nambu-Goldstone mode in 3 + 1 dimensions.

In the late 1970s, we felt that we understood, at least in principle, all of the
physics about phases and phase transitions. In Landau's symmetry-breaking the-
ory, if we start with a purely bosonic model, then the only way to get gapless
excitations is via spontaneous breaking of a continuous symmetry, which will
lead to gapless scalar bosonic excitations. It seems that there is no way to obtain
gapless gauge bosons and gapless fermions from symmetry breaking. This may
be the reason why people think that our vacuum (with massless gauge bosons
and nearly-gapless fermions) is very different from bosonic many-body systems
(which were believed to contain only gapless scalar bosonic collective excitations,
such as phonons). It seems that there does not exist any order that gives rise to
massless light and massless fermions. Due to this, we put light and fermions into a
different category to phonons. We regard them as elementary and introduce them
by hand into our theory of nature.

However, if we really believe that light and fermions, just like phonons, exist
for a reason, then such a reason must be a certain order in our vacuum that protects
their masslessness.10 Now the question is what kind of order can give rise to light
and fermions, and protect their masslessness? From this point of view, the very

10 Here we have already assumed that light and fermions are not something that we place in an
empty vacuum. Our vacuum is more like an 'ocean' which is not empty. Light and fermions are
collective excitations that correspond to certain patterns of 'water' motion.
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existence of light and fermions indicates that our understanding of the states of
matter is incomplete. We should deepen and expand our understanding of the states
of matter. There should be new states of matter that contain new kinds of orders.
The new orders will produce light and fermions, and protect their masslessness.

1.4 Topological order and quantum order

• There is a new world beyond Landau's theories. The new world is rich and
exciting.

Our understanding of this new kind of order starts at an unexpected place—
fractional quantum Hall (FQH) systems. The FQH states discovered in 1982
(Tsui et aL, 1982; Laughlin, 1983) opened a new chapter in condensed mat
physics. What is really new in FQH states is that we have lost the two corner-
stones of the traditional many-body theory. Landau's Fermi liquid theory does
not apply to quantum Hall systems due to the strong interactions and correlations
in those systems. What is more striking is that FQH systems contain many dif-
ferent phases at zero temperature which have the same symmetry. Thus, those
phases cannot be distinguished by symmetries and cannot be described by Lan-
dau's symmetry-breaking theory. We suddenly find that we have nothing in the
traditional many-body theory that can be used to tackle the new problems. Thus,
theoretical progress in the field of strongly-correlated systems requires the intro-
duction of new mathematical techniques and physical concepts, which go beyond
the Fermi liquid theory and Landau's symmetry-breaking principle.

In the field of strongly-correlated systems, the developments in high-energy
particle theory and in condensed matter theory really feed upon each other. We
have seen a lot of field theory techniques, such as the nonlinear a-model, gauge
theory, bosonization, current algebra, etc., being introduced into the research of
strongly-correlated systems and random systems. This results in a very rapid devel-
opment of the field and new theories beyond the Fermi liquid theory and Landau's
symmetry-breaking theory. This book is an attempt to cover some of these new
developments in condensed matter theory.

One of the new developments is the introduction of quantum/topological order.
As FQH states cannot be described by Landau's symmetry-breaking theory, it was
proposed that FQH states contain a new kind of order—topological order (Wen,
1990, 1995). Topological order is new because it cannot be described by sym-
metry breaking, long-range correlation, or local order parameters. None of the
usual tools that we used to characterize a phase apply to topological order. Despite
this, topological order is not an empty concept because it can be characterized
by a new set of tools, such as the number of degenerate ground states (Haldane



and Rezayi, 1985), quasiparticle statistics (Arovas et al, 1984), and edge states
(Halperin, 1982; Wen, 1992).

It was shown that the ground-state degeneracy of a topologically-ordered state
is robust against any perturbations (Wen and Niu, 1990). Thus, the ground-state
degeneracy is a universal property that can be used to characterize a phase. The
existence of topologically-degenerate ground states proves the existence of topo-
logical order. Topological degeneracy can also be used to perform fault-tolerant
quantum computations (Kitaev, 2003).

The concept of topological order was recently generalized to quantum order
(Wen, 2002c) to describe new kinds of orders in gapless quantum states. One
way to understand quantum order is to see how it fits into a general classifica-
tion scheme of orders (see Fig. 1.1). First, different orders can be divided into
two classes: symmetry-breaking orders and non-symmetry-breaking orders. The
symmetry-breaking orders can be described by a local order parameter and can
be said to contain a condensation of point-like objects. The amplitude of the
condensation corresponds to the order parameter. All of the symmetry-breaking
orders can be understood in terms of Landau's symmetry-breaking theory. The
non-symmetry-breaking orders cannot be described by symmetry breaking, nor
by the related local order parameters and long-range correlations. Thus, they are
a new kind of order. If a quantum system (a state at zero temperature) contains
a non-symmetry-breaking order, then the system is said to contain a non-trivial
quantum order. We see that a quantum order is simply a non-symmetry-breaking
order in a quantum system.

Quantum orders can be further divided into many subclasses. If a quantum
state is gapped, then the corresponding quantum order will be called the topolog-
ical order. The low-energy effective theory of a topologically-ordered state will

8 INTRODUCTION

FIG. 1.1. A classification of different orders in matter (and in a vacuum).
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be a topological field theory (Witten, 1989). The second class of quantum orders
appears in Fermi liquids (or free fermion systems). The different quantum orders
in Fermi liquids are classified by the Fermi surface topology (Lifshitz, 1960). The
third class of quantum orders arises from a condensation of nets of strings (or sim-
ply string-net condensation) (Wen, 2003a; Levin and Wen, 2003; Wen, 2003b).
This class of quantum orders shares some similarities with the symmetry-breaking
orders of 'particle' condensation.

We know that different symmetry-breaking orders can be classified by sym-
metry groups. Using group theory, we can classify all of the 230 crystal orders
in three dimensions. The symmetry also produces and protects gapless collec-
tive excitations—the Nambu-Goldstone bosons—above the symmetry-breaking
ground state. Similarly, different string-net condensations (and the corresponding
quantum orders) can be classified by mathematical object called projective sym-
metry group (PSG) (Wen, 2002c). Using PSG, we can classify over 100 different
two-dimensional spin liquids that all have the same symmetry. Just like the sym-
metry group, the PSG can also produce and protect gapless excitations. However,
unlike the symmetry group, the PSG produces and protects gapless gauge bosons
and fermions (Wen, 2002a,c; Wen and Zee, 2002). Because of this, we can say
that light and tnassless fermions can have a unified origin; they can emerge from
string-net condensations.

In light of the classification of the orders in Fig. 1.1, this book can be divided
into two parts. The first part (Chapters 3-5) deals with the symmetry-breaking
orders from 'particle' condensations. We develop the effective theory and study
the physical properties of the gapless Nambu-Goldstone modes from the fluctua-
tions of the order parameters. This part describes 'the origin of sound' and other
Nambu-Goldstone modes. It also describes the origin of the law of the 1/V4 dipo-
lar interaction between rotons in a superfluid. The second part (Chapters 7-10)
deals with the quantum/topological orders and string-net condensations. Again,
we develop the effective theory and study the physical properties of low-energy
collective modes. However, in this case, the collective modes come from the fluc-
tuations of condensed string-nets and give rise to gauge bosons and fermions. So,
the second part provides 'an origin of light and electrons', as well as other gauge
bosons and fermions. It also provides an origin of the 1/r2 Coulomb law (or, more
generally, the law of electromagnetism).

1.5 Origin of light and fermions

• The string-net condensation provides an answer to the origin of light and
fermions. It unifies gauge interactions and Fermi statistics.
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FIG. 1.2. Our vacuum may be a state filled with a string-net. The fluctuations of the string-net give

rise to gauge bosons. The ends of the strings correspond to electrons, quarks, etc.

We used to believe that, to have light and fermions in our theory, we have to
introduce by hand a fundamental U(l) gauge field and anti-commuting fermion
fields, because at that time we did not know of any collective modes that behave
like gauge bosons and fermions. However, due to the advances over the last twenty
years, we now know how to construct local bo sonic systems that have emergent
unconfined gauge bosons and/or fermions (Foerster et al, 1980; Kalmeyer and
Laughlin, 1987; Wen et al., 1989; Read and Sachdev, 1991; Wen, 1991a; Moess-
ner and Sondhi, 2001; Motrunich and Senthil, 2002; Wen, 2002a; Kitaev, 2003;
Levin and Wen, 2003). In particular, one can construct ugly bosonic spin models
on a cubic lattice whose low-energy effective theory is the beautiful quantum elec-
trodynamics (QED) and quantum chromodynamics (QCD) with emergent photons,
electrons, quarks, and gluons (Wen, 2003b).

This raises the following issue: do light and fermions in nature come from a
fundamental U(l) gauge field and anti-commuting fields as in the U(l) x SU(2) x
SU(3) standard model, or do they come from a particular quantum order in our
vacuum? Is Coulomb's law a fundamental law of nature or just an emergent phe-
nomenon? Clearly, it is more natural to assume that light and fermions, as well as
Coulomb's law, come from a quantum order in our vacuum. From the connections
between string-net condensation, quantum order, and massless gauge/fermion
excitations, we see that string-net condensation provides a way to unify light and
fermions. It is very tempting to propose the following possible answers to the three
fundamental questions about light and fermions.
What are light and fermions?
Light is the fluctuation of condensed string-nets (of arbitrary sizes). Fermions are
ends of condensed strings.
Where do light and fermions come from?
Light and fermions come from the collective motions of string-nets that fill the
space(see Fig. 1.2).
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Why do light and fermions exist?
Light and fermions exist because our vacuum happens to have a property called
string-net condensation.

Had our vacuum chosen to have 'particle' condensation, then there would be
only Nambu-Goldstone bosons at low energies. Such a universe would be very
boring. String-net condensation and the resulting light and fermions provide a
much more interesting universe, at least interesting enough to support intelligent
life to study the origin of light and fermions.

1.6 Novelty is more important than correctness

• The Dao that can be stated cannot be eternal Dao. The Name that can be
named cannot be eternal Name. The Nameless is the origin of universe. The
Named is the mother of all matter.11

• What can be stated cannot be novel. What cannot be stated cannot be correct.

In this introduction (and in some parts of this book), I hope to give the reader
a sense of where we come from, where we stand, and where we are heading in
theoretical condensed matter physics. I am not trying to summarize the generally
accepted opinions here. Instead, I am trying to express my personal and purposely
exaggerated opinions on many fundamental issues in condensed matter physics
and high-energy physics. These opinions and pictures may not be correct, but I
hope they are stimulating. From our experience of the history of physics, we can
safely assume that none of the current physical theories are completely correct.
(According to Lao Zi, the theory that can be written down cannot be the eternal
theory, because it is limited by the mathematical symbols that we used to write
down the theory.) The problem is to determine in which way the current theories
are wrong and how to fix them. Here we need a lot of imagination and stimulation.

11 These arc the first four sentences of Dao de jing written by a Chinese philosopher Lao Zi over
2500 years ago. The above is a loose direct translation. Dao has meanings of 'way', 'law', 'conduct',
ete. There are many very different translations of Dao de jing. It is interesting to search the Web
and eomparc those different translations. The following is a translation in the context of this book.
'The physical theory that can be formulated cannot be the final ultimate theory. The classification
that can be implemented cannot classify everything. The unt'ormulatable ultimate theory does exist
and governs the creation of the universe. The formulated theories describe the mailer we see every
day.'
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1.7 Remarks: evolution of the concept of elementary particles

• As time goes by, the status of elementary particles is downgraded from the
building blocks of everything to merely collective modes of, possibly, a lowly
bosonic model.

The Earth used to be regarded as the center of the universe. As times went by, its
status was reduced to merely one of the billions of planets in the universe. It appears that
the concept of elementary particles may have a similar fate.

At the beginning of human civilization, people realized that things can be divided into
smaller and smaller parts. Chinese philosophers theorized that the division could be con-
tinued indefinitely, and hence that there were no elementary particles. Greek philosophers
assumed that the division could not be continued indefinitely. As a result, there exist ultimate
and indivisible particles—the building blocks of all matter. This may be the first concept of
elementary particles. Those ultimate particles were called atomos. A significant amount of
scientific research has been devoted to finding these atomos.

Around 1900, chemists discovered that all matter is formed from a few dozen different
kinds of particles. People jumped the gun and named them atoms. After the discovery of
the electron, people realized that elementary particles are smaller than atoms. Now, many
people believe that photons, electrons, quarks, and a few other particles are elementary
particles. Those particles are described by a field theory which is called the U( 1) x 577(2) x
577(3) standard model.

Although the £7(1) x 577(2) x SU(3) standard model is a very successful theory, now
most high-energy physicists believe that it is not the ultimate theory of everything. The
[/(I) x 577(2) x 577(3) standard model may be an effective theory that emerges from a
deeper structure. The question is from which structure may the standard model emerge?

One proposal is the grand unified theories in which the [/(I) x 577(2) x 577(3) gauge
group is promoted to 5(7(5) or even bigger gauge groups (Georgi and Glashow, 1974). The
grand unified theories group the particles in the (7(1) x SU(2) x 577(3) standard model
into very nice and much simpler structures. However, I would like to remark that I do not
regard the photon, electron, and other elementary particles to be emergent within the grand
unified theories. In the grand unified theories, the gauge structure and the Fermi statistics
were fundamental in the sense that the only way to have gauge bosons and fermions was to
introduce vector gauge fields and anti-commuting fermion fields. Thus, to have the photon,
electron, and other elementary particles, we had to introduce by hand the corresponding
gauge fields and fermion fields. Therefore, the gauge bosons and fermions were added by
hand into the grand unified theories; they did not emerge from a simpler structure.

The second proposal is the superstring theory (Green et a/., 1988; Polchinski, 1998).
Certain superstring models can lead to the effective (7(1) x SU(2) x 577(3) standard model
plus many additional (nearly) massless excitations. The gauge bosons and the graviton
are emergent because the superstring theory itself contains no gauge fields. However, the
Fermi statistics are not emergent. The electron and quarks come from the anti-commuting
fermion fields on a (1 + l)-dimensional world sheet. We see that, in the superstring theory,
the gauge bosons and the gauge structures are not fundamental, but the Fermi statistics
and the fermions are still fundamental.

Recently, people realized that there might be a third possibility—string-net condensa-
tion. Banks et al. (1977) and Foerster ef a/. (1980) first pointed out that light can emerge as
low-energy collective modes of a local bosonic model. Levin and Wen (2003) pointed out
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that even three-dimensional fermions can emerge from a local bosonic model as the ends
of condensed strings. Combining the two results, we find that the photon, electron, quark,
and gluon (or, more precisely, the QED and the QCD part of the 17(1) x SU(2) x 577(3) stan-
dard model) can emerge from a local bosonic model (Wen, 2002a, 2003b) if the bosonic
model has a string-net condensation. This proposal is attractive because the gauge bosons
and fermions have a unified origin. In the string-net condensation picture, neither the
gauge structure nor the Fermi statistics are fundamental; all of the elementary particles
are emergent.

However, the third proposal also has a problem: we do not yet know how to produce the
SU(2) part of the standard model due to the chiral fermion problem. There are five deep
mysteries in nature, namely, identical particles, Fermi statistics, gauge structure, chiral
fermions, and gravity. The string-net condensation only provides an answer to the first three
mysteries; there are two more to go.



2

PATH INTEGRAL FORMULATION OF QUANTUM
MECHANICS

This book is about the quantum behavior of many-body systems. However, the
standard formulation of the quantum theory in terms of wave functions and the
Schrodinger equation is not suitable for many-body systems. In this chapter, we
introduce a semiclassical picture and path integral formalism for quantum theory.
The path integral formalism can be easily applied to many-body systems. Here,
we will use one-particle systems as concrete examples to develop the formalism.
We will also apply a path integral formalism to study quantum friction, simple
quantum circuits, etc.

2.1 Semiclassical picture and path integral

• A semiclassical picture and a path integral formulation allow us to visualize
quantum behavior. They give us a global view of a quantum system.

When we are thinking of a physical problem or trying to understand a phe-
nomenon, it is very important to have a picture in our mind to mentally visualize
the connection between different pieces of a puzzle. Mental visualization is easier
when we consider a classical system because the picture of a classical system is
quite close to what we actually see in our everyday life. However, when we con-
sider a quantum system, visualization is much harder. This is because the quantum
world does not resemble what we see every day. In the classical world, we see
various objects. With a little abstraction, we view these objects as collections
of particles. The concept of a particle is the most important concept in classical
physics. It is so simple and plain that people take it for granted and do not bother
to formulate a physical law to state such an obvious truth. However, it is this obvi-
ous truth which turns out to be false in the quantum world. The concept of a particle
with a position and velocity simply does not exist in the quantum world. So, the
challenge is how to visualize anything in the quantum world where the concept of
a particle (i.e. the building block of objects) does not exist.

The path integral formalism is an attempt to use a picture of the classical world
to describe the quantum world. In other words, it is a bridge between the classical
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world (where we have our experiences and pictures) and the quantum world (which
represents realities). The path integral formalism will help us to visualize quantum
behavior in terms of the pictures of corresponding classical systems.

where

2.1.1 Propagator of a particle

• Concept of a propagator.

• The pole structure of a propagator in ui space.

Consider a particle in one dimension:

The time evolution operator

completely determines the behavior and properties of the system. In this section
we will always assume that t\, > ta. Throughout this book we shall set h = 1.

The matrix elements of U in the coordinate basis are

which represent the probability amplitude of finding a particle at position xi, at time
if, if the particle was at xa at time ta. Here G(xb, tb, xa-, ta} is called the propagator
and it gives a full and complete description of our one-particle quantum system.

It is clear that the propagator G satisfies the Schrodinger equation

with the initial condition

Solving the Schrodinger equation, we find the free-particle propagator for V(x)
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We can also use the energy eigenstates n) (with energy en) to expand U. The
propagator in the new basis has the following simpler form:

which has a simple pole at each energy eigenvalue. Here 0+ is an infinitely
small, positive number which was introduced to make the integrals converge. The
propagator in coordinate space has a similar structure:

We see that, by analyzing the pole structure of G(xb,xa,uj), we can obtain
information about the energy eigenvalues.

To re-obtain the propagator in time

we need to choose the contour in the lower half of the complex w-plane if t > 0,
and in the upper half of the complex w-plane if t < 0, so that the integral along the
contour is finite. As 0+ makes the pole appear slightly below the real axis of the
complex o;-plane, we find that

In the frequency space, it is given by

where
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Problem 2.1.1.
Show that, in the frequency space, we have

where ii>n are the energy eigenfunctions. The propagator for a harmonie oscillator has the
form

Study and explain the pole structure of (7(0,0, M) for the harmonic oscillator. (Hint: Try to
expand G(0,t,0,0) in the form 

Problem 2.1.2.
Find the propagator GE^, &„,<*») for a free particle in three dimensions in the wave vector
and frequency space.

2.1.2 Path integral representation of the propagator

• The path integral is a particular representation of the law of superposition in
quantum physics.

The spirit of the path integral formulation of a quantum system is very simple.
Consider that a particle propagates from position xa} to position |xf,) via an inter-
mediate state n), n = 1,2,.... Let the amplitude from |.xa) to Xb) via state n)
be given by An; then the total amplitude from \xa} to \xb} is J]n An. Now imag-
ine that we divide the propagation from \xa} to xb) into many time slices. Each
time slice has its own set of intermediate states. The propagation from xa) to \xb)
can be viewed as the sum of the paths that go through the intermediate states on
each time slice. This leads to a picture of the path integral representation of the
propagation amplitude.

To find a mathematical representation of the above picture, we note that the
amplitude from xa} to xb) is described by the matrix elements of the time
evolution operator U in position space. Here U satisfies

Thus, the propagator satisfies
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FIG. 2. 1 . The total amplitude is the sum of all amplitudes associated with the paths connecting 

and xi,.

Let us divide the time interval         into N equal segments, each of length   
      By using eqn (2. 1 .4) N - 1 times, we find that

Assuming that, with the proper choice of A, the definition of L in eqn (2.1.6)
makes sense in the       0 limit, then eqn (2.1.5) is the path integral representatio
of the propagator.

In the path integral representation, each path is assigned an amplitude 
The propagator is then just the sum of all of the amplitudes associated with the
paths connecting xa and x\, (Fig. 2.1). Such a summation is an infinite-dimensional
integral, and eqn (2.1.5) defines one way in which to evaluate such an infinite-
dimensional integral.

Now let us calculate L(t. x, x) for our one-particle system (2.1.1). For a free
particle system, we can use eqn (2.1.2) to calculate L(t,x,x). In the following
we will calculate L for a more general one-particle system described by H —

where and
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Note that, for small At, we have

Thus,

Thus, the path integral representation of the propagator is given by

The expression for L(x, x) calculated above is simply the corresponding
Lagrangian of the classical system. Thus, in principle, once we know a classical
system (described through a Lagrangian), then the corresponding quantum system
can be obtained through a path integral using the same Lagrangian.

Inserting 1 and using we find that

From eqn (2.1.6), we see that
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We may also insert eqn (2.1.7) into eqn (2.1.5) to obtain

which is a path integral in phase space. Here H(x, p) is the classical Hamiltonian.
If we define the phase-space measure to be

then the Hamiltonian H is identical to the classical one. It appears that the phase-
space path integral is more fundamental than the coordinate-space path integral,
because the annoying coefficient A (see eqn (2.1.9)) does not appear in the measure
of the path integral. We also note that the above phase-space measure has (N — 1)
dx integrals and N dp integrals.

We know that adding a total time derivative term to the Lagrangian, namely

L —>• L            oes not affect classical dynamics. However, such a change does
affect the quantum propagator, but in a trivial way:

show that the path integral representation of G is

Problem 2.1.3.
Coherent-state path integral:
Consider a harmonic oscillator H = uja^a. A coherent state |a) labeled by a complex

numberais an eigenstate of a: a\a) = a\ a). We may define a coherent-state propagator by

Using the completeness of the coherent state

(where d2a = dRe(a) dlm(a)) and the inner product
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where                       Show that the Lagrangian in the coherent-state path
integral

can be regarded as a propagator in imaginary time. The calculation in the last
section can be repeated, and we find the following path integral representation of
Q:

is simply the Lagrangian in the phase-space path integral

up to a total time derivative term.

2.1.3 Path integral representation of the partition function

• The path integral can also be used to study statistical systems.

The partition function is very useful when we consider statistical properties
of our quantum system at finite temperatures. The partition function of our one-
particle system (2.1.1) is given by

where is the inverse of the temperature and

The partition function can now be written as

with and and slightly different measure
If we compactify the imaginary-time

The corresponding phase-space path integral is

and
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direction, then the partition function will be just a sum of weighted loops wrapping
around the imaginary-time direction.

The path integrals (2.1.13) and (2.1.15) are often called imaginary-time path
integrals because they can be mapped into the real-time path integrals (2.1.5) and
(2.1.11) through an analytic continuation:

One finds that the integrals always converge if — | < 0 < f .
As a result of analytic continuation, the real-time and the imaginary-time prop-

agators are related as follows:

The analytic continuation often allows us to obtain a real-time propagator through
a calculation of the corresponding imaginary-time propagator, which is often a
simpler calculation.

Problem 2.1.4,
Derive the path integral representation of the imaginary-time propagator given in
eqn(2.1.13)andeqn(2.1.15).

2.1.4 Evaluation of the path integral

• When quantum fluctuations are not strong, stationary paths and quadratic
fluctuations around the stationary paths control the path integral.

• Stationary paths are solutions of classical equations of motion.

In the above, we derived a path integral representation of a quantum propagator.
Here we will directly evaluate the path integral and confirm that the path integral
indeed reproduces the quantum propagator. This calculation also allows us to gain
some intuitive understanding of the path integral and the quantum propagator.

Let us consider the semiclassical limit where the action of a typical path is
much larger than h = 1. In this limit, as we integrate over a range of paths, the
phase c l S changes rapidly and contributions from different paths cancel with each
other. However, near a stationary path xf(t) that satisfies

as we continuously change 0 from 0 to |. After replacing r by c'et in the
imaginary-time path integral, we have

all of the paths have the same phase and a constructive interference. Thus, the sta-
tionary path and the paths near it have dominant contributions to the path integral
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in the semiclassical limit. We also note that the stationary path is simply the path
of classical motion for the action S[x(t)]. Thus, the path integral representation
allows us to clearly see the relationship between classical motion and the quantum
propagator: quantum propagation of a particle essentially follows the path deter-
mined by the classical equation of motion with some 'wobbling'. This wobbling is
called quantum fluctuation. The path integral representation allows us to estimate
the magnitude of the quantum fluctuations. More precisely, the fluctuation 5x(t)
around the stationary path xc(t) that satisfies

will have a large contribution to the propagator, and hence represents a typical
quantum fluctuation.

Let us first evaluate the path integral (2.1.5) for a free particle. In this case,
eqn (2.1.5) becomes

The classical path (or the stationary path) for the free particle is given by

with a classical action

Introducing the fluctuation around the classical path given by

the path integral (2.1.17) can be rewritten as
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where the N — 1 by N — 1 matrix is given by

In the above example we have used the following important formula for a Gaussian
integral:

We see that the propagator is given by the classical action elSc multiplied by a
coefficient that is given by a Gaussian integral (or the corresponding determinant).
The coefficient is determined by the quantum fluctuations Sx around the classical
path.

We notice that only the e l Sc term depends on xa and o;&, while all of the other
terms depend only on  Thus, we have

From the normalization condition

we find that

which agrees with the standard result if we set the phase 0 = 0.
To calculate A(t) directly we need to calculate Det(M). In the following, we

will discuss some tricks which can be used to calculate the determinants. Let us
first consider the following N x N matrix:

One can show that



S E M I C L A S S I C A L P I C T U R E AND PATH I N T E G R A L 25

The above difference equation can be solved by using the ansatz Det
We find that

When u = 0, we have

which implies that Det(M)
that

Putting everything together, we find

which is precisely the quantum propagator for a free particle.
The path integral can be evaluated exactly for actions that are quadratic in x

and x. The most general quadratic action has the form

One can easily check that G is given by eqn (2.1.18) with

where                   The above path integral can be calculated using the
formula for Det(Mjv), and one finds that

Problem 2.1.5.
Consider a particle subjected to a constant force / (with poin one
dimension. Show that the propagator is given by

Problem 2.1.6.
Show that the propagator of a harmonic oscillator has the form

Use the normalization condition or the path integral to show that



2 6 PATH I N T E G R A L F O R M U L A T I O N OF Q U A N T U M M E C H A N I C S

Problem 2.1.7.
Use the imaginary-time path integral to calculate the propagator of a free particle in
imaginary time. Perform a proper analytic continuation to recover the real-time propagator.

Problem 2.1.8.
Use the imaginary-time path integral to calculate the propagator Q(0, 0, T) of a harmonic
oscillator in imaginary time. From the decay of </(0,0, T) in the T —> oc limit, obtain the
ground-state energy.

2.2 Linear responses and correlation functions

• Linear responses (such as susceptibility) are easy to measure. They are the
windows which allow us to see and study properties of matter.

To experimentalists, every physical system is a black box. To probe the prop-
erties of a physical system, experimentalists perturb the system and see how it
responds. This is how we learn about the internal structure of a hydrogen atom,
although no one can see it. We hit the atom (i.e. excite it with light, electrons,
or atom beams), and then we listen to how it rings (i.e. observe the emission
spectrum of an excited atom). As most perturbations are weak, experimentalists
usually observe linear responses in which the responses are proportional to the
perturbations. There are many types of experiment that measure linear responses,
such as measurements of elasticity, magnetic susceptibility, conductivity, etc. Neu-
tron scattering, nuclear magnetic resonance, X-ray diffraction, etc. also measure
the linear responses of a system. Thus, to develop a theory for a system, it is
very important to calculate various linear responses from the theory, because these
results are usually the easiest to check by experiment. In this section, we will
consider the linear response of a very simple system. Through this study, we will
obtain a general theory of a linear response.

Experiments are very important in any theory and are the only things that mat-
ter. In fact, the goal of every theoretical study is to understand the experimental
consequences. However, in this book, we will not discuss experiments very much.
Instead, we will discuss a lot about linear responses, or, more generally, correla-
tion functions. Due to the close relationship between experiments and correlation
functions, we wil l view correlation functions as our 'experimental results'. The
discussions in this book are centered around those 'experimental results". When
we discuss a model, the purpose of the discussion is to understand and calculate
various correlation functions. In this book, we will treat the correlation functions
as the physical properties of a system.

A philosophical question arises from the above discussion: what is reality? Imagine a
world where the only things that can be measured are linear responses. Then, in that world,
linear responses will represent the whole reality, and physical theory will be a theory of
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linear responses. In our world, we can measure things beyond linear responses. However,
it appears that we cannot go much further than that. All that we can measure in our world
appears to be correlation functions. Thus, it is tempting to define the physical theory of
our world as a theory of correlation functions, and correlation functions may represent the
reality of our world.

This point is important because many concepts and building blocks in our physical the-
ory do not represent reality. These concepts may change when new theories are developed.
For example, the point particle (with position and velocity) is a fundamental concept of New-
ton's classical theory. We used to believe that everything is formed by particles and that
particles are the building blocks of reality. After the development of quantum theory, we
now believe that particles do not represent reality; instead, quantum states in linear Hilbert
space represent reality. However, quantum states are not things that we can directly mea-
sure. There is no guarantee that the concept of a quantum state will not have the same
fate as the concept of a particle when a new theory beyond quantum theory is developed.
(I hope the reader agrees with me that none of our present physical theories are ultimately
correct and represent the final truth.)

Physics is a science of measurement. Unfortunately, physical theories usually contain
many things that do not represent reality (such as the concept of a particle in Newton's clas-
sical mechanics). It is possible to have two completely different theories (which may even
be based on different concepts) to describe the same reality. Thus, it is very important to
always keep an eye on the realities (such as correlation functions and measurable quan-
tities) through the smoke-screen of formalism and unreal concepts in the theory. Going to
the extreme in this line of thinking, we can treat quantum states and quantum operators as
unreal objects and regard them as merely mathematical tools used to calculate correlation
functions that can be measured in experiments.

2.2.1 Linear responses and response functions

• Linear responses can be calculated from one type of correlation function—the
response functions—of the corresponding operators.

To understand the general structure of linear response theory, let us first study
the linear response of a simple quantum system—the polarization of a harmonic
oscillator

An electric field £ couples to the dipole operator ex:

The induced dipole moment is given by

where |-</j) is the ground state of HQ + HI. To the first order of the perturbation
theory,
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and we have

The susceptibility x is giv^ .
The above result can be expressed in terms of correlation functions. To under-

stand the general relationship between linear response and correlation functions,
we consider a general quantum system described by HQ. We turn the perturba-
tion on and off slowly and calculate the linear response using time-dependent
perturbation theory.

After including a time-dependent perturbation f(t)Oi, the total Hamiltonian is

We assume that the perturbation is turned on at a finite time. That is, f ( t ) — 0 for
t less than a starting time tstart- To obtain the response of an HQ eigenstate \4>n}
under the perturbation f(£)Oi, we start with  At a finite
time, the state evolves into

We can expand |V>n(i)} to first order in Oi as follows:

where

In the above, we have introduced
the change of the physical quantity Oz in the response to the perturbation f(t)Oi,

where T(...) is a time-ordering operator:

To obtaiin
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we calculate

We see that the linear response of an electric dipole to an electric field is
related to the correlation of the dipole operator ex. In fact, all of the other lin-
ear responses have a similar structure. The coefficients of the linear responses can
be calculated from the correlation functions of appropriate operators. For exam-
ple, the conductivity can be calculated from the correlation function of the current
operators.

where D(t, t') is the response function defined by

and

At zero temperature, we should take |i/>n) to be the ground state, and obtain the
following zero-temperature response function:

As HQ is independent of t, we can show that D(t, t') is a function oft — t' only. We
will write £>(t, t') as D(t — t'}. The response  for the ground state is given
by

To see if eqn (2.2.6) reproduces the result (2.2.1) for the harmonic oscillator,
we note that — e£ plays the role of /(t) and O\ = 0% = ex. To apply eqn (2.2.6),
we need to calculate the response function

To obtain the induced dipole moment from eqn (2.2.6), we need to assume that the
electric field is turned on and off sL We find that Weind that

where
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2.2.2 Time-ordered correlation functions and the path integral

• Response functions can be expressed in terms of time-ordered correlation
functions.

• Time-ordered correlation functions can be calculated through the path inte-
gral.

In this section, we would like to consider how to calculate the response function
using the path integral. We first note that, for t > t', the response function D(t, t!)
contains two terms . The first term can be
written as

where it is understood that x(t) = 0 at the boundaries t — ±00, and the time
t contains a small imaginary part, namely                   We note that the 'nasty'

where U(t,t') is given by e-i(t-*')^>.
We know that the time evolution operator U(t. t1) can be expressed in terms

of the path integral. But this is not enough. To calculate G(t, t') using the path
integral, we also need to know the ground state |0). In the following, we will
discuss a trick which allows us to calculate G(i, t') without knowing the ground-
state wave function |0). First, we would like to generalize eqn (2.2.9) to complex
time by introducing the modified evolution operator

with a small positive 6 (we have assumed that ti, — ta > 0). Note that, for large
tb — ta, only the ground state |0) contributes to (^\Ue(th, ta)\il>), where |i/>} is an
arbitrary state. Thus, the operator Ue(tb,ta) performs a projection to the ground
state. Therefore, we may write Gx as

If we choose \ijj) = 6(x), then eqn (2.2.10) can be readily expressed in terms of
path integrals:

and
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coefficient in the path integral representation of the propagator cancels out when
we calculate the correlation functions. This greatly simplifies the path integral
calculations.

We would like to remark that the correlation G(ti,t\) defined in the path inte-
gral (2.2.11) is a so-called time-ordered correlation function. This is because, for
t-2 > ti, it is equal to

while, for t% < t\, it is equal to

The above expressions allow us to show that G(t^t\) only depends on
t\ and can be written as

the time-ordered correlation function can be written
in the following more compact form (in the Heisenberg picture):

As an application, let us use the path integral to calculate the time-ordered
armonic oscillator HQ =

 After including the small imaginary part for time, namely
with          the action of the oscillator becomes S =

 and eqn (2.2.11) becomes

We can use the following formula (see Problem 2.2.1) to evaluate the above ratio:

The only difference is that the vector Xi and the matrix Aij are labeled by inte-
gers in eqn (2.2.14), while the vector x(t) and the matrix
functions of the real numbers t in eqn (2.2.13). Comparing eqns (2.2.13) and
(2.2.14), we see that is just the matrix elements of the operator

corre

Introducing

are
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In other words, it satisfies

has a solution

which is finite as the above expression becomes

In frequency space the correlation is given by

To summarize,

is just the inverse of the operator
that appears in the action S

The lengthy calculation above and the trick of replacing t by         only tell us
how to introduce the infinitely small, but important, 0+.

The second term in the response function D(t,t'), namely
has an incorrect time order because t > t'. However, this can be fixed by noting
that  Therefore, the response function
can be expressed in terms of time-ordered correlation functions:

So, we can use path integrals to calculate the response function through the time-
ordered correlation functions.

When Oi:z are hermitian, we have

We can show that, in uj space,When i we have
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FIG. 2.2. A CL circuit with a dipole in the capacitor.

to calculate the correlation                                 in real and frequency space. (Hint: Use
the complex time
(b) Compare your result with the corresponding time-ordered correlation function

for both t > 0 and t < 0. Also pay attention to the limits
(c) Now we want to calculate                         and             using the coherent-state path integral.
The problem is that both operators became a*a in the path integral. How do we resolve
this problem in light of the above calculation? Describe how to use the path integral to
calculate the following correlation: 

2.2.3 Effective theory

• Effective theory is a very important concept. If you only want to remember
one thing from field theory, then remember effective theory.

We know that the electric dipole moment couples to the electric field £. To
see how the coupling affects the dynamics of the electric field, let us consider a
CL circuit (see Fig. 2.2). In the absence of a dipole moment, the dynamics of the
electric field in the capacitor are described by the action 

where UJCL is the oscillation frequency of the CL circuit. The coupled
system is described by

where L(x, x ) describes the dynamics of the dipole and        describes the coupling
between the dipole and the electric field.

Problem 2.2.1.
Prove eqn (2.2.14). (Hint: Calculate
second order in J.)

and expand the result to

Problem 2.2.2.
(a) Use the coherent-state path integral and the generating functional where



We see that after integrating out the high frequency x(t), the low frequency electric
field is described by a simple effective Lagrangian. The coupling to the dipole
shifts the oscillation frequency of the electric field to a lower value u*CL.

Problem 2.2.3.
Low-energy effective theory of coupled harmonic oscillators: Consider a system of two
coupled harmonic oscillators:

where

and m     In this case, X is a high-energy
degree of freedom which oscillates around X = 0. Find the low-energy effective theory
L0ff (x) that describes the low-energy dynamics of the soft degree of freedom x by inte-
grating out X. (You should include at least the leading ^ corrections.) In particular, find
the effective mass m* and the effective spring constant
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Let us assume            and integrate out the high frequency motion x(t).
We obtain the path integral that contains          alone:

We see that the dynamics of the electric field of the coupled system are described
by a new action                    which will be called the effective action. After
performing a Gaussian integral, we find that

which in turn gives us the effective Lagrangian for the electric field:

In the limit                         ^eff      be simplified as

Heere we assume that that

can
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2.2.4 Time-dependent response and dissipation

• The response function gives the correct real and imaginary parts of the sus-
ceptibility, while the time-ordered correlation function only gives the correct
real part of the susceptibility.

We can also use the path integral to calculate the response to a time-dependent
electric field. We note that the average dipole moment at time /, can be expressed
as

where

The imaginary part iO+ was calculated in Section 2.2.2.
The above path integral calculation of the finite-frequency susceptibility

belongs to a type of calculation called formal calculation. Using the path inte-
gral we can 'formally' calculate many things. However, the results obtained from
the 'formal' calculation have to be taken 'with a pinch of salt'. These results are
usually more or less correct, but may not be exactly correct. As we will see in Sec-
tion 2.4.3, Imx(w)Lj has a physical meaning. It represents the friction coefficient
at the frequency LJ. As ImG(w) is always negative, we find that Imx(u;)w > 0 if
w > 0 and Imx(aj)w < 0 if uj < 0. A negative friction coefficient for uj < 0 is an
unphysical and incorrect result. Thus, eqn (2.2.20) is not completely correct and it
does not agree with the previous result (2.2.8).

It turns out that the correct result (2.2.8) can be obtained from the incorrect one
by replacing the time-ordered correlation Gx by the response function D:

In this case, Imx(w)tj is always positive.

In frequency space, the above expression becomes  We find
that the finite-frequency susceptibility x(w) is given by
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In the above path integral calculation, we made an error by confusing the path
integral average w*tn me <Juantum mechanical average
In order for the path integral calculation to be valid, we need to assume that the
two averages are the same in the presence of an electric field. That is,

and we see that eqn (2.2.21) is indeed correct under the condition (2.2.22). How-
ever, if E(t) changes rapidly and excites the oscillator to higher and higher
excited states, then eqn (2.2.22) will no longer be correct and, even worse,

 may vanish when we have dissipation.
Here we have learnt two lessons. Firstly, the path integral results may be incor-

rect in the presence of dissipation and, secondly, the problem can be fixed by
replacing the time-ordered correlation by the response function.

Problem 2.2.4.
Consider a harmonic oscillator. Calculate the (time-ordered) current correlation function

in frequency space, namely             where the
current operator is j = ex. Calculate the finite-frequency conductance cr(w) (defined by

 using, say, classical physics. (You may add a small amount of friction to
obtain the dissipation term.) Show that, for w > 0, cr(uj) has the form
find the coefficient C. Show that cr(u>) has a nonzero real part only when uj = UJQ. (Hint:
Keep the i 0+ term in Gj.) At this frequency the oscillator can absorb energies by jumping
to higher excited states. We see that, in order to have finite real d.c. conductance, we need
to have gapless excitations.

2.2.5 Correlation functions at finite temperatures

At finite temperatures, a linear response is an average response of all excited states,
weighted by the Boltzmann factor. As the response function of a state |^ra) is given

where the right-hand side is the path integral average and the left-hand side is the
quantum mechanical average. This assumption is correct only when we turn on
and turn off the electric field slowly such that the ground state |0) evolves into the
same ground state from 

In this case,

and
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by eqn (2.2.4), the finite temperature response function is given by

We see again that linear responses can be described by the corresponding
correlation functions. In frequency space,

can be regarded as the finite-frequency susceptibility at finite temperatures.
Similarly, we define the time-ordered finite-temperature correlation function

With such a definition, eqn (2.2.18) can be generalized to finite temperatures:

2.2.6 Relation between correlation functions

• Response functions, time-ordered correlation functions, and spectral func-
tions at finite temperatures can be calculated from finite-temperature
imaginary-time correlation functions through proper analytic continuation.

We have introduced several kinds of correlation function. The response functions are
directly related to various susceptibilities measured in linear response experiments. The
time-ordered correlation functions are easy to calculate through the path integral. In this
section, we will discuss the relationships between these correlation functions. These rela-
tions allow us to obtain response functions from time-ordered correlation functions. The
calculations in this section are quite formal, but the results are useful. You may skip this
section if you do not like formal calculations. You only need to be aware of the relations in
the boxed equations.

To begin with, let us study the relationship between the finite-temperature correlations
of two operators O\ and O2 in real and imaginary time: iG"(t) — (T[O2(t)Oi ({))]) and

 To obtain more general results that will be used later for fermion

for finite temperatures. Thus,
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systems, we generalize our definition of G/3(t) and Q'3(r) as follows:

where 77 = ±. When 77 = + the correlations are called bosonic and when r? = - they are
called fermionic. Note that here we do not assume that Oi,2 = O| 2. Using

we find the spectral representation of G0(t) to be

If we introduce the finite-temperature spectral function as follows:

we can rewrite G'3 as

To understand the meaning of the spectral functions, let us consider a zero-temperature
spectral function We see that, when Oi
and O2 act on the ground state |0), they create the excited states
and with amplitudes Ci,m and C2,m, respectively. The function

is just a product of Ci,m and
then an excited state of energy is created by both O\ and O2. When

 is simply the weight of the states with energy v created by 
We note that the finite-temperature spectral function can be rewritten as

F
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In the last line of eqn (2.2.27) we have interchanged m and n. In this form, we can see a
very simple relationship between A?+ and A^_ at finite temperatures:

We also note that Al almost vanishes for w < - T and A"3 almost vanishes fo
At zero temperature, we have

To relate the spectral function A± of G0 in frequency space we need to introduce

We find that

and (
Next, let us consider the response function D®(t) which is generalized to be

It has the following spectral expansion:

In the frequency space, we have

ons 39
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We find that

We see that we can determine both the time-ordered correlation G13 and the response
function D13 from the spectral function A*± .

One way to calculate the spectral function from a path integral is to use the time-ordered
imaginary-time correlation function

where                      The function                can be also be written as

which allows us to show that

Comparing eqns (2.2.24) and (2.2.33), we see that G"3 and Q^ are related as follows:

The real-time Green's function can be calculated from the imaginary-time Green's function
even at finite temperatures.

As Q^(T) is (anti-)periodic, its frequency is discrete: cj* = 2nT x integer for 77 = + and
 (intege                  In frequency space, we have naively

The function Q^(T) also admits a spectral representation. For 0 < r < /?, we have
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However, when r/ = 1 and u>i = 0, the terms with m = n become undefined. Those terms
should be So, we really have

where 5 is a small complex number. This allows us to obtain, for 

Note that, when w ^ 0, 5 has no effect and can be dropped. Finally, we can express A+ _
in terms of Q13^) by comparing eqn (2.2.36) with eqn (2.2.26) and eqn (2.2.27). Fora; ̂  0,
we have

where re boson and fermion
occupation numbers, respectively. This allows us to determine G13 and D& from g". In par-
ticular, comparing eqns (2.2.31) and (2.2.35), we see that D^(u) and 6/3(oj() have a very
simple relationship:

Again 5 has been dropped because
It is interesting to see that the Fourier transformation and the analytic continuation of

6/3(r) do not commute. If we perform the analytic continuation first then we obtain the time-
ordered correlation function G13^). If we perform the Fourier transformation first then we
obtain the response function Dfl(a;). One may wonder about choosing a different analytic
continuation which is actually more natural. From our spectral represen-
tations, one can see that the new analytic continuation still cannot transform 6/3(o;Tl) into
G^OJ). However, at zero temperature, we indeed have

All of the above results have been obtained for a very general situation in which Oi,2 may
not be even hermitian. The results can have a simpler form when O\ = O\ and O2 = O\.
At T = 0 and for o> ̂  0, we have

AND
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, we have

There is no simple relationship between D0(u) and

We see that the spectral functions A| can be determined from one of 
in turn determines the other correlation functions.

As an example, let us calculate the finite-temperature susceptibility for our oscillator
problem. In frequency space the imaginary-time path integral takes the form

where We find that

The finite-temperature susceptibility is then given by

which is temperature independent, as expected.

Problem 2.2.5.
Use the spectral representation to prove eqn (2.2.39).

Problem 2.2.6.
Prove eqn (2.2.35) from the definition of ̂ (r).

Problem 2.2.7.
Prove eqn (2.2.43). Calculate at finite temperatures. Check the
T —»• 0 and T —> oo limits. (Hint: The following trick, which is used frequently in

when
We have

For and

which
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finite-temperature calculations, may be useful:

where Ci is the contour around the imaginary-z axis and C-2 is the contour of an infinite
circle around z = 0, see Fig. 2.3.)

2.3 Quantum spin, the Berry phase, and the path integral

2.3.1 The path integral representation of a quantum spin

• The Berry phase comes from the coherent-state representation of a family of
quantum states. The Berry phase is a geometric phase determined by overlaps
(inner products) between the coherent states.

• The action of the coherent path integral contains a Berry phase term.

Consider a spin-51 — ^ system described by the Hamiltonian H — 0. Can we
have a path integral formulation of such a spin system? Firstly, the spin system
with only two zero-energy states \sz), sz = ±1, seems too simple to have a path
integral formulation. Secondly, the path, as a time-dependent spin s ~ ( t ) , is not a
continuous function. So, to obtain a path integral formulation, we first make the
simple spin system more complicated. Instead of using \sz), we use the coherent
states |n) to describe different spin states.

The coherent states |n) are labeled by a unit vector n. It is an eigenstate of the
spin operator in the n direction, namely n • S\n} — S\n), and is given by

where er are Pauli matrices. The relation n — z^trz is also called the spinor repre-
sentation of the vector. Note that, for a given vector n, the total phase of the spinor

FIG. 2.3. Contours Ct and C2.
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z is not determined, i.e. z and e l®z give rise to the same n. However, we may pick
a phase and choose

where ($, </>) are the spherical angles of n.
As the state |n) has both a vanishing potential energy and kinetic energy, one

may expect the Lagrangian L(n, n) in the coherent-state path integral to be simply
zero. It turns out that the Lagrangian is quite non-trivial.

To calculate the Lagrangian, we note that the coherent states |n) are complete:

(The factor ^ can be obtained by taking a trace on both sides of the equation and
noting that Tr

mto the time interval [0, t], we find a path integral
representation of the propagator (n,2\U(t, 0)|rai}:12

is purely a quantum effect and is called the Berry
phase (Berry, 1984). Note that the term a*a that appears in the coherent-state path
integral is also a Berry phase. Thus, Berry's phase appears quite commonly in
coherent-state path integrals. We can make the following three observations.

is the identity operator. Thus, eqn (2.3.3) calculates the matrix elements
of an identity operator!
(b) Despite H = 0, the action is nonzero. However, because the action contains
only first-order time derivative terms, the nonzero action is consistent with H = 0.
If the spin has a finite energy E, then the action will contain a term which is pro-
portional to time: S — —tE. The Berry phase is of order t° and is different for the
energy term.
(c) The path integral of the action

12 Note that i

Inserting many

The phase term
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?f</>] is a phase-space path integral (see eqn (2.1.11)). Thus, (B,4>), just like
(q, p), parametrizes a two-dimensional phase space. However, unlike ( q , p ) which
parametrizes a flat phase space, (0,0) parametrizes a curved phase space (which
is a two-dimensional sphere).

2.3.2 The Berry phase as the extra phase in an adiabatic evolution

Let us look at the Berry phase from another angle. Consider a spin in a constant
magnetic field B — —Bn. The evolution of the ground state is given by

where EQ is the ground-state energy. We call ~E$T the action of the evolu-
tion. Now we allow the orientation of B to slowly change in time, namely
B = —Bn(t). Under such adiabatic motion, the ground state evolves as n(t)},
The action S of such an evolution is given by

One may guess that S = —E0T because the ground-state energy (at any given
time) is still given by EQ. By inserting many identities (2.3.2) into [0,T], we see
that actually

The action is given by

There is an extra Berry phase.

2.3.3 The Berry phase and parallel transportation

• The Berry phase is well denned only for closed paths,

• The Berry phase represents the frustration of assigning a common phase to all
of the coherent states.

The Berry phase has some special properties. The Berry phase associ-
ated with the path n(t) connecting n(0) and n(T) is given by

This expression tells us that the Berry phase
for an open path is not well denned. This is because the state |n) that describes
a spin in the n direction can have any phase, and such a phase is unphysical.
If we change the phases of the states, namely then the
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FIG. 2.4. The geometrical representation of the parallel transportation of the phase of the spin-1

coherent state |n(<)}. The phase of \n(t)} can be represented by a two-dimensional unit vector in

the tangent plane at the point n(i) on the unit sphere. In this representation the parallel transportation

can be broken into the two geometrical operations of a parallel shift of the two-dimensional vector in

three-dimensional space, and a projection back into the tilted tangent plane. A parallel transportation

of a two-dimensional tangent vector around a closed loop will rotate the vector. The angle of the

rotation is the Berry phase for the spin-1 state. (The angle of the rotation for a small loop divided by

the area enclosed by the loop is the curvature of the sphere. According to Einstein's theory of general

relativity, curvature of space = gravity.)

Berry phase is also changed, namely OB —> OB + 0(0) — <j>(T}. In other words,
a given path n(i) can have different spinor representations z(t). Different spinor
representations give rise to different Berry phases.

The above discussion seems to suggest that the Berry phase is unphysical, just
like the phase of the spin state \n). It seems that the origin of the Berry phase is
our arbitrary choice of the phases for different spin states. So, if we can choose a
'common' phase for all of the spin states, then there will not be a Berry phase.

Let us try to pick a common phase for the spin states |n(t)} along a path n(t),
so that we can remove the Berry phase. We first pick a phase for the spin state
|rz.(0)} at the beginning of the path. Then we pick the 'same phase' for a spin state
n(At)) at the next point. The problem here is what do we mean by the 'same

phase' when n(0) and n(At) are different. As n(0) and n(At) are nearly parallel,
|n(0)} and |n( At)} are almost the same states. This means tha
1. Thus, we can define n(0)} and |n(At)} to have the same phase if
is real and positive. If we pick the phase this way for all of the states along the path
n(t), then we have defined a 'parallel transportation' along the path (see Fig. 2.4).
For such a path, we have                   The Berry phase vanishes if we
choose a common phase for all of the spin states on the path.
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However, for a closed path, we may not be able to pick a common phase for
all of the states along the path. This is because, for a closed path, n(T)) and
|n(0}) represent the same spin state. Their choice of phases, as determined from
the parallel transportation, may not agree. The discrepancy is simply the Berry
phase for the closed path. From the change of the Berry phase, namely

induced by choosing different phases of the spin states, namely
we see that the Berry phase for a closed path with

n(T) is well defined (up to a multiple of 2?r) because
it is meaningful to discuss the Berry phase for a closed path, or to compare the
difference between the Berry phases for two paths with the same start and end
points.

We see that the Berry phase vanishes if we can define a common phase for all of
the states. A nonzero Berry phase for a loop implies that it is impossible to choose
a common phase for all of the states on the loop. The value of the Berry phase
represents the amount of frustration in defining such a common phase. The con-
cepts of parallel transportation and the frustration in parallel transportation are very
important. Both the electromagnetic field and the gravitational field are general-
ized Berry phases. They describe the frustrations in parallel transportation for some
more general vectors, instead of a two-dimensional vector (a complex number) as
discussed above.

The Berry phase is a geometric phase in the sense that two paths n-\ (t) and
ri2(i) will have the same Berry phase as long as they trace out the same trajectory
on the unit sphere. If the trajectory n(t) on the unit sphere spans a solid angle ri,
then the Berry phase for that path will be given by (see Problem 2.3.4)

2.3.4 The Berry phase and the equation of motion

• The Berry phase can affect the dynamic properties of a system. It can change
the equation of motion.

The path integral representation (2.3.3) can be generalized to a spin-S1 system
and to a nonzero Hamiltonian H = B • S. The coherent state (the eigenstate of
n • S with the largest eigenvalue 5'), namely \n), can be written as a direct product
of the 25 spin-?; coherent states discussed above:

Thus, the Berry phase is 2S times the spin-^ Berry phase:

Thus,
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The path integral representation now becomes

as a classical action and consider a classical motion of spin governed by such
an action. To obtain the classical equation of motion, let us compare S[n(t)] and

(Note that the two paths n(t) and n(t)+5n(t) have the same start
and end points.) From the geometrical interpretation of the Berry phase (2.3.6), we
find that the difference between the Berry phases for the two paths is S times the
area between the two trajectories: Thus,

J

which leads to the equation of motion

(note that 5n is always perpendicular to n) or

where S = Sn corresponds to the classical spin vector. This is a strange equation
of motion in that the velocity (rather than the acceleration) is proportional to the
force represented by B. Even more strange is that the velocity points in a direction
perpendicular to the force. However, this also happens to be the correct equation
of motion for the spin. We see that the Berry phase is essential in order to recover
the correct spin equation of motion.

Problem 2.3.1.
Show that QB defined in Fig. 2.4 is actually the Berry phase for a spin-1 spin.

Problem 2.3.2.
Actually, it is possible to have a path integral formulation using the discontinuous path
sz(t) to describe a spin-j system. Assume that H = aer1 + ba3 for a spin-i system.
Find the path integral representation of the time evolution operator (Hint:

Problem 2.3.3.
Calculate the Berry phase for a closed path tp = 0 —>• 2ir and 6 fixed, using the spinor
representation (2.3.1).

Let us treat
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Calculate the Berry phase for the same path but with the different spinor representation

From this example, we see that the Berry phase has 2?r ambiguity depending on different
spinor representations. Thus, the Berry phase OB cannot be expressed directly in terms of
the path n. This is why we have to introduce a spinor representation to express the Berry
phase. However, e WB is well defined and depends only on the path n(t). This is all we
need hi order to have a well-defined path integral.

Problem 2.3.4.

Prove eqn (2.3.5) for a general large closed path.

Problem 2.3.5.
Spin and a particle on a sphere:

1. Show that the spin action (2.3.8) can be written as

assuming that B = 0. Find Ag and A,/,.

2. The above action can be regarded as the m —>• 0 limit of the following action:

Sp describes a particle of mass m moving on a unit sphere. The particle also experi-
ences a magnetic field described by (A^,,Ae). Show that (A,/,, Ae) gives a uniform
magnetic field. Show that the total flux quanta on the sphere is IS.

3. We know that a particle in a uniform magnetic field has a Landau level structure.
All of the states in the same Landau level have the same energy. The Landau levels
are separated by a constant energy gap hujc and uic —*• oo as m —> 0. Therefore, in
the m —» 0 limit, only the states in the first Landau level appear in the low-energy
Hilbert space. Find the number of states in the first Landau level for a particle on a
sphere if the total flux quanta of the uniform magnetic field is N$.

Problem 2.3.6.
Spin waves: Consider a spin-S" quantum spin chain
the classical ground state is a ferromagnetic state with Si = Sz. For J > 0, it is an
anti-ferromagnetic state with

1. Write down the action for the spin chain.

2. Find the equation of motion for small fluctuations 6Si = Si — Sz around the
ferromagnetic ground state. Transform the equation of motion to frequency and
momentum space and find the dispersion relation. Show that uj oc fe2 for small fc.

prove

For
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FIG. 2.5. A double-well potential.

FI c. 2.6. (a) A single instanton solution can be viewed as a motion between the two maxima of the
invcred potential, (b) The same motion plotted in space-time.

3. Find the equation of motion for small fluctuations tiSi — Si — Sz(—)* around the
anti-ferromagnetic ground state. Find the dispersion relation. Show that a,1 oc |fc — TT|
for k near to -n.

It is interesting to see that the spin waves above the ferromagnetic and anti-ferromagnetic
states have very different dispersions. Tn classical statistical physics the ferromagnetic and
anti-ferromagnetic states have the same thermodynamical properties. It is the Berry phase
that makes them quite different at the quantum level.

2.4 Applications of the path integral formulation

2.4.1 Tunneling through a barrier

• Sometimes the initial and final configurations are connected by several sta-
tionary paths. The path with the least action represents the default path and
the other paths represent the instanton effect,

• Tunneling through barriers is an instanton effect.
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FIG. 2.7. A multi-instanton configuration—an instanton gas.

The path integral not only allows us to calculate perturbative effects, such as
linear responses, but it also allows us to calculate non-perturbative effects. Here
we would like to study a simple example in order to understand how the path
integral can lead to non-perturbative results. We will study tunneling in a double-
well potential (Fig. 2.5). In the absence of tunneling, the particle fluctuates near
a minimum which can be described by a harmonic oscillator with frequency UQ.
These fluctuations lead to the following propagator:

However, the above result is not quite correct due to tunneling. In the presence
of tunneling, particles can go back and forth between the two minima and the
propagator receives some additional contributions. We note that tunneling is a non-
perturbative effect. Performing perturbation around a minimum can never lead to
tunneling.

To study the effects of tunneling, we use an imaginary-time path integral and a
saddle-point approximation. In addition to the two trivial stationary paths x(t) =
XQ and x(t) — —XQ which connect XQ to XQ and —XQ to — XQ, respectively, there is
another stationary path that connects XQ to —XQ. Such a path minimizes the action

and satisfies m-^f = V(x). This is Newton's equation for
an inverted potential — V(x) (Fig. 2.6(a)) and the solution looks like that shown
in Fig. 2.6(b). We see that the switch between ±XQ happens over a short time
interval and this event is called an instanton. The path in Fig. 2.6(b) is not the
only stationary path that links XQ and —XQ. The multi-instanton path in Fig. 2.7 is
also a stationary path. Similarly, the multi-instanton paths also give rise to other
stationary paths that link XQ to XQ and — XQ to — XQ.
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Thus, to calculate the propagator, we need to sum over all of the contributions

where So is the minimal action of the instanton and K comes from the path integral
of fluctuations around a single instanton. Here K should have a dimension of
frequency. Its value is roughly given by the frequency at which the particle hits
the barrier. Similarly, we also have

are energy eigenstates with energies

conservation. Thus,

Restoring the ^, we have  which is just the
WKB result. However, the path integral does teach us one new thing, namely the
tunneling time, ttun, which is the time scale associated with a single instanton.
We have a very simple picture of how long it takes for a particle to go through a
barrier.

Problem 2.4.1.

1. Estimate So and the tunneling time ttun (i.e. the size of the instantons).

2. Assuming that               (which is the oscillation frequency near one of the
minima), estimate the (average) density of instantons in the time direction.

Therefore,

where

inorder to eehdfv             sghdf

assume that the double well

from the different stationary paths. For the propagator we haveto

We see that
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FlG. 2.8. A potential wi(h a meta-stable state.

F I G . 2.9. (a) A single-bounce solution can be viewed as a motion in the invered potential, (h) The

same motion plotted in space-time.

3. The semiclassical picture is a good description of the tunneling if both SQ 3> 1
and the instantons do not overlap. For which values of g and XQ are the above two
conditions satisfied?

2.4.2 Fate of a meta-stable state

• The decay of a meta-stable state is also an instanton effect.

In this section, we consider a particle in the potential V(x) shown in Fig. 2.8.
The particle is initially at xc. We would like to calculate the decay rate for the par-
ticle to escape through the barrier. For this purpose we calculate
If we only consider small fluctuations around XQ, then we may make the approxi-
mation and find that                                                                                                                                 for large
T. Analytically continuing to real time, we see that
and there is no decay. To find the decay, we need to find a process that makes
|{xo|c~'r'/|.To}| decrease with time. We will see that the tunneling can cause
decay. In the path integral, the tunneling is again described by the instantons.

The imaginary-time Lagrangian L — ̂ mi2 + V(x) has a non-trivial stationary
path xc(t) that connects XQ to XQ. The existence of this stationary path (called
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a bounce or an instanton) can be seen from the classical motion in the potential
—V(x) (Fig. 2.9). Including the bounces and repeating the procedures in Sectio
2.4.1, we find that

where 5o is the action of the bounce and K is a coefficient due to the fluctuations
around the bounce. At a first glance, it appears that the bounce only corrects the
ground-state energy ^ by a small amount AE — —Ke~s°. It is hard to see
any decay because the bounce returns back to XQ after a long time. In fact, we
will see that the coefficient K is imaginary, and in real time (xo\e~lTH\xo) =

The bounce precisely describes the decay of the XQ) state. This
is quite an amazing result.

To understand why K is imaginary, we need to discuss how to calculate K. The
discussion here also applies to K in the tunneling amplitude presented in Section
2.4.1.

From the way in which we include the bounces in eqn (2.4.1), we see that
Ke~s° is a ratio of two paths integrals around xc(t) and x = XQ:

For small fluctuations, the Lagrangian can be expanded to quadratic order. We
have, near xc,

and near x = XQ we have

Thus, after performing the Gaussian integral, we have

However, eqn (2.4.3) does not make sense because the operator 
has a zero eigenvalue. To see this, we note that both  areand
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stationary paths and they satisfy the equation of motion

Expanding the above to linear order in 77, we find tha
satisfies

Thus, is an eigenstate of                        with a zero eigenvalue.
From the above discussion, it is also clear that the zero mode T]XC(T) corre-

sponds to the position of the bounce which has already been integrated over in
eqn (2.4.1). Thus, eqn (2.4.2) is not quite correct. We actually have

To evaluate eqn (2.4.4), we need to define the path integral more carefully. Let
XU(T} be the nth normalized eigenstate of the operator — m-j^ + V"(xc). Then
§x can be written as 8x — ̂  cnxn(r} and a truncated 'partition function' can be
defined by

where Det^r includes only the products of the first N eigenvalues. The real 'par-
tition function' Z is the N —> oo limit of ZN- Due to the zero mode XI(T), the
above result needs to be modified. We need to separate the zero mode and obtain

where Det' excludes zero eigenvalues.
The integration J dci is actually integration over the position of the bounce,

namely f dr^. It turns out that ci and TI are related through

13 We note that
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Therefore,

Similarly, we can also introduce ZN(XQ) for the path integral around x — XQ:

We can now write

where we have used the fact that Det contains one more eigenvalue than Det' does.
The same fact also tells us that K has dimension T~I.

All of the eigenvalues of —-^ + m~lV"(xo) are positive. The operator
contains a zero mode XC(T) which has one node. Thus,
has one, and only one, negative eigenvalue which makes

K imaginary.
The same formula (2.4.7) also applies to the tunneling problem considered

in Section 2.4.1. However, the zero mode xc in that case has no node, and
has no negative eigenvalues. Thus, K is real for the tunneling

problem.
We have already mentioned that the coefficient K is due to fluctuations around

the stationary path. From the above calculation, we see that K can be expressed in

Thus, if we assume that V(x0) = 0. As

the normalized zero mode has the form

Thus, Sx = c-txi will displace the bounce by                           This allows us to convert dr?i to ATI.

which leads to



where (TO, x0) is the location of the bounce.

3. Assume that without the bounces                                   After including the
bounces, we have

where So is the action of the bounce and (TJ, Xi) are the locations of the bounces.
(Note that a bounce is now parametrized by its location in both time and space.) If
K is imaginary, what is the decay rate of the meta-stable state m_}? What is the
decay rate per unit volume?

4. Estimate the values of So, assuming that B = ^f-. (Hint: Rescale (T, x) and m to
rewrite S = constant x S' such that all of the coefficients in S' are of order 1 .) (One
can also estimate the size of a bounce in space-time using this method.)

5. Estimate the values of K, assuming that B = &-. (Hint: Consider how K scales as
S -> aS.)
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terms of determinants of operators if we only include small fluctuations. Coleman
(1985) has discussed several ways to calculate the ratio of determinants. I will not
go into more detail here.

One may have already realized that the present problem can easily be solved by
using the WKB approach. The path integral approach is just too complicated, and
one may wonder why we bother to discuss it. The motivation for the present discus-
sion is, firstly, that it demonstrates the calculation steps and subtleties in a typical
path integral calculation. Secondly, and more importantly, the same approach can
be used to study the decay of a meta-stable state in field theory.

Problem 2.4.2.
The simplest field theory model with a decaying meta-stable state is given by

where m(t, x) is a real field which can be regarded as the density of magnetic moments.
We will choose the units such that the velocity v — 1. When the magnetic field B is zero,
the system has two degenerate ground states with m = ±mo which are the two minima of
the potential 

1. Show that, for small B, the system has one ground state with m = m+ and one
meta-stable state with m = m-. However, when B is beyond a critical value Bc the
meta-stable state can no longer exist. Find the value of Bc.

2. Write down the action in imaginary time. Coleman showed that the action always
has a bounce solution (a stationary path) of the form
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6. Discuss for which values of g and TOO the semiclassical tunneling picture is a good
description of the decay of the incta-stable state.

2.4.3 Quantum theory of friction

• Dissipation (friction) in a quantum system can be simulated by coupling to a
heat bath (a collection of harmonic oscillators).

Friction on a particle is caused by its coupling to the environment. Due to the
coupling, the particle can lose its energy into the environment. So, to formulate a
quantum theory of friction, we must include coupling to an environment. Here we
use a collection of harmonic oscillators to simulate the environment (Caldeira and
Leggett, 1981). We need to set up a proper environment that reproduces a finite
friction coefficient. This allows us to understand the quantum motion of a particle
in the presence of friction.

Our model is described by the following path integral:

where x is the coordinate of the particle and the hi describe a collection of oscil-
lators. Note that our system has the translational symmetry x — > x + constant.
After integrating out hi, we get (see Section 2.2.3)

where

is the density of states, and
The double-time action in eqn (2.4.8) leads to the following

equation of motion:

constant
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which can be rewritten as follows:14

If m* and 7 are finite for small u>, then eqn (2.4.9) becomes m * j j - = — 7-gf ,
which describes a particle of mass rn* whose friction is described by the friction
coefficient 7. We see that the coupling to a collection of oscillators can produce
friction on the particle. The friction, and hence the dissipation, comes from the
imaginary part of the correlation ImGos(^)- The coupling also modifies the mass
of the particle from m to m*. Here m* is called the effective mass of the particle.
The correction m*—m comes from the real part of the correlation ReGos (ui). Phys-
ically, the particle causes deformation of the oscillators. The deformation moves
with the particle, which changes the effective mass of the particle.

The above quantum theory of friction has one problem. As ImGos (u>) < 0, we
see that the friction coefficient 7(0;) > 0 for u> > 0, which is correct. However,
7(0;) < 0 for LO < 0, which seems to not make any sense. We note that our
effective action in eqn (2.4.8) is invariant under the time reversal t — > —t. As a
consequence, if the uj > 0 solutions correspond to the decaying processes, then
the u> < 0 solutions will correspond to the inverse of the decaying processes.

To really describe friction we need to find a time-reversal non-invariant for-
malism. To achieve this, it is important to notice that in the presence of friction the
state at t = — oo, namely |0_), is very different from the state at t = oo, namely
|0_(_), because as the particle slows down the oscillators are excited into higher and
higher states. This makes our path integral Z = (0|C/(oo, — oo)|0) a bad starting-
point because it is zero. Thus, the problem here is to formulate a path integral
for non-equilibrium systems. The closed-time path integral or Schwinger-Keldysh
formalism (Schwinger, 1961; Keldysh, 1965; Rammmer and Smith, 1986) is one
way to solve these problems. The Schwinger-Keldysh formalism starts with a
different path integral Zciose = (0|t/(— oo, oc)([/(oo, — oo)|0), which goes from
t = — oo to t = +00 and back to t = — oo.

The double-time path integral (2.4.8) developed above can only describe the
equilibrium properties of a dissipative system, such as fluctuations around the
ground state in the presence of friction/dissipation. It cannot describe the non-
equilibrium properties, such as the slowing down of the velocity caused by the
friction, because this involves the different states |0_) and |0+) for t = ±00.

The problem encountered here is similar to the one encountered in Section 2.2
when we tried to use path integrals to calculate the imaginary part of the suscepti-
bility, which is also associated with dissipation. There the problem was solved by

14 Here we have used Note that                                  and thus
we find that
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replacing the time-ordered correlation function by the response function. Here the
problem can be solved (or, more precisely, fixed by hand) in the same way. If we
replace GOS(LU) by -D0s(<^) (note that Dos(t) = 2©(i)ReGos(t)) in the equation
of motion (but not in the double-time path integral), then the friction coefficient 7
will be given by

which is always positive for both w > 0 and u> < 0. With the above restrictions in
mind, we may say that the double-time path integral (2.4.8) can describe a system
with friction. The friction coefficient is given by eqn (2.4.10).

As

In addition to the finite friction coefficient 7 = f n0<72, we also obtain the effective

mass

We  would like to point out that the term (i|t|fio + I)e~ i l*l r 2° in Gos(t) is due
to the discontinuity of                                                     is a smooth function
of fi, then such a term will vanish exponentially in the large-i limit. For example,
if we choose                                                       then we will have in
the large-t limit. The friction coefficient is still given by                                 Using
such a choice of n(fi)(?2(Q), we find that a particle with a friction of 
is described by the following double-time action:

we find that ImGos(u;) = — |\u> n(\u\)gz(\tjj\). Using the fact that ImDos(u;) =
sgn(w)ImGos(c<;), we find that

for small values of w. Thus, in order for 7 to be finite for small u>, we require that
n(Jl)£2(fi) is finite as fl —> 0.

Let us assume that n(fi)#2(f2) = nog^ for fl < O0
 ar>d that n(fi)#2(fi) = 0

for O > fi0- We find that



FIG. 2.10. An RCLcircuit.

Problem 2.4.3.
Effective mass:

1. Assume that for small ft and that
Find the values of a which make the effective mass, m*, diverge.

2. Consider the two cases of
j"V0e -("/»<>) . Which case has a diverging effective mass?

2.4.4 Quantum theory of an RCL circuit

• The quantum dynamics of an RCL circuit are similar to those of a particle
with friction.

• How to include charge quantization in a quantum RCL circuit.

The RCL circuit is a simple circuit. We know how to describe it classically. As
everything is believed to be described by quantum theory, the question arises as to
how to describe an RCL circuit in terms of quantum mechanics.

Let us first consider an ideal capacitor of capacitance C. The state of the capac-
itor is described by its charge q, and q is a real number if we ignore the charge
quantization. The quantum theory for the ideal capacitor is simple. The Hilbert
space is spanned by the states {\q}} and the Hamiltonian is H — j^, where
the charge operator q is defined by q\q) = q\q}. Thus, a quantum capacitor is
equivalent to a free particle on a line with q as its 'momentum'. The form of
the Hamiltonian H — J^ tells us that the mass of the particle is just C. The
corresponding classical Lagrangian is L 

To describe a CL circuit, we include a potential term and consider
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The resulting equation of motion is

and



62 PATH I N T E G R A L F O R M U L A T I O N OF Q U A N T U M M E C H A N I C S

It is equivalent to the equation of the CL circuit

if we interpret x/L to be the current / and L to be the inductance. We see that the
CL circuit is equivalent to a harmonic oscillator with coordinate x, mass C, and
spring constant l/L. Thus, the quantum CL ckcuit is described by the Hamiltonian

where q is the charge operator. It is also the momentum operator conjugate to x,
so that [q, x] = i. The current operator is given b

We can also view q as the coordinate and —x as the corresponding 'momen-
tum'. In this case, the Hamiltonian (2.4.14) leads to the following Lagrangian
which is the dual form of eqn (2.4.13):

After the inclusion of a resistor, as in Fig. 2. 10, the classical equation of motion
becomes

which leads to

This is just the equation of motion for a particle with a friction coefficient 7 =
l/R. Such a system can be described by a double-time action (see eqn (2.4.12)):

Many of the quantum dynamical properties of the RCL circuit can be calculated
from the above action.

If we include the charge quantization, then the charge is q = e* x integers.
As the charge q is also the momentum of x, the quantization of the momentum
implies that the particle lives on a circle. The charge (or the momentum) quantum
e * implies that x and x + |? should be treated as the same point.

As the charge quantization implies periodicity in x, the action that describes
the RCL circuit with the charge quantization must be a periodic function of x.
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There are many ways to make eqn (2.4.17) periodic. One of the simplest periodic
double-time actions is given by

where Thus, we can identify 
as being the noise power spectrum. The quantum noise power spectrum is then
obtained by taking the quantum average of

From the following relationship between linD and ImG (see eqn (2.2.42)):

We note that eqn (2.4.18) becomes eqn (2.4.17) in the e* —> 0 limit. Equa-
tion (2.4.18) describes the quantum dynamical properties of the RCL circuit with
charge quantization.

2.4.5 Relationship between dissipation and fluctuation

• Dissipation and fluctuation always appear together. We can determine one
from the other.

The double-time actions (2.4,12) and (2.4.17) are good for calculating equilib-
rium properties. Let us calculate the equilibrium quantum fluctuations of x and
the velocity v = x. The fluctuations of x are characterized by the noise power
spectrum. To define the noise power spectrum, let us first consider a classical
fluctuating x(t). The total power (including all of the frequencies) is defined by

Here we have used15



hh

we see that ImG, and hence P(w), can be determined from the response function
D.

The response function can be calculated from the equation of motion. For a
particle with friction, the equation of motion is given by

where / is an external force. The solution of the equation of motion can be
formally written as

The solution can be interpreted as the response of a; to a perturbation SH =
-f(t)x as follows:                                                                                                               (see eqn (2.2.3)
with.
response function of x:

It is now clear that the response function ImD describes the friction (the
dissipation) of a moving particle, while the correlation function ImG describes
the power spectrum of the fluctuations. Equation (2.4.20) is a direct relationship
between the dissipation and the fluctuations.

From the expression for D, we find that the power spectrum of the x
fluctuations is given by (see eqn (2.4.19))

The power spectrum of the velocity fluctuations is given by

We note that the equation of motion (2.4.21) is identical to that of the RCL cir-
cuit given in eqn (2.4.16), with (C, L~l, R~l) replaced by (m, K, 7). The voltage
is given by V = x. Thus, the power spectrum of the voltage fluctuations in the

path integral fonfshffggussfsgf

Therfore, the equation of motion determines the following
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RCL circuit is given by

When hw <C T, we have

which is the classical noise spectrum of the RCL system. When L = oc and
C = 0, the above expression becomes the noise spectrum across a resistor, namely
PV(LU) = 4TR.

It is interesting to see that the finite-temperature noise spectrum, Pv, and the
zero -temperature noise spectrum, P0

l/, are closely related as follows:

v (w) can also be obtained from the classical noise spectrum P(Y (a;):

The above relations are very general. They apply to all harmonic systems (see
Problem 2.4.5 below).

Problem 2.4.4.
Brownian motion:
(a) A particle of mass m experiences a friction described by 7. If we release the particle at
x — 0, how far can it have wandered after a time (? (That is, calculate x — \f(x2} at time
t.) (Hint: Consider the power spectrum of the velocity at ui = 0.)
(b) Find (or estimate) the numerical value of x after 1 min for a plastic ball suspended
in water. The diameter of the ball is I cm. Repeat the calculation for a grain of pollen in
water. We model the pollen as a ball made from the same plastie but with a size 10000
times smaller. The viscosity of water at 20°C is 0.01 poise (1 poise = 1 dyne sec/cm2).

Problem 2.4.5.
Prove eqn (2.4.24) by directly considering a system of coupled oscillators with arbitrary </;

and SI, (see eqn (2.4.8)). (Hint: Consider {x2} for an oscillator at T = 0 and at T / 0.)

2.4.6 Path integral description of a random differential equation

• The statistical properties of the solutions of a random differential equation can
be described by a path integral.

According to the equation of motion (2.4.21), if we release the particle some-
where, then the particle will eventually stop at x = 0 after a long time if / = 0.
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However, the dissipation/fluctuation theorem tells us that the above picture is not
correct and the particle does not just stay at x = 0. The presence of friction implies
the presence of fluctuation, and so the particle will fluctuate around x = 0. To have
a more correct equation of motion that describes a dissipative system, we need to
add a term that generates the fluctuation. One way to do this is to let the force term
f(t) have random fluctuations in time. Two questions now arise. Firstly, can a ran-
dom force term simulate the fluctuations, in particular the quantum fluctuations?
If the answer is yes, then, secondly, how do we find the probability distribution
of the random force that generates the correct fluctuations? To solve this problem,
we need to calculate the average correlation (x(t)x(O)) of the random solution of
eqn (2.4.21). We then examine whether it is possible to choose a proper distribution
of f(t) which will reproduce the power spectrum (2.4.22).

We note that

This is quite an interesting result. We have seen that the path integral can describe
the Hamiltonian — a linear operator in quantum systems. It can also describe the
thermal average in classical and quantum statistical systems. We see from the
above that the path integral can even describe a random differential equation.

Let us now assume that the distribution of the random term is Gaussian:

Here xf = K^j is the solution of eqn (2.4.21), where 
and P[f(t)] is the probability distribution of f(t). We note that /C = -D~l. As
the operator 1C does not depend on /, we have

Thus,



Here, the inverse of the operator /CTV/C(i) is interpreted as Q(t — t') such that
We note tha

Fourier transformation is real and equal to one-half of the power spectrum of the
x fluctuations (see eqn (2.4.19)). Thus, to reproduce the x fluctuations, we requke
that

in frequency space. We see that even quantum noise can be simulated using random
classical equations. In particular, we note that the random force term depends only
on the temperature T and the friction coefficient 7. A higher temperature or a
larger friction will lead to a stronger random force. The classical noise (in the limit
H —> 0) can be simulated by a simple probability distribution of the random force
as follows:

which is not correlated in time (i.e. /(t) and f ( t ' ) fluctuate independently).
We would like to point out that the theory of random differential equations is a

very large field with broad and important applications. Random differential equa-
tions are used to describe material growth, chemical and biological processes, and
even economical systems. The path integral representation of random differential
equations allows us to apply the pictures and concepts developed for the path inte-
gral, such as symmetry breaking, phase transition, renormalization group, etc., to
random differential equations.
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where                                                            can integrate out / and A in turn as

follows:

So its



3

INTERACTING BOSON SYSTEMS

The boson system is the simplest system in condensed matter physics. It
describes a wide variety of physical phenomena, such as superfluid, magnetism,
crystal formations, etc. It is also a model system for phase and phase transition.

3.1 Free boson systems and second quantization

• Second quantization is an operator description of a quantum system. In second
quantization a many-body system can be formulated as a field theory.

First quantization is a description of a quantum system using wave functions.
Second quantization is another description of a quantum system using operators.
In second quantization, we do not need to write down a wave function explicitly.
For example, in the operator description of a harmonic oscillator, the ground state
is defined through operators for which a|0) = 0.

Now let us consider a free d-dimensional boson system (in a box of volume
V = Ld) which contains N identical bosons. In first quantization, the wave func-
tion of the system is a symmetric function of the N variables. These JV-boson
states form a Hilbert space denoted by 7i/v- To obtain a second quantization
description of the boson system and to avoid writing the complicated Ar-variable
symmetric functions, we combine the Hilbert spaces with all the different numbers
of bosons together to form a total Hilbert space:

The total Hilbert space H. has the following base

where nk = 0, 1,2, ... is the number of bosons in a single-particle momentum
eigenstate |fe). The total energy of the state is

The total Hilbert space Ji can also be viewed as a Hilbert space of a collection
of harmonic oscillators labeled by a vector and
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nfc is simply the integer that labels the energy levels of the oscillator k. From the
total energy of the bosons, we see that the oscillators are independent, and the
oscillator k is described by the following Hamiltonian:

Thus, in second quantization, the free boson system is described by a collection of
harmonic oscillators with the Hamiltonian

The total boson number operator is

fe

The ground state of the oscillators satisfying

is a state with no boson. An JV-boson state with the zth boson carrying a
momentum fc; is created by N of the a], operators:

where C(k-\_, ..., k^) is a normalization coefficient. Here C(fei, ..., fejv) = 1 only
if all of the fcjS are distinct from each other. Note that ak (ofe) increases (decreases)
the boson number by 1 . Thus, ak is called the creation operator of the boson, while
afc is called the annihilation operator. The creation and annihilation operators do
not appear in the first-quantization description of the boson system because there
we only consider states with a fixed boson number.

We can introduce

for the infinite system. We can see that a^(x) creates a boson at x. The wave
function for the state \ki k% ...k^} can now be calculated as follows:

or
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The Hamiltonian can be written in real space as

The operator cfl(x}a(x) counts the number of bosons at position x, and thus the
boson density operator is

The Hamiltonian, together with the operators corresponding to physical quantities,
allows us to calculate the physical properties of the boson systems by calculating
the correlation functions of the physical operators.

The oscillator description allows us to calculate all of the correlation functions
of the boson system. In particular, for t > 0,

is just the propagator of the free particle discussed in Section 2.1.1 and

is the corresponding propagator in momentum space.
To calculate the correlations of many boson operators, such as the p-p corre-

lation, we need to use the Wick theorem. The Wick theorem is very useful for
performing normal ordering and calculating correlations.

Theorem. (Wick's theorem) Let Oi be a linear combination of a^ and ak:
(Note that, for free boson systems,

is such an operator.) Let W 
etc. Let : W : be the normal ordered form of the operator W

(i.e. putting all of the ak to the left of the a^) and let |0) be the state annihilated by
far all k). Then the Wick theorem states that

where (ii,ji) is an ordered pair with
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To illustrate the power of the Wick theorem, we consider the following
correlation:

where the AI are linear combinations of a and a1". As {(][ : AiAj : |0) = 0, the
Wick theorem implies that

Thus, a four-operator correlation can be expressed in terms of two-operator
correlations.

Problem 3.1.1.
Wick's theorem:

I . Perform normal ordering for the operator O = aaa^a^ and show that the Wick
theorem produces the correct result.

2. Use the Wick theorem to calculate {0|aa^aat|0}.

Problem 3.1.2.
Consider a one-dimensional free boson system with N bosons. Let \<S?0) be the ground
state.

1. Calculate, for N = 0 and finite N, the time-ordered propagator

Show that 
Show that, for finite N, we have 

limit, indicating (off-diagonal) long-range order. The off-diagonal long-range order
exists only in the boson condensed state.

2. Calculate the time-ordered density correlation function

Show that a(x, t) is a linear combination of a* and oj. and that one can use the Wick
theorem. (Hint: You may want to separate the ag operator.)

3.2 Mean-field theory of a superfluid

• The mean-field theory is obtained by ignoring quantum fluctuations of some
operators and replacing them by c-numbers (which are usually equal to the
averages of the operators).

where
in the
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• The mean-field ground state can be viewed as a trial wave function. The
excitation spectrum obtained in mean-field theory can be qualitatively wrong.
One needs to justify the correctness of the mean-field spectrum through other
means before using the spectrum.

At zero temperature, a free ./V-boson system is in its ground state

In the last line of eqn (3.2.1), the interaction term has been written in a normal
ordered form, i.e. at always appears to the left of a. Also, Vj, is real, and fc

because V(x) is symmetric, i.e. V(x) — V(—x). In the following, we will absorb
V(0) into p, and drop V(0). The interacting Hamiltonian is not quadratic in afe and
is very hard to solve.

In the following, we shall use a mean-field approach to find an approximate
ground state. The basic idea in mean-field theory is to identify some operators

and all of the bosons are in the k = 0 state. This state is called the boson con-
densed state. The boson condensed state of a free boson system has many special
properties, which are only true for non-interacting bosons. To understand the zero-
temperature state of a real boson system we need to study the interacting boson
system described by the following Hamiltonian:

where V(x) is a density-density interaction and p, is the chemical potential. The
value of \i is chosen such that there are on average N bosons in the system. Due
to the inclusion of the chemical potential term —fj,N, H is an operator of thermal
potential instead of an operator of energy. In momentum space, we have

where
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with weak quantum fluctuations and replace them by the corresponding classical
value (a c-number). Hopefully, this replacement will reduce the full Hamiltonian
to a quadratic one.

Based upon our knowledge of the free boson ground state, we may assume
that, in the ground state of the interacting boson system, there are a macroscopic
number of particles occupying the k = 0 state:

while the occupation numbers for the other states, namely
are small. We also note that

where  and we have ignored 
and higher-order terms. After the two approximations of firstly replacing ao by a
c-number, which is accurate in the N —> oo limit, and secondly dropping the a|
terms, which are accurate in the V —> 0 or p —* 0 limit, we obtain a quadratic
mean-field Hamiltonian.

Due to the a-kak terms, it is clear that the state with all N bosons in the k = 0
slate is no longer the ground state of the interacting boson system. To find the new

Thus, to order and appear to commute with each other and behave
like ordinary numbers (e- Thi s  i s  wha t  we  mean  when  we  say  tha t  t he

ope ra to r has  weak  quan tum f luc tua t ion ,  In  t h i s  ca se ,  we  may  r ep l ace by  i t s
c lass ica l  vca lue

The in terac t ing  Hamil tonian  can  now be  wi t ten  as
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(mean-field) ground state, we introduce, for k ^ 0,

We choose uk and vk such that Hmean takes the form J^fe cekakEk + constant and

ak and ak have the same boson commutation relation

The latter condition requires that u,|| — \vk\
2 = 1. One can show that the following

choice satisfies our requirements:

and

Including the k = 0 part, we find that

The mean-field ground state is given by

and fig is the mean-field ground-state energy or, more correctly, the thermal poten-
tial for the mean-field ground state. Within mean-field theory, the excitations above
the ground state are described by a collection of harmonic oscillators ak which
correspond to the waves in the boson fluid. The dispersion relation of the waves is
given by Ek.
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The two parameters NO and n remain to be determined. The excitation
spectrum

depends on /j, in a sensitive way. If ^ = po VQ, then .Eo = 0 and the excitations are
gapless (here we have assumed that eg = 0). If fj, < poVo, then the excitations have
a finite gap. If p, > poVo, then EQ is imaginary and this suggests an instability.

Firstly, the value of NO is obtained by minimizing the thermal potential £lg

(with IJL fixed):

After obtaining JVo = NQ(H) ar>d noticing that

we find that

The above equation determines the value of // = /J,(N) that gives us the total N
bosons.

Let us try to carry out the above calculation in the low-density or weak-coupling
limit. Retaining the terms of linear order in Vfe (note that
we have

We see that, to minimize £l  we require that 
for /j, > 0. Once we know NQ, the total number of bosons can be calculated through
eqn (3.2.7). If we know N, then \L is determined from N

When the boson density is nonzero, we find that /i = poVo > 0 and the
excitation spectrum

is gapless and linear for small k, regardless of the value of N and Vfc:

This result is very reasonable because the excitation created by ak should corre-
spond to density waves (the Nambu-Goldstone modes) in the compressible boson
fluid and should always have a gapless and linear dispersion. The linear gapless
excitation is also called a phonon.

If we were to stop here then everything would be fine. We can say that we have
a mean-field theory for the ground state and excitations in an interacting boson

fi

and
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FIG. 3.1. The phonon excitations are near k = 0 and the roton excitations are near to the local
minimum at finite k. The critical velocity of the superfluid flow is also marked (see Section 3.7.3).

system which produces reasonable results. However, if we want to do better, then
things may get worse. Within mean-field theory, the vanishing of the energy gap is
due to the 'miracle' that JJL is exactly poVo, which causes the constant term in E^ to
cancel out. If we keep the higher-order terms of Vk appearing in f l g , then the more
accurate /j, may not be equal to po^o- In this case, we may have the unreasonable
result that the energy gap is not zero. Certainly, when we include higher-order
terms in ̂ 9, we should at the same time include higher-order terms in E^, and we
may still have a cancellation which leads to a zero energy gap.

However, one thing is clear. The mean-field theory does not guarantee a zero
energy gap. To obtain a zero energy gap we have to rely on careful calculations
and hope for the miracle. However, from a physical point of view, the existence
of a gapless excitation is a general principle which is independent of any details
of the boson system. Regardless of the form of the interaction, the boson system
in free space is always compressible and always contains a gapless density wave.
We see that mean-field theory did not capture the principle behind the gapless
excitations. This problem with mean-field theory is not restricted to boson systems.
In general, all mean-field theories have the problem that some general principles
of the original theory are not captured by the mean-field theory. One needs to keep
this in mind and be very careful when using mean-field theory to study excitation
spectrums.

In a real superfluid, the excitation spectrum has the form shown in Fig. 3.1. The
excitations near the minimum at finite k are called rotons. We note that the roton
can have a vanishing group velocity at a proper k.

Problem 3.2.1.
Determine NO and /LI for a one-dimensional interacting boson system with density p =
N/V. Show that the interacting bosons cannot condense in one dimension, even at zero
temperature. (Note that non-interacting bosons can condense in one dimension at zero
temperature.)
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Problem 3.2.2.
(a) Find a V& such that the roton minimum in Ek dips below zero. Plot the V(x) in real
space.
(b) When the roton minimum does dip below zero, what happens to the superfluid state?

Problem 3.2.3.
A mean-field theory for a spin chain. Consider a spin chain

where J < 0 and S is the spin operator that carries spin S. When S ^> 0, the quantum
fluctuations of Si are weak and we may replace one S by its average s = (Si) (which is
assumed to be independent of f) and obtain the mean-field Hamiltonian.

1. Write down the mean-field Hamiltonian and find the mean-field ground state.

2. Determine the value of s by calculating (Si) using the mean-field Hamiltonian.

3. Find the ground-state energy using the mean-field approximation.

4. Find the energies for excitations above the mean-field ground state.

We see here that mean-field theory completely fails to reproduce gapless spin wave excita-
tions. The path integral approach and its classical approximation discussed in Section 2.4
produce much better results.

3.3 Path integral approach to interacting boson systems

3.3.1 Path integral representation of interacting boson systems

As mentioned in Section 3.1 , a free boson system can be described by a collection
of independent harmonic oscillators with the Hamiltonian

The oscillators (and the free boson system) admit a (coherent-state) path integral
representation

In real space, we have

We can now easily include the interaction by adding a term
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F I G , 3.2. The discontinuity in ihe second derivative of the thermal potential il(fi) indicates a

second-order phase transition.

to the Hamiltonian and the path integral. Here, we will treat a simpler interaction
whose Fourier component is V& = VQ. The path integral for

interacting bosons now has the form

where, following convention, we have renamed a(x, t) by <p(x, t).
Having the path integral representation, we can study the physical properties

of the quantum interacting boson system by treating it as a classical field theory
described by the action

3.3.2 Phase transition and spontaneous symmetry breaking

• Zero-temperature phase transitions happen at the non-analytic point of the
ground- state energy.

• Spontaneous symmetry breaking happens when an asymmetric ground state
emerges from a symmetric system.

• Continuous phase transitions, spontaneous symmetry breaking, and long-
range order are closely related. This is the heart of Landau's symmetry-
breaking theory for phases and phase transitions.

The classical ground state is translationally invariant and is characterized by a
complex constant                        The energy density (or, more precisely, the

Here we are performing a semiclassical approximation (instead of the mean-field
approximation performed in Section 3.2), and the leading term is simply the clas-
sical theory. The energy (or, more precisely, the thermal potential) of the classical
system is
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FIG. 3.3. The order parameter ipo and the superfluid transition,

density of the thermal potential) of the classical ground state is

By minimizing the energy, we see that for p, < 0 the ground state is characterized
by <po = 0, which corresponds to a state with no bosons. For (j, > 0 the ground
state is degenerate and is characterized by the following amplitude of the boson
field:

with arbitrary 9. Such a state has a boson density po — M/^o • The thermal potential
as a function of fj, is given by

We see that, as a function of n, the ground-state energy f^o (//) has a singularity at
/j, = 0. The singularity signals a second-order phase transition at p, — 0 because
fJo(/i) has a jump at that point (see Fig. 3.2). This phase transition is called the
superfluid transition.16

The superfluid phase is characterized by a nonzero boson field (p(x) ^ 0, and
the no-boson phase by a vanishing boson field <p(x) = 0. The superfluid transition
is signaled by the change <^o = 0 to </?o 7^ 0 (see Fig. 3.3). For this reason, we call
ifo the order parameter for the superfluid.

The superfluid phase is also characterized by symmetry breaking. We see
that our Hamiltonian or Lagrangian has a U(l) symmetry because they are both
invariant under the transformation

regardless of which phase we are in. However, the (classical) ground states in the
superfluid phase (see eqn (3.3.3)) do not respect the U(l) symmetry, in the sense
that they are not invariant under the J7(l) transformation (3.3.4).
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FIG. 3.4. (a) and (b) Switching between different minima causes (c) a kink in fio which represents

a first-order phase transition.

FIG. 3.5. In the presence of (f>o —> —4>o symmetry, switching of the minima can be continuous

and causes a second-order phase transition, (a) The ground state is symmetric under the condition

<t>o —> —0o. (b) The transition point, (c) The ground state breaks the </>o —»• — c/>o symmetry.

The superfluid transition demonstrates a deep principle: a continuous phase
transition characterized by a non-analytic point of the thermal potential f) is related
to a change in the symmetry of the state. To appreciate this point, let us start from
the beginning. We know that a phase transition is caused by the singularity in the
energy or free energy of the system. So, to understand the phase transition, we
need to understand how the (free) energy develops a singularity.

For the interacting boson system, the energy function Oo(/u; <po) as a function
of 0o and n is an analytic function with no singularities. The ground-state energy
f2o(/u.) is the minimal value of fio(A*i </>o) with respect to 0o- In general, OO(M)
is also an analytic function. However, sometimes f2o(/u; 4>o) nas multiple local
minima as a function of 0o- As we change fj,, the global minimum may switch
from one local minimum to another (see Fig. 3.4). In this case, the resulting J10(//)
will have a singularity at the switch point. Such a singularity represents a first-order
phase transition because fi^A4) nas a jump (see Fig. 3.4(c)).

However, when the energy function f2o(/i, 0o) has symmetry, say Oo(/tt, 4>o) =
Oo (//, e'9 0o) > then the switching between minima can have a very different behav-
ior and can be continuous (see Fig. 3.5). Due to the symmetry, new global minima
are degenerate. The system faces a tough choice to pick one minimum at which to
stay. After the system makes the choice, the new phase no longer has
symmetry. This phenomenon of an asymmetric state emerging from a symmetric

16 We will discuss superfluidity in Section 3.7.3.
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system is called spontaneous symmetry breaking. We see that the second-order
phase transition is intimately related to a change of symmetry in the ground
state. This is the heart of Landau's symmetry-breaking theory for phase and phase
transition (Landau, 1937). This simple idea has a very wide application. In prac-
tice, almost all continuous phase transitions are characterized by some kind of
spontaneous symmetry breaking.

In general, spontaneous symmetry breaking can be characterized by an order
parameter. The order parameter can be chosen to be the expectation value of an
operator that transforms non-trivially under the symmetry transformation. In the
above, we have chosen (tp) as the order parameter. Due to its transformational
property {</?) —>• el61 {<p}, (up) — 0 in the symmetric phase. In contrast, (ip) =
(f>o 7^ 0 in the symmetry-breaking phase.

In the symmetry-breaking phase, if we know the phase of the tp field at one
point, then we know the phase at any other point. This property is called long-range
order. The long-range correlation in the tp field can be mathematically expressed
as

If the phases of (p are random and uncorrelated from one point to another point,
then the above correlation will be zero. Certainly, here we only consider the classi-
cal ground state without quantum fluctuations. In this case, we see that the nonzero
order parameter and the long-range order in the (p operator are closely related. The
symmetry-breaking phase can be characterized by either a nonzero order parame-
ter or a long-range correlation. In the next few sections, we will include quantum
fluctuations and see how they may affect order parameters and long-range order.

Problem 3.3.1.
Derive the classical equation of motion from the action (3.3.1). Consider only the small
fluctuations around the ground state and derive the linearized equation of motion for both
the symmetric phase (with n < 0) and the symmetry-breaking phase (with /u > 0). Show
that fluctuations around the symmetric ground state have a finite energy gap, while fluctu-
ations around the symmetry-breaking ground state contain one mode with zero gap. This
mode has a linear dispersion u> oc k.

Problem 3.3.2.
A water-vapor transition can be described by the following Gibbs energy function:

where n is the density of the water molecules. The Gibbs energy of the system G(T, P)
is given by the minimal value of G(T, P; n) with respect to n. The system has a line of
first-order transitions that ends at a critical point. Find the equations that determine the
first-order-transition line and the critical point. (Hint: First consider the case with c = 0.
Such a Gibbs energy has the same form as the free energy of the Ising model in a magnetic
field 5p, if we regard n as the density of the spin moments.)
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3.3.3 Low-energy effective theory

• The effective Lagrangian that describes the slow (i.e. low-energy) fluctuations
can be obtained by integrating out the fast (i.e. high-energy) fluctuations.

To study excitations above the classical ground state, let us consider the
following small fluctuations around the classical ground state:

The dynamics of 8<p are governed by the same action (3.3.1). However, we can
now assume that 8<p is small and keep only the quadratic terms in 6p. For the
symmetric phase <^>o = 0, we have

In the symmetric phase, the equation of motion is

which leads to the following dispersion for the fluctuations:

In the next section, we will see that those fluctuations correspond to particle-like
excitations. The frequency and the wave vector of the fluctuations become the
energy and the momentum of the particles, respectively. We see that excitations
have a finite energy gap A = —f.t (note that p, < 0), which is just the energy
needed to create an excitation. In fact, the particles described by the dispersion
(3.3.6) just correspond to the bosons that form our system.

To understand the low-energy excitations in the symmetry-breaking phase, we
would like to derive a low-energy effective theory that only contains modes related
to the low-energy excitations. As to which fluctuations have low energies, we note
that, in the symmetry-breaking phase, different phases of the condensate, 0, lead
to degenerate ground states. If we change the phase of the condensate in a large
but finite region, then, locally, the system is still in one of its degenerate ground
states. The only way for the system to know that it is in an excited state is through
the gradient of 6. If the phase changes slowly in space, then the corresponding
excitations will have small energies. Thus, the low-energy excitations correspond
to fluctuations among degenerate ground states and are described by the 6 field.
Based on this picture, we write

where po = </?Q = fJ-/Vn is the density of the ground state and tip is the den-
sity fluctuation. In this form, 0 describes the low-energy slow fluctuations and



Here we are facing a very typical problem in many-body physics. We have two
fields, one describing the slow, low-frequency (i.e. low-energy) fluctuations and
the other describing the fast, high-frequency fluctuations. If we only care about
low-energy physics, how do we remove the fast field to obtain a simple, low-energy
effective theory?

One way to obtain the low-energy effective theory is to drop the 5p field by
setting 6p = 0. This leads to the following low-energy effective action for 0:

However, this effective action is not quite correct because the dtO is a total deriva-
tive. It does not enter into the equation of motion. We need to obtain the 
term to understand the low-energy dynamical properties of 0. To obtain the
term, one needs to be more careful in removing the Sp field.

A better way to obtain the low-energy effective theory is to integrate out the fast
field 8p in the path integral. This can be easily achieved here because the action
(3.3.8) is quadratic in Sp. Performing the Gaussian integral, we find that

The model described by eqn (3.3.10) or eqn (3.3.11) is called the XY-model.

17 The total time derivative term is important in the presence of vortices and should not then be
dropped. See Section 3.6.
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8p the high-energy fast fluctuations. Substituting eqn (3.3.7) into eqn (3.3.1) and
expanding to quadratic order in 9 and Sp, we obtain

where we have assumed that the field 9 varies slowly in space and we have dropped
term. We have also dropped the total time derivative term in the

action.17 We obtain the following simple, low-energy effective action for 9:

Note that the 9 field really lives on a circle, and so 9 and 9 + 2vr describe the same
point. To be more accurate, we may introduce z = e l 0 and rewrite the above as

the
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The classical ground state is given by a uniform 9 field: 6(x, t) = constant.
The excitations are described by the fluctuations of 0 which satisfy the equation of
motion

The above equation is a wave equation. It describes a wave with a linear dispersion

where v is the wave velocity.
In many cases, it is not enough to just know the low-energy effective action.

It is also important to know how the fields (or operators) in the original theory
are represented by the fields (or operators) in the low-energy effective theory. In
the following, we will use the density operator as an example to illustrate the
representation of the physical operators (or fields) in the original theory by the
fields in the effective theory. Firstly, we add a source term
that couples to the density in the original Lagrangian. Then, we carry through the
same calculation to obtain the effective theory. We find that the effective theory
contains an additional term (to linear order in AQ) — AQ (po — ̂ ). Thus, the density
operator is represented by

in the effective theory. Similarly, we find that the boson current density j =
Reyjt ̂ - if becomes

in the effective theory. Equations (3.3.13), (3.3.14), and (3.3.10) allow us to use
path integrals to calculate the density and current correlations within the simple
low-energy effective theory. Those correlations can then be compared with experi-
mental results, such as compressibility and conductivity. The relationship between
p and 9 also tells us that the low-energy fluctuations described by 9 are simply the
density-current fluctuations.

Problem 3.3.3.
(a) There is another way to obtain the low-energy effective theory for 8. We express Sp
in terms of dtd, dx9, etc. by solving the equation of motion for the Sp field. Then, we
substitute Sp back into the action to obtain an effective action that contains only 9. Show
that this method produces the same XY-model action (3.3.10).
(b) If we substitute Sp into the density and current operators, then we will reproduce
eqn (3.3.13) and eqn (3.3.14), respectively. Show that p and j satisfy the conservation
law 
(c) Use the expression for the density operator given in eqn (3.3.13) to calculate the
superfluid density-density correlation function in momentum-frequency space.
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3.3.4 Waves are particles

• The emergence of a new kind of particle—quas(particles—in a superfluid
state. The quasiparticles are bosonic and non-interacting. The quasiparticles
also have a linear dispersion.

We have viewed the fluctuations of 9 around a classical ground state (or the 5tp
in the symmetric phase) as waves. Due to the particle-wave duality in quantum
physics, the wave can also be viewed as particles. These particles are called quasi-
particles. In the following, we will quantize the low-energy effective theory and
obtain the quantum theory of the quasiparticles. The quantum theory turns out to
be a theory of bosons, which tells us that the quasiparticles are bosons.

We first write the low-energy effective Lagrangian (3.3.10) in the k space as
follows:

The quantum Hamiltonian is obtained by simply treating TT^ and #& as operators
that satisfy the following canonical commutation relation:

where

 and V is the total volume of the system. The
above action describes a collection of decoupled harmonic oscillators.

To obtain the quantum Hamiltonian that describes the quantized theory, we first
calculate the classical Hamiltonian. The canonical momentum for Ok is

The classical Hamiltonian H

We now introduce
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We find that the a.k satisfy the algebra of the lowering operator of an oscillator:

In terms of the lowering and raising operators (a&, a^), the Hamiltonian takes the
standard form for the oscillators:

This is just the free boson Hamiltonian (3.1.1) with single-boson energy t^ — v\k\.
We see that the collective fluctuations of 0 give rise to bosonic quasiparticles

with a linear dispersion. As the fluctuations of 0 correspond to the density wave in
the superfluid, we can also say that density waves become discrete quasiparticles in
quantum theory. This picture applies to more general situations. In fact, any wave-
like fluctuations of a quantum ground state correspond to discrete quasiparticles
after the quantization.18 The sound waves in a solid become phonons described
by the Hamiltonian (3.3.18). For this reason, we will also call the quasiparticles in
the superfluid phonons. The phonon velocity (or the velocity of the density wave)

agrees with the mean-field result (3.2.9).
We would like to stress that the bosonic quasiparticles—the phonons—are very

different from the original bosons that form the superfluid. The original bosons
have a quadratic dispersion e^ = fc2/2m, while the phonons have a linear dis-
persion efc = v\k\. The original bosons are interacting, while the phonons are
free. In fact, a phonon corresponds to a collective motion of many original bosons.
This is an example of a new type of boson—non-interacting phonons with a linear
dispersion—emerging from an interacting boson system.

3.3.5 Superfluid as a toy universe

• If we view the superfluid as a toy universe, then the phonons will be the
massless 'elementary particles' in the toy universe.

• The rotons (the vortex rings) can interact by exchanging phonons. This leads
to a 1/r4 dipolar interaction between two rotons.

To appreciate our universe and to appreciate the elementary particles in it, let us imag-
ine a toy universe that is formed by a superfluid. Let us assume that the bosons that form
the superfluid are too small to be seen by the inhabitants in the toy universe. The question
is what does the toy universe look like to its inhabitants?

18 A sound wave in air does not correspond to any discrete quasiparticle. This is because the sound
wave is not a fluctuation of any quantum ground state. Thus, it docs not correspond to any excitation
above ihe ground state.
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FIG. 3.6. The boson flow pattern around (a) a roton (a vortex ring), and (b) a dipole of the phonon
charge.

The toy universe contains a massless excitation19—the phonon. To the inhabitants in
the toy universe, the phonon is just a kind of particle-like excitation, because nobody can
see the bosons that form the superfluid and nobody knows where the phonons come from.
Thus, the inhabitants in the toy universe call the phonon an 'elementary particle'.

We see that the toy universe is quite similar to our universe. Our universe also has a
massless excitation—the photon. We also call the photon an 'elementary particle'. Just like
phonons, photons do not interact with each other either. However, photons are responsible
for the 1/r2 Coulomb law between electric charges. Do phonons induce a similar interaction
between their 'charges'?

The answer to the above question is yes. However, first we need to explain what the
'charges' are for the phonons. We know that the electric charge generates conserved flux—
electric field. Similarly, the 'charges' for the phonons also generate conserved flux. However,
for phonons the flux is the flux of the bosons in the superfluid. A positive 'phonon charge',
by definition, is a source of bosons, where the bosons are created at a constant rate at
a certain point. A negative phonon charge is a drain of bosons, where the bosons are
annihilated at a constant rate at a certain point.

To understand the interactions between the phonon charges, we minimize the energy
/ d3x ^(<9x<?)2 with respect to 6 that statisfies the constraint dx • j - J° = 0. Here j =
^dx9 is the boson current, J°(x,t) = '^Iiqi8(x-Xi) is the density of the phonon charges
and qi is the value of the ith phonon charge. g» > 0 corresponds to a source and g; < 0
corresponds to a drain. We find that the potential between two phonon charges qi and 52
is propotional to qiqz/r. The interaction between the phonon charges is very similar to the
Coulomb law. The force is proportional to 1/r2. The like charges repel and the opposite
charges attract.

In a real superfluid, the bosons are conserved. As a result, the source and the drains,
and hence the phonon charges, are not allowed. The only allowed excitations are the low-
energy phonons and the high-energy rotons (see Fig. 3.1). It should be noted that the
roton can be regarded as a small ring formed by a vortex line.20 The flow pattern of the
bosons around the roton can be viewed as a flow pattern generated be a collection of the
phonon charges if we perform the multipole expansion. The conservation of the number of

19 A relatlvistic particle of mass m has a dispersion e^ = \/m2c4 + c2fc2, where c is the speed
of light. The phonon dispersion ek = v\k\ can be viewed as the massless limit of v m.2c4 + c2fc2,
where the phonon velocity v plays the role of the speed of light.

20 The vortex in (2 + 1)-dimensional superfluid is defined in Section 3.4.2. The definition can be
generalized to any dimensions.



88 INTERACTING BOSON SYSTBMS

bosons requires that the total of the phonon charges in the multipole expansion is zero. The
symmetry of the vortex ring allows a finite dipole moment in the multipole expansion (see
Fig. 3.6), and the dipole moment is in general nonzero for the rotons. Therefore, the rotons
have a l/r4 dipolar interaction between them.

To summarize, the toy universe contains particles with a dipole moment. The long-range
dipolar interaction is caused by exchanging the massless phonons.

3.3.6 Spontaneous symmetry breaking and gapless excitations

• The concept of universal properties.

• Spontaneous breaking of a continuous symmetry always results in gapless
bosonic excitations.

We would like to stress that, in the superfluid, the three properties of the
phonons, namely the vanishing interaction, the gapless linear dispersion, and the
bosonic statistics, are universal properties that do not depend on the details of
the interaction between the bosons. In the above, we have assumed that the bosons
have a ^-function interaction. However, the universal properties remain unchanged
if the bosons have a more general interaction

as long as the interaction           is short-ranged. As the gapless-
ness ot the quasiparticles is a universal property independent of the details of the
starting Lagrangian, there should be a general understanding of the gaplessness
that does not depend on those details. It turns out that the existence of the gapless
excitations in the superfluid phase is intimately related to the f/(l) symmetry of
the Lagrangian and the spontaneous symmetry breaking of the ground state. In the
following, we will explain this relation.

The Lagrangian (3.3.1) has a [7(1) symmetry because it is invariant under the
(/(I) transformation                we explicitly break the symmetry, that is to
make the Lagrangian not respect the [7(1) symmetry, then the low-lying mode will
obtain a finite energy gap. For example, if we add a term CRe;/? to the Lagrangian
to explicitly break the [7(1) symmetry, then a term of the form        will be
induced in the XY-model: . The classical
ground state is given by 0 = 0. For small fluctuations around the ground state, the
Lagrangian can be simplified as follows: . The
resulting wave equation                                                                   tells us that the wave always

has a finite frequency                                                                , regardless of the wave vector. Thus,
the potential term          opens up an energy gap for the

If both the Lagrangian and the ground state are invariant under the [/(I) trans-
formation, then the symmetry is not broken. From eqn (3.3.6), we see that the
symmetric ground state, in general, also has a finite energy gap.

quasiparticles.
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FlG. 3.7. The gapless Nambu-Goldstonc mode is a fluctuation between degenerate ground states.

The superfluid phase spontaneously breaks the U(l) symmetry; the Lagrangian
has the U ( l ) symmetry but the ground state does not (see Section 3.3.2). Only in
this case do the gapless phonon excitations exist.

Nambu and Goldstone have proved a general theorem, which states that if a
continuous symmetry is spontaneously broken in a phase, then the phase must
contain gapless excitations (Nambu, 1960; Goldstone, 1961). These gapless exci-
tations are usually called the Nambu-Goldstone modes. The gapless phonon in the
superfluid is a Nambu-Goldstone mode.

Intuitively, if a symmetry (continuous or discrete) is spontaneously broken,
then the ground states must be degenerate, because the Hamiltonian has the sym-
metry and the ground state does not. The different ground states are related by
the symmetry transformations. Furthermore, breaking continuous symmetry gives
rise to a manifold of degenerate ground states that can be parametrized by the
continuous variables 0-,. The fluctuations among these degenerate ground states
correspond to gapless excitations (see Fig. 3.7). One can write down a low-energy
effective action in terms of the           fields to describe the dynamics of the gap-
less mode. This low-energy effective theory is called the nonlinear d-model. The
XY-model is the simplest nonlinear cr-model. We will see more examples of the
nonlinear cr-model later.

3.3.7 Understanding spontaneous symmetry breaking in finite systems

• Quantum fluctuations can restore the symmetry. The real ground state of a
finite system can never break U(l) symmetry. However, for a large system,
one can form an approximate symmetry-breaking ground state from many
closely degenerate ground states.

• For an infinite system, the state characterized by the order parameter
forms its own 'universe'. It takes an infinitely long time to fluctuate to another
state characterized by a different order parameter.
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In Section 3.3.2, we mentioned that the superfluid phase (or the symmetry-
breaking phase) is characterized by a nonzero order parameter   . In quantum
theory, the order parameter is the expectation value of the boson field on the ground
state                                      (remember that we have renamed
the boson annihilation operator a (a;) to <p(x)). For a finite quantum system, the
order parameter is always zero and there is no spontaneous symmetry breaking.
This is because at quantum levels the £7(1) symmetry is generated by the operator
W — e~lNO, where N is the total boson number operator. One can easily check
that

As [H, W] = 0, the ground state |$Q) of a finite system is always an eigenstate of
W. Therefore,

and the order parameter
0, regardless of the value of (j,.

In contrast, the classical calculation in Section 3.3.2 does imply a phase transi-
tion and degenerate ground states that break the £7(1) symmetry, even for a finite
system. (In fact, all of the calculations in the last section were performed for a finite
system of volume V.) The reason that the £7(1) symmetry can break in a finite clas-
sical system is that the uniform part of the   field,    , has no fluctuations. We will
see below that, if we treat (po as a quantum variable, then its quantum fluctuations
will restore the £7(1) symmetry for a finite system. We will also see that, as the
system volume           , the quantum fluctuations of <PQ approach zero. Thus, the
£7(1) symmetry breaking can emerge in the           limit of a quantum system.

We know that low-energy physics is governed by the XY-model. Here we
are only interested in the uniform fluctuations. Thus, we set                    in
eqn (3.3.10). The effective theory that governs the dynamics of OQ is given by

where we have put back a total time derivative term and the constant terms,
eqn (3.3.20) describes a simple system of a particle on a circle parametrized by

. The mass of the particle is M = V/Vo and the momentum is

where we have used p, = poVg. The Hamiltonian is

If we treat H as a. classical system, then the particle is in the ground state if it
has momentum p — —fiVp/Vo, or velocity 9 = 0. The position of the particle can
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be arbitrary. Thus, all of the states     describing the particle at different OQ are
degenerate ground states and the U(l) symmetry is broken.

However, the quantum theory provides a very different picture. In the quantum
theory, the momentum p is quantized as an integer. The state with momentum

 has energy

Thus, the state with — p = n = /iV/Vo has minimal energy and corresponds to the
true ground state

The ground state has no degeneracy. The order parameter can now be shown
explicitly to vanish:

Another way to understand why there is no U(l) symmetry breaking is to note
that the total boson number is given by                        (see eqn (3.3.13)). From
eqn (3.3.21), we see that —N = p is the canonical momentum of OQ. Thus, in the
quantum world, there is an uncertainty relation between them:

Therefore, a finite system with a fixed number of particles cannot have the defi-
nite phase OQ. In order to have a symmetry-breaking state, we must allow particle
numbers to fluctuate easily.21

Although the quantum fluctuations lift the degeneracy and restore the U(l)
symmetry for a finite system, for large systems the low-lying states are nearly
degenerate. The energy gap is only of order Vb/V, which approaches 0 as V —> oo.
If the energy gap is below all energy scales of interest (for example, below the
energy resolution of measurements), then those low-lying states can be thought
to be degenerate for all practical purposes. In this case, the finite system can be
thought to have U(l) symmetry breaking. In Problem 3.3.4 we will see that, if we
prepare a state with a phase 8$, then it can take a very long time for the phase to
change to other values if the system is large. Thus, in a short time interval we may

21 As a result, if it costs a finite energy to add or to remove a boson, then the system cannot be in
the [/(l)-symmetry-breaking phase. As an application of this understanding, let us consider a lattice
boson system with strong on-site repulsion

The system cannot be in a superfluid phase if the boson density happens to be an integer number of
bosons per site, because at that density it costs finite energy to add or remove a boson.
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treat the phase as a constant which characterizes the symmetry-breaking ground
state.

At the end of Section 3.3.2, we discussed order parameters and long-range
correlations. In this section, we discuss a special kind of quantum fluctuation—
uniform phase fluctuations of </?. We see that, for a finite system, such fluctuations
destroy the order parameter even when p, > 0. However, it is also clear that the
long-range correlation present for /j, > 0 is not destroyed by uniform phase fluctua-
tions. Thus, we can use long-range correlations to characterize symmetry-breaking
phase transitions in large finite systems.

In the above discussion, we considered only the uniform fluctuations of 6 and
ignored the spatially-dependent fluctuations. The question here is when is it correct
to do so? We note that the spatially-dependent fluctuations correspond to sound
waves with finite momentum. The smallest energy gap for these sound wave exci-
tations is given by 1-nv/L, where L is the linear size of the system. Thus, below the
energy       , we can ignore spatially-dependent 9 fluctuations and consider only
uniform fluctuations. The discussion in this section is valid only below

A symmetry breaking state with a fixed angle 6>o) is given by
To construct such a state within the above approximation, we need

to fit an infinite number of uniform fluctuations below the energy 2trv/L. Beyond
one dimension, the energy gap for the uniform fluctuations is Vo/V, which is much
less than the energy gap for the sound waves. In the L —> oo limit, there are infinite
energy levels of the uniform fluctuations below 2w/L. Therefore, it is possible to
construct a symmetry-breaking state beyond one dimension. In one dimension, the
number of the uniform states below 2nv/L is finite and we have trouble to con-
struct the symmetry breaking state. In Section 3.3.8, we will see that the superfluid
phase in one dimension cannot have true long-range order.

Problem 3.3.4.
Consider a 1 cm:1 superfluid He4 at zero temperature. We prepare a 'ground' state with
phase (#o) = 0. Assume that the spread of the phase is                  . How long does it
take for the spread of the phase to reach 2ir, so that the phase of the ground state can no
longer be defined? (Hint: You need to make a guess about the sound wave velocity in He4
in order to estimate Vo, which happens to be the inverse of the compressibility.)

3.3.8 Superfluid phase in low dimensions

• Quantum fluctuations associated with the Nambu-Goldstone modes can
destroy long-range order and superfluid phases in low dimensions.

• The effects of quantum fluctuations on the quantum critical point and a
concept of the upper critical dimension.

At the end of Section 3.3.2, we showed the existence of long-range order
in a symmetry-breaking phase. However, that calculation is almost cheating,
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because, by considering only the classical ground state, we do not allow spatially-
dependent phase fluctuations. As a result, the phases at different positions are
always correlated. Here, we will study the effects of spatially-dependent phase
fluctuations and see when long-range correlations survive the spatially-dependent
phase fluctuations.

First, let us consider the boson system at zero temperature. We want to calculate
. As we are only interested in low-lying fluctuations, we will use

the effective XY-model (3.3.10), which can be rewritten as

with x = 1/Vb being the compressibility of the superfluid. In the path integral
approach, the correlation function can be written as

Introducing

we see that

Here,                             can be calculated easily using the Gaussian integral as
follows:

where GQ is the inverse of                         . It is also the correlation function of the
6 field:

We find that
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3.3.8.1 Superfluid phase in 1 + 1 dimensions

The correlation function in fe-o> space is given by

We can use this to calculate G#(t, x) in 1 + 1 dimensions as follows:

For a finite system, k is quantized: k = ̂  x integer. After replacing 
we get

The two log terms arise from the k > 0 and k < 0 summations. The k — 0 term is
a constant and is dropped. If

We see that, in 1 + 1 dimensions,

From eqn (3.3.24), one has , which
0. We note that the XY-model is only a low-energy effective

which seems to imply that

then

by
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theory. It breaks down at short distances. The divergence of G0(0,0) should be cut
off by a short distance scale I. Thus, we may replace (7g(0,0) by G0(0, /), which
leads to

The above result tells us that quantum fluctuations destroy long-range order in
1 + 1 dimensions and there is no symmetry breaking. However, the destruction is
not complete. The <p field still has 'quasi-long-range' order, where the correlation
decays algebraically. This leads to the following phase diagram: for both fj, <
0 and /z > 0 the boson ground state does not break £7(1) symmetry. However,
for n < 0 there is only short-range correlation in the boson field. When n >
0, the short-range correlation is promoted to 'quasi-long-range' correlation with
algebraic decay.

Another important point is that the correlation                cannot be
expressed in terms of the parameters in the effective theory only. It also depends
on a short-distance cut-off scale I. This is not surprising. To obtain the low-energy
XY-model we have to throw away a lot of information and structures of the original
theory at short distances and high energies. The very definition of many opera-
tors depends on these short-distance structures. For example, some operators are
products of the fields at the same space point, and the very concept of 'the same
space point' is lost, or at least becomes vague, in the low-energy effective the-
ory. Therefore, we should not expect to express all correlation functions in terms
of the parameters in the effective theory. In the above example, we find that the
correlation                     does depend on the short-distance structure of the
theory. What is surprising is that all of the complicated short-distance structures
are summarized into a single parameter /. This demonstrates the universality of the
low-energy effective theory.

3.3.8.2 Superftuid phase in 2 + 1 dimensions

To calculate GQ in 2 + 1 dimensions, we will first calculate the imaginary-time
correlation

Here x1'2 are spatial coordinates and x3 are imaginary times. For simplicity,
we will set i) = 1. The partition function for the XY-model is given by Z —
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We see that22

where
From the relationship between iGg and QQ (see eqn (2.2.34)), we find that

However, for \t\ > \x\ the propagator is ambiguous:
To fix the ± sign we need to perform the analytic continua-

tion more carefully. Assuming that \t\ » \x and changing r) in
continuously from 0 to Tr/2, we find that

where we have restored the velocity v.
In any case, iG(x,t) —> 0 as \t\ and x\ approach oo. Therefore,

approaches to a constant c-
lGX°>°) at long distances. How-

ever, the value of the constant is different from the classical value (which is 1).
Introducing the short-distance cut-off I, we see that

We find that the phase fluctuations do not destroy long-range order in 2 + 1 and
higher dimensions; they merely reduce the value of the order parameter.

3.3.8.3 Short-distance cut-off and nonlinear effects

In the above, we have discussed the effect of quantum fluctuations on the classical
ground state. We find that, in 1 + 1 dimensions, quantum fluctuations always have
a big effect in that they destroy long-range order. The quantum fluctuations that
destroy long-range order come from long wavelengths and low frequencies. They
are there no matter how we adjust the parameters in the theory, such as the cut-off
scale. In 2+1 dimensions and above, the long wavelengths and low-frequency fluc-
tuations do not have a diverging effect, and in general long-range order survives the
quantum fluctuations. The fact that the order parameter depends sensitively on the
cut-off scale implies that the short-distance fluctuations determine the reduction of
order parameters. The short-distance fluctuations only quantitatively modify the
classical results.

22 We have used



PATH INTEGRAL APPROACH TO INTERACTING BOSON SYSTEMS 97

Now a question arises: when are these quantitative corrections small? That is,
when can the classical approximation quantitatively describe the physical prop-
erties of the system? From our results on the order parameter, see eqn (3.3.26),
we see that the fluctuation correction is small if the cut-off scale
To obtain the cut-off scale, we notice that we have dropped the       term in
eqn (3.3.9) because we assume that the fluctuations of 9 are smooth. However, at
the short-distance scale when        is comparable with the other term         
can no longer ignore the gradient term and the XY-model breaks down. Such a
crossover length scale is given by

which is called the coherence length. The coherence length has the following
meaning. If we change the h field or the boson density at a point, then such a
change will propagate over a distance given by £. Setting I = £, the reduction
factor becomes

We can rewrite the above result in a form that makes more sense. Note that
has a dimension of energy and it represents the interaction energy

per particle. In 2 + 1 dimensions, Equa = po/m also has a dimension of energy.
Here Equa is the energy scale (or the temperature scale) below which the boson
wave functions start to overlap and we need to treat the bosons as a quantum
system. Now we can rewrite the reduction factor as

We see that in the weak-interaction limit the fluctuation corrections are small and
the classical results are good.

However, the above result is not complete because we only considered the
effects of short-distance fluctuations within the quadratic approximation. We have
not considered the nonlinear effects from higher-order terms. To have a more sys-
tematic study of the effects of fluctuations, we would like to perform a dimensional
analysis of our boson action

Here we have chosen p, = VQPQ. We would like to rescale t, x, and tp in order to
rewrite the action in the form S = S/g such that all of the coefficients in S are of

we
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order 1. We find that the following rescaling will suffice:

which gives us

with

Here N% is the number of particles in a volume £d. We can also write g as

It is now clear that, if g is small in the path integral          , then the
'potential' is steep and the fluctuations around the potential minimum are small.
In this case, the semiclassical approximation is good. In fact, the semiclassical
approximation corresponds to an expansion in g. In 2 + 1 dimensions g = 4m VQ,
which happens to agree with the condition (3.3.27) obtained from short-distance
fluctuations.

When g is large, the fluctuations can be so large that it is not even clear if the
classical picture is qualitatively correct. In fact, it is believed that, when g 3> 1,
the short-distance fluctuations can destroy long-range order and restore U(l) sym-
metry in the ground state, by, for example, forming a crystal (which has different
symmetry breaking and different long-range order). This is in contrast to what
happens in 1 + 1 dimensions where long-distance fluctuations destroy long-range
order for any value of g.

According to the classical theory, our boson system undergoes a quantum phase
transition at p, = 0. The phase transition is continuous and is described by a quan-
tum critical point. Within the classical theory, we can calculate all of the critical
exponents. For example, the dynamical exponent z in                      . The
exponent v in                                The question is can classical theory cor-
rectly describe the quantum critical point? From eqn (3.3.29), we see that if d > 2
then the closer we are to the critical point (p$ —>• 0), the smaller the g, and the
better the semiclassical approximation. Therefore, for d > 2, classical theory cor-
rectly describes the quantum critical point. However, for d < 2, g diverges as we
approach the critical point. In this case, we have to include quantum fluctuations
to obtain the correct critical exponents. This crossover spatial dimension dc = 2 is
called the upper critical dimension of the critical point.

is
is
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Problem 3.3.5.
Consider a boson system with long-range interaction

where V(r) — V^r* d. I f f < 0, then the interaction is effectively short-ranged. Here we
assume that e > 0.

1. Derive the modified XY-modeI.

2. Find the critical spatial dimension di below which the phase fluctuations 0 always
destroy long-range order. Here we treat the dimension as a continuous real number.
We know that di — 1 for short-range interactions.

3. Repeat the discussion at the end of this section to find g (which determines when the
quantum fluctuations are small) and the upper critical dimension d,: (beyond which
classical theory correctly describes the quantum critical point).

Problem 3.3.6.
Finite temperature correlations in 1 + 1 dimensions

1. Calculate the imaginary-time correlation

assuming thai the one-dimensional space is a finite circle of length L.

2. Calculate the imaginary-time con-elation G@(X,T) at finite temperatures, assuming
that the one-dimensional space is an infinitely long line. (Hint: You may want to
exchange x and T and use the result in part (a).)

3. Calculate the real-time (time-ordered) correlation G^(x,t) at finite temperatures,
assuming that the one-dimensional space is an infinitely long line. Show that

3.4 Super fluid phase at finite temperatures

3.4.1 Path integral at finite temperatures

• The long-distance properties of a (d+1) -dimensional quantum system at finite
temperatures can be described by the path integral of a d-dimensional system.
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In this section, we will study an interacting boson system and its superfluid
phase at finite temperatures. We start with an imaginary-time path integral

which represents the partition function of the system. Note that the Berry phase
term remains imaginary in the imaginary-time path integral.

To reduce the above partition function to a familiar statistical model, we first
go to the discrete frequency space by introducing

Then, we integrate out all of the finite frequency modes:

where <f>c(x) = if>ajn=o(x) is the zero-frequency mode. This is a difficult step and
the resulting effective action Seg can be very complicated. It can even contain
non-local terms such as  However, at
finite frequency the original action contains a term i\pc(x)\2ujn that makes the
propagator of <pn have the form l/(iwn + ck2 + /j,). The propagator is short-
ranged with exponential decay. Thus, the fluctuations of nonzero modes can only
mediate short-range interactions and K(x — x') should have an exponential decay:

. Here we have a new length scale IT, beyond which the
effective action Sefi can be treated as a local action. Although Ses can be very
complicated, due to its symmetry, a local action can only take a certain form. At
long distances beyond IT, we can make a gradient expansion

The '...' represent higher-derivative terms. The effective potential has a tempera-
ture dependence. When ^ < 0, we expect that V always has a single minimum at

representing the symmetric state. When /j, > 0 and at low temperatures,
V should have a circle of minima at epresenting the symmetry-
breaking state. However, beyond a critical temperature Tc, V is expected to change
into one with only a single minimum at . Therefore, the temperature
dependence of V describes the superfluid transition.
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In the superfluid phase, only the phase fluctuations are important at long
dfstances. Setting  we obtain an XY-model

where

We note that the energy is given by TSeff- Thus, the value of Try determines the
energy cost of the phase twist dx6 ^ 0. Here Trj is called the phase rigidity of the
XY-model.

Certainly, the above discussions about symmetry breaking are based on the
classical picture where we have ignored the fluctuations of (p and 0. (Now those
fluctuations correspond to thermal fluctuations.) Again, we can ask whether or not
the symmetry-breaking state can survive the thermal fluctuations. As in the last
section, we can use the XY-model to address this question. Using those results, we
found that, for d > 2, the thermal fluctuations do not always destroy long-range
order.

For d < 2, the thermal fluctuations always destroy long-range order and change
it into short-range order. This is because, for d < 2, the correlation of 0 diverges
as a power of x \:

where we have used the Fourier transformation

Therefore,

The decay length is given by
For d = 2, the 9 correlation has log divergence

and we have the following algebraic long-range order:

for

In
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3.4.2 The Kosterlitz-Thouless transition

• We have seen that spatially-dependent 9 fluctuations change long-range
order to algebraic long-range order. Here we will see that a new type of
fluctuation—vortex fluctuations—can change algebraic long-range order to
short-range order.

The above d = 2 result is not completely correct. When 17 is below a crit-
ical value r/(. (or when the temperature is above a critical temperature TKT\
algebraic long-range order cannot survive and there are only short-range corre-
lations (Kosterlitz and Thouless, 1973). To understand this phenomenon, we need
to include vortex fluctuations. A vortex configuration is given by

where x = r cos(^>) and y — r sin(<j>). One can show that \dx9\ ~ 1/r. Therefore,
the action of a single vortex is

where

I is the short-distance cut-off scale, and Sc is the core action (i.e. the contribu-
tion from inside the vortex core, where /(r) starts to change from <fo to 0). The
interaction between a vortex and an anti-vortex separated by a distance r is 1h In j.

The problem here is very similar to the instanton gas problem discussed in
Sections 2.4.1 and 2.4.3. To calculate the partition function, we must include the
vortex contribution. In the presence of a fixed vortex configuration (pc = e l9'' and
using the XY-model, the partition function has the form

As the XY-model is quadratic, the resulting partition function takes a simple fac-
lorized form                  \ where ZQ is the partition function with no vortex.
As Sff(0,:) is given by the log interaction between the vortices, the total partitioneff(0,:) is given by the log interaction between the vortices, the total partition
function has the form

Each term in the summation contains n vortices at 1*1, ...TV, and n anti-vortices at
'"n+i; • • • ; f"2n- Also, (fa — ± depending on whether the ?'th vortex is a vortex or an
anti-vortex, and r;? is the separation between the ith and j'th (anti-)vortices.
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FiO.3.8. Seff as a function of

To understand the effect of the vortices, let us estimate the partition function
for n vortices and n anti-vortices, namely Z — e~~Sdt, with

where L is the linear size of the system and ln = L/^/n is the mean separation
between the vortices. Here ln is always larger than the cut-off, i.e. /„ > I. The
first term in eqn (3.4.6) comes from l/(n!)2. The second term is the action of
n vortex-anti-vortex pairs, each occupying an area of size ~ ln. It contains two
contributions: the vortex interaction 2fa In l-f and the core action 2SC. The third
term comes from the integration               of the vortex positions (which is the
entropy). The behavior of the vortex gas is controlled by the competition between
the vortex action, which favors fewer vortices, and the entropy, which favors more
vortices.

The number of vortices, n, can be obtained by simply minimizing See with
respect to ln in the range ln > I. From the behavior of Seff in Fog. 3.8, we see that,
when Sc <C — 1 (i.e. when it is cheap to create vortices), Ses is minimized at the
boundary ln ~ I. In this case, the vortex fluctuations are important, which changes
the algebraic long-range order in eqn (3.4.4) to short-range order:

with the correlation length
When S is minimized at                             . Again

the vortex density is finite, which again changes the algebraic long-range order to
aandf
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FIG. 3.9. Phase diagram of the two-dimensional XY-model.

short-range order. The correlation length is

When S is minimized at ln — oo, and the vortex den-
sity is zero. In this case, the vortex fluctuations are unimportant at long distances
and the algebraic long-range order survives the vortex fluctuations.

From the above discussion, we see that, in the Sc ^> 1 limit, our two-
dimensional boson system has a finite-temperature phase transition as we change
r\. The phase transition changes the algebraic long-range order to short-range
order. The critical 77 at the transition is r\  The phase diagram in Fig. 3.9
summarizes our results in the Sc S> 1 limit. The transition at rjc is the famous
Kosterlitz-Thouless (KT) transition. From the relation (3.4.3) between 77 and T,
we find the critical temperature

We would like to point out that the KT transition does not change any symmetry,
and is a counterexample of Landau's symmetry-breaking theory for phases and
phase transitions.

Using                           

near TKT, where E$ is a certain energy scale. Here we would like to point out that
eqn (3.4.8) is not correct as T —> TKT- The incorrect result is due to an incorrect assumption
that the phase rigidity 77 is not affected by the presence of vortices. In fact, the vortex gas
will modify the effective value of T) and h. This is because the vortex-anti-vortex pairs can
be polarized by the phase twist 9^0, which releases some strain and reduces the effective
phase rigidity. Using the effective value h*, eqn (3.4.7) should be rewritten as

The temperature dependence of h*(T) is more complicated than that of h(T). However, by
definition h*(TKT) = 2. Based on a renormalization group calculation (see Section 3.5.6),
we find that

which leads to

and

, eqn (3.4.7) can be rewritten as



R E N O R M A L I Z A T I O N G R O U P 1 0 5

Problem 3.4.1.
Note that, near Tc, the action Seff in eqn (3.4.1) can be approximated by

because the order parameter (pc Is small near the critical point (or the phase transition
point) at T = Tc. In the mean-field (or semiclassical) approach to the phase transition and
the critical point, we first find the mean-field solution that minimizes the action. We then
assume that fluctuations around the mean-field solution are small and expand the action
to quadratic order in the fluctuations. The quadratic approximation of 50ff can be used to
calculate various correlations.

1. Use the mean-field approach to calculate the decay exponent 7 in
l/\x "'' at the critical point.

2. The above result is not always valid because the classical theory may break down.
Repeat the discussions at the end of Section 3.3.8 (i.e. write Scff in the form g~lS
with dimensionless S) to see when the mean-field approach can correctly describe
the critical point and when the critical point is controlled by strong fluctuations; that
is, to find the upper critical point dr.

3. Here we would like to introduce the concept of relevant versus irrelevant perturba-
tions. We know that above the upper critical dimension the classical theory correctly
describes the critical point at the phase transition. Now we add a perturbation

to the effective action SCJT. If the perturbation is important and modi-
fies the critical exponents, then we say it i.s a relevant perturbation. If the perturbation
becomes vanishingly small near the critical point, then we say it is an irrelevant per-
turbation. Use the same scalings that you found above to see how the perturbation

modifies the scaled action 5. Determine for what range of a the
perturbation is relevant, and for what range of o the perturbation is irrelevant.

3.5 Renormalization group

3.5.1 Relevant and irrelevant perturbations

• Relevant perturbations change the long-distance (or low-energy) behavior of
a system, while irrelevant perturbations do not.

• We can use the scaling dimension of a perturbation to determine if the
perturbation is relevant or irrelevant.

In the above discussion of the KT transition, we note that, when
the vortex fluctuations are just 'small perturbations'. However, if h < 2, then
no matter how small c~S' is, the vortex fluctuations always destroy the algebraic
long-range correlation of ^e'^^o"1^0^. Thus, when h < 2, the perturbation
of including the vortex fluctuations is called a relevant perturbation. When h >
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2, the perturbation is called an irrelevant perturbation, and, when h — 2, the
perturbation is called a marginal perturbation. In the following we would like to
discuss relevant/irrelevant/marginal perturbations in a more general set-up.

Consider a theory described by the action

where aO is a perturbation. We assume that SQ has a Z^ symmetry and
under the Z% transformation. As a result, (O) = 0 when a — 0. We also assume
that, for large x,

when a = 0. Here h is called the scaling dimension of the operator O (the scaling
dimension of 1/x is defined as 1). Equation (3.5.1) also defines the normalization
of the operator O.

At the second-order perturbation, the partition function is given by

where ZQ is the zeroth-order partition function. We see that the second-order
perturbation changes the effective action by

system prefers to have two O(x) insertions. When L ;§> £, the system wants to
have two O(x) insertions for each £d volume. We see that, if we are interested
in correlation functions at length scales beyond £, then the perturbation is always
important. We conclude that the perturbation               is relevant if the scaling
dimension of O(x] is less than d. In this case, O(x) is called a relevant operator. If
the scaling dimension of O(x) is greater than (or equal to) d, then O(x) is called
an irrelevant (marginal) operator. An easy way to remember this result is to note
that the perturbation J ddx O(x) is relevant if f ddx O(x) has a dimension less
than zero.

The concept of scaling dimension also allows us to use dimensional analysis
to estimate the induced (O) by a finite perturbation aO. As the scaling dimension
of 5S = f ddx aO is zero by definition, the coefficient a has a scaling dimension

. When aO is an irrelevant perturbation (i.e. when h > d),
the induced (O) is proportional to a. We have

where I is the short-distance cut-off. When aO is a relevant perturbation (i.e. when
h < d), the induced (O} is more than ald~2h. By matching the scaling dimensions,

None that, when and we have Thus, the
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we find that

Problem 3.5.1.
The effective action

describes a critical point. Calculate the scaling dimensions of              , and |tp|4. Show
that, below a spatial dimension do, the perturbation                      becomes a relevant per-
turbation. Find the value of do and explain why do is equal to the upper critical dimension
dc of

3.5.2 The duality between the two-dimensional XY-model and the two-dimensional
clock model

• The vortices in the two-dimensional XY-model can be viewed as particles.
The field theory that describes those particles is the two-dimensional clock
model.

In order to study the vortex fluctuations of the XY-model in more detail, we
would like to map the two-dimensional XY-model to the Z\ two-dimensional clock
model. A generic Zn clock model is defined by

When g — 0 the clock model is the XY-model at finite temperatures. The action is
the energy divided by the temperature: S = BE. The g cos(nl9) term (explicitly)
breaks the [/{!) rotational symmetry. If we view
the two components of a spin, then, for n = 1, the gc,os(8) term is a term induced
by a magnetic field in the Sx direction. For general n, the clock model has a Zn

symmetry:
To show the duality relation, we consider the following partition function of

eqn (3.5.3) with

where ZQ is the partition function of  Each term in the sum-
mation arises from the correlation                                                                             . Also,

as
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Equation (3.5.4) is identical to the partition function (3.4.5) of the XY-model
(3.4.2) if            So, the Z\ clock model (3.5.3) is equivalent to the XY-model
(3.4.2) (with vortices) if ̂ . = IT.T). The vortex in the XY-model is mapped to

 in the clock model. Similarly, the vortex in the clock model is mapped to
 jn me XY-model. The vortex in the clock model has a scaling dimension TTK.

The             operator in the XY-model has a scaling dimension 1/4.7777. The relation
 ensures that the two scaling dimensions agree with each other.

We know that the f/( l) symmetry in the XY-model does not allow the el° term
to appear in the action. Using the above mapping, we see that the corresponding
clock model must not allow vortex fluctuations. Allowing the vortex fluctuations in
the clock model corresponds to explicitly breaking the f/(l) symmetry in the dual
XY-model. We see that there are two different types of clock model, the one with
vortex fluctuations and the one without vortex fluctuations. As the correspond-
ing dual models have different symmetries, the two types of clock model have
very different properties. We will call the clock model with vortex fluctuations the
compact clock model, and the one without vortex fluctuations the non-compact
clock model. The XY-model with vortices is mapped to an Z\ non-compact clock
model. Such a mapping allows us to study the KT transition in the XY-model by
studying the transition in the corresponding non-compact clock model.

3.5.3 Physical properties of the clock model

• A field theory model is not well defined unless we specify the short-distance
cut-off.

• Ginzburg-Landau theory, containing strong vortex fluctuations, cannot
describe phase transitions in the non-compact clock model.

In this section, we will discuss possible phase transitions in a generic Zn clock
model. When g is large, the field 0 is trapped by one of the minima of the potential
—gcos(nd). We believe that, in this case, the model is in a phase that sponta-
neously breaks the Zn symmetry. When both K and g are small, the fluctuation of
0 is strong. We expect that the model will be in a /^-symmetric phase.

Despite sounding so reasonable, the above statements do not really make sense.
This is because g has a dimension. It is meaningless to talk about how large g is.
What is worse is that g is the only parameter in the model that has a non-trivial
dimension. So, we cannot make a dimensionless combination to determine how
large g is.
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To understand the importance of the gcos(nO) term in a physical way, we
would like to ask how big the eind operator is. One physical way to answer
this question is to examine the correlation of eind for the XY-model S =

The correlation is given by (see eqn (3.3.25))

One big surprise is that the correlation depends on the short-distance cut-off I.
Thus, the magnitude (or the importance) of the operator eind is not even well
defined unless we specify the cut-off I. This illustrates the point that to have a
well-defined field theory we must specify a short-distance cut-off I. To stress this
point, we would like to make the I dependence explicit and write the action as

The short-distance cut-off is introduced by requiring that the QI field does not
contain any fluctuations with wavelengths shorter than /:

We see that a well-defined clock model (3.5.6) contains three parameters KI, gi,
and 1. So, the clock model really contains two dimensionless parameters KI and

We can now make sensible statements. When gi S> 1, we believe that the model
is in a phase that spontaneously breaks the Zn symmetry. When both KI and g\ are
much less than 1, we expect the model to be in a Zn-symmetric phase.

A non-trivial limit is when « / ; § > ! and gi -C 1. Is the model in the
.^-symmetric phase or in the Zn-symmetry-breaking phase? The concept of rele-
vant/irrelevant perturbation is very helpful in answering this question. If we treat
the gl cos(n ) term as a perturbation to the XY-model, then, from eqn (3.5.5), we
see that the scaling dimension of em° in the XY-model is
Thus, the gi cos(nO] term is relevant when            < 2 and irrelevant when
n2/47nq > 2.

This result is reasonable. When KI is small, the fluctuations of 0 are strong.
This makes the gi cos(n#) term average to zero and be less effective. Hence the
perturbation gi cos(n9) is irrelevant. When gi cos(n9) is irrelevant and gi is small,
we can drop the gi cos(nO) term when we calculate long-range correlations. This
suggests that, at long distances, we not only have the Zn symmetry, but we also
have the full U(l) symmetry when both KI and gi are small.

When K is large, the fluctuations of 0 are weak. This makes the g\ cos(nO) term
a relevant perturbation. The effect of the gi cos(n9] term becomes important at
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long distances, no matter how small gi is. Thus, we expect the system to be trapped
in one of the n minima of the potential term and the Zn symmetry is spontaneously
broken, even for small g;.

After realizing that the clock model can have a Zn-symmetry-breaking phase
and a ZTl-symmetric phase, the next natural question is how do the two phases
transform into each other? One way to understand the transition is to introduce a
complex order parameter               and write down a Ginzburg-Landau
effective theory for the transition

Note that the cRecp" term (explicitly) breaks the (/(I) symmetry down to Zn.
When n > 1, the Ginzburg-Landau theory describes a symmetry-breaking
transition as a changes from a positive value to a negative value.

When n = 1, the Ginzburg-Landau theory contains no phase transition because
there is no symmetry breaking. This seems to suggest that the Z\ clock model
contains no phase transition and the corresponding XY-model contains no TK
transition.

So what is wrong? In the Ginzburg-Landau theory, the order parameter has
strong amplitude fluctuations near the transition point. A typical configuration
of 1/3 contains many points where <p = 0. So, there are strong vortex fluctua-
tions. The Ginzburg-Landau theory describes the phase transitions in the compact
clock model. The Ginzburg-Landau theory does not apply to a non-compact clock
model.

3.5.4 Renormalization group approach to the non-compact clock model

• Through the concept of running coupling constants, the renormalization group
(RG) approach allows us to see how a theory evolves as we go to long dis-
tances or low energies. It is very useful because it tells us the dynamical
properties that emerge at long distances or low energies.

• As an effective theory only evolves into a similar effective theory, we cannot
use the renormalization group approach to obtain the emergence of qualita-
tively new phenomena, such as the emergence of light and fermions from a
bosonic model.

In this section, to understand the physical properties of the non-compact clock
model, we will work directly with the 9 field in the clock model.

We note that, if the fluctuations O(x) and O(y) at different locations fluctuate
independently, then the so-called connected correlation
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vanishes. So, the connected correlation measures the correlation between the
fluctuations ofO(x) and 0(y).

When gi — 0, the non-compact clock model always has an algebraic long-range
correlation: regardless of

the value of K,\. The issue here is how the g\ cos(nO) term affects the algebraic
long-range correlation.

As discussed in the last section, when KI < n2/8ir, ein8^ is irrelevant and
a small gi cos(n9) term will not affect the algebraic long-range correlation. When
KI >                      is relevant. We expect that a gi cos(nO) term will change the
algebraic long-range correlation into a short-ranged one, no matter how small gi
is. We see that, for small gi, the non-compact clock model has a phase transition
at                  In the following, we will use the RG approach to understand the
above phase transition.

We note that the clock model is well defined only after we specify a short-
distance cut-off 1. The key step in the RG approach is to integrate out the
fluctuations between the wavelengths I and A (A > I). This results in a model
with a new cut-off A. To integrate out the short-wavelength 0 fluctuations, we first
write

where 59 only contains fluctuations with wavelengths between I and A. As the
short-wavelength fluctuations 50 are suppressed by the term, we expect
56 to be small and expand the action to second order in 50 as follows:

We treat 6\ as a smooth background field, and integrate out SO (this approach is
called the background-field RG approach). We obtain the effective action



112 I N T E R A C T I N G B O S O N S Y S T E M S

where                                       We note that the last terra can be rewritten as

where               d2x K(x). We see that
 etc. are generated. RG flow can generate many new

terms that are not in the starting action. In fact, any local terms that do not break
the Zn symmetry can be generated. However, the term cos(0\) is not generated
when n > 1 because it breaks the Zn symmetry. For the time being, let us only
keep the terms (dxO\)2 and cos(6\) that are already in our starting action.23 We
find that the action of our model becomes

where A is the new cut-off. The effective coupling constants depend on the cut-off
A and are called running coupling constants. They are given by (assuming that

23 It turns out thai all of the other terms arc irrelevant. If those terms are small at the start of the
RG flow, then they will become even smaller after a long flow. This is the reason why we can ignore
those terms. Certainly, if those terms arc large at the beginning, then they can change everything.
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F I G . 3.10. fa) The RG flow of g\ and h-.,\ as determined by eqn (3.5.9). (b) The RG flow of ax and

fi\ as determined by eqn (3.5.10).

Let b — In A; then the changes of the coupling constants are described by the
following differential equations:

In terms of the dimensionless couplings K\ —
differential equations can be rewritten as follows:

The flow of (</A, «A) is illustrated in Fig. 3.10(b). We find that

which are called the RG equations. The flow of (K, g) is illustrated in Fig. 3.10(a).

3.5.5 Renormalization group theory and phase transition

• The concept of a fixed point and effective theory for a fixed point.

To understand the physical implications of the RG flow, let us first ignore the
flow of KX and study, instead, the following RG equations:

113

and these
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from the RG equations, where h — ̂ ^ is the scaling dimension of cos(n#). When
cos(nO) is relevant, a very small gi can become as large as one wants for a long
enough flow. In particular, g\ = 1 when                              At this point, the cou-
pling constants stop flowing because the RG equations (3.5.9) become invalid due
to the higher-order g\ terms that were ignored in the RG equations. The resulting
effective theory has the same form as eqn (3.5.8) and is called fixed-point theory.
We can use the fixed-point theory to obtain the long-distance correlations and other
long-distance physical properties of the original model.

When g\ = 1, everything in the renormalized fixed-point theory is of order 1
when measured in units of A. Thus, if we believe that a large g\ cos(nO\) will make
9\ have short-range correlation, then the correlation length £ must be of order 1
when measured by A. This way, we find that

which agrees with the general result                 obtained in the last sec-
tion, after realizing that the perturbation O in the last section corresponds to
O = lrhcos(nd). (Equation (3.5.1) determines the normalization of O.) Thus
a = glh. In terms of K, the above result leads to

Also, a large g^ cos(n^) potential term at the length scale £ traps 0^ in one
of the potential minima. Thus, a relevant perturbation gi cos(n6i) always causes a
spontaneous Zn symmetry breaking, no matter how small g\ is at the cut-off scale.

When K approaches n2/8yr, the correlation length £ —> oo. Thus, there is a
phase transition at n2/8vr. When K < n2/8?r, the perturbation gi cos(n(9/) is irrel-
evant. After a long RG flow, we obtain a different fixed-point theory ^(dxO\)2

because the g^ flow goes to zero. This fixed-point theory has full £7(1) symmetry!
This is a very striking and very important phenomenon called dynamical symme-
try restoration. Sometimes a term may explicitly break a certain symmetry (such
as the gi cos(n0/) term breaks the U(l) symmetry down to the Zn symmetry). If
the term is irrelevant, then, at long distances and/or low energies, the term flows to
zero and the symmetry is restored.

To summarize, the non-compact clock model (3.5.3) has Zn symmetry. When K
is less than a critical value KC — ri2/87r, the model is in a phase that does not break
the Zn symmetry. Furthermore, the phase has U(l) symmetry at long distances.
The correlation length is infinite. When K is above the critical value KC, the model
is in a phase that breaks the Zn symmetry. The correlation length is finite.

The above discussion is correct and general if there is no marginal operator in
the model. In that case, h can be treated as a constant. However, for the XY-model,
the operator (dxO)2 has a dimension exactly equal to 2 and is an exact marginal



R E N O R M A L I Z A T I O N G R O U P 115

operator. As a result, K is a marginal coupling constant. The constant K, and hence
h, can shift their values in an RG flow. This results in the RG flow described
by eqn (3.5.9) and shown in Fig. 3.10(a). We note that the RG flow described in
Fig. 3.10(a) is quite different from that in Fig. 3.10(b) near the transition point
KQC = n2/87r. The result (3.5.11) only applies to the RG flow in Fig. 3.10(b), and
is not valid for the RG flow in Fig. 3.10(a) near the transition point 
In the next section, we will calculate £ for the RG flow in Fig. 3.10(a).

In the above, we have used the RG approach to discuss the phases and the phase
transitions in the non-compact clock model. We can also use the same RG result to discuss
the phases and the phase transitions in the compact clock model with vortex fluctuations.

At first sight, one may say that vortices and anti-vortices are always confined due to
the potential term gt cos(nft). This is indeed true if K > KC and recos(n0) is relevant. When
K < KC, Kcos(n6) is irrelevant. In this case, the properties of the vortices are just like those
in the XY-model. The vortex fluctuations are relevant if K < 2/V and irrelevant if K > 2/vr.
When vortex fluctuations are relevant, they modify the phase structure of the clock model.

The compact two-dimensional clock model can have several different behaviors depend-
ing on the value of n.

1. n > 4: The model is in the Zn-symmetry-breaking phase when K > n2/87r. The Zn

order parameter e i s has a long-range order:
Near the transition point n2/8-n-, we have K > 2/w and the vortex fluctuations are
irrelevant. Thus, when                  he system is in a Zn-symmetric phase
with emergent U(l) symmetry at long distances. The Zn order parameter eie has
an algebraic long-range order:  When K < 2/V, the
vortex fluctuations are relevant, which destroys the algebraic long-range order. The
system is in a Zn-symmetric phase. The Zn order parameter e'" has a short-ranged
correlation: (e ie(ll!)e~ i9(0)) ~ e~^^. As there is no long-range correlation, we
cannot even talk about the emergent (7(1) symmetry at long distances.

2. n = 4: The model is in the Z4-symmetry-breaking phase when K > n2/8n = 2/7r,
and in a ^-symmetric phase when K < 2/ir. In the symmetry-breaking phase,
gi cos(4#) is relevant and the vortex is irrelevant. In the ̂ -symmetric phase, gi cos(4#)
is irrelevant and the vortex is relevant. Thus, the ^-symmetric phase has no alge-
braic long-range order and no emergent (7(1) symmetry. At the transition point, both
gi cos(40) and the vortex are marginal.

3. n < 4: The model is in the Zn-symmetry-breaking phase when K » n2/8ir, and
in the Zn-symmetric phase when K < n2/87r. Near the transition point, both e ine

and the vortices are relevant and fluctuate strongly. The phase transition is described
by Ginzburg-Landau theory, see eqn (3.5.7). When n = 1, there is no symmetry
breaking and no phase transition.

Problem 3.5.2.
Running 'coupling function' Consider a model                                         , where
V(9) is a small periodic function:                                Find the RG equations for the flow
of the 'coupling function' V. You may ignore the flow of K because we have assumed that
V is small. Discuss the form of V after a long flow if we have started with a very small V.

Problem 3.5.3.
The n = 1 clock model (3.5.3) describes a two-dimensional XY-spin system in a magnetic

constant
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field Bx, where Sx = cos(0), Sy = sin($), Sz = 0, and Bx = g. Assume that cos(0) is
relevant. Use the RG argument to find the value of Sx induced by a small magnetic field.
Now assume that cos($) is irrelevant. What is the Sx induced by a small magnetic field?
Compare your result with eqn (3.5.2). (Hint: You may write the renormalized action in
terms of the original coupling constant Bx and use the renormalized action to calculate the
induced Sx. You only need to calculate the induced Sx up to an (9(1) coefficient.)

3.5.6 The correlation length near the transition point

To understand the behavior of £ near the transition point for the RG flow in Fig. 3.10(a), let
us expand the RG equations (3.5.9) for small                          as follows:

We find that

The differential equation leads to                     C. Depending on the sign of the
constant term C, there are three classes of solutions (see Fig. 3.10(a)). Class I and class II
solutions are given by

We can integrate both sides of the above equation from A = I to A = £ to obtain

We know that, at the correlation length £,, we have gf ~ 1. Equation (3.5.13) tells us that
5Fi,£ is also of order 1. Equations (3.5.13) and (3.5.14) relate SKI and gi to £ and allow us to
determine how the correlation length £ depends o

Let us first fix gi and adjust KI to make                                From
eqn (3.5.13), we see that gmin = 0. The integral on the left-hand side of eqn (3.5.14)

which is for C < 0.
Substituting eqn (3.5.13) into the second equation in eqn (3.5.12), we get

where Class III solutions have the form
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diverges, which implies that £ = oo. We see that the Zn -symmetry-breaking transition really
happens when «( - K,., where

If KI is slightly above K<:, then we find that

We find that

3.5.7 Fixed points and phase transitions

• Fixed points and universal properties.

• A fixed point with no relevant perturbations corresponds to a stable phase. A
fixed point with one relevant perturbation corresponds to the transition point
between two stable phases.

Running coupling constants and fixed points (or universality classes) are prob-
ably the two most important concepts in RG theory. In this section, we are going
to discuss them in a general setting. Let us consider a theory with two coupling
constants g\ and g?. When combined with the cut-off scale /, we can define the
dimensionless coupling constants ga — gal

x", a — 1, 2. As we integrate out short-
distance fluctuations, the dimensionless coupling constants may flow. One of the
possible flow diagrams is given in Fig. 3.11 (a).

What can we learn from such a flow diagram? First, we note that the flow has
two attractive fixed points A and B. If (<h ,£b) is anywhere below the DCD' line,
then, after a long flow, the system will be described by { g i ( A } , g i ( A } } . So the
system is described by the fixed point A at long distances. This picture demon
strates the principle of universality. The long-distance behavior of a system does
not depend on the short-distance details of the system. All of the systems below
the DCD' line share a common long-distance behavior described by the fixed-point
theory at A. One of the common long-distance properties is the algebraic decay
exponent in the correlation function. All of the systems below the DCD' line have

As g,niH is much less than \&KI\ and tin^, eqn (3.5.14) becomes
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FIG. 3.11. (a) A and B are two stable fixed points representing two phases. C is an unstable fixed

point with one relevant operator/direction. The transition between phase A and phase B is continuous.

The critical point is described by the unstable fixed point C. (b) The fixed point/line structure of the

model (3.5.3). CA is a stable fixed line. B and B' arc two stable fixed points. CA, B, and B' represent

three phases. C is the critical point representing the transition between the A phase (with algebraic

long-range correlations) and the B/B' phase (with no long-range correlations). The transition is the

KT transition. CA' is an unstable fixed line, describing the transition between the B phase and the B'

phase.

the same decay exponent in the corresponding correlations. Those common prop-
erties are called universal properties. All of the systems that flow to the same fixed
point form a universality class.

The systems above the DCD' line flow to a different fixed point and form a
different universality class. Those systems have different universal properties (at
long distances). In particular, the decay exponents are different.

The universality classes and phases are closely related. We see that, as (91,92)
moves across the DCD' line, the long-distance behavior and the long-wavelength
fluctuations of the system change suddenly. As a result, the free energy of the
system has a singularity at the DCD' line. Thus, the DCD' line is a phase transition
line that separates two phases. Under this picture, we can say that the systems
below the DCD' line form one phase and the systems above the DCD' line form
the other phase. Phase and universality class mean the same thing here.

Let us start with a system exactly on the fixed point A. We add some per-
turbations to move the coupling constant (91,92) away from (gi(A),g2(A)). As
(91,92) flows back to (gi(A),g2(A)), the perturbations flow to zero at long dis-
tances. Thus, the perturbations are irrelevant perturbations. As all perturbations
around a stable fixed point flow to zero, the effective theory at a stable fixed point
contains no relevant or marginal perturbations.
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Now let us consider the long-distance properties of the transition point (or the
critical point). If we start anywhere on the DCD' line, then we can see that the
system flows to the fixed point C. Thus, the long-distance behavior of the critical
point is described by the unstable fixed point C. Here again, we see universality.
No matter where we cross the transition line, the long-distance behavior of the
transition point is always the same.

The fixed point C has one (and only one) unstable direction. A perturbation
in that direction will flow away from the fixed point. Therefore, the fixed-point
theory for C has one, and only one, relevant perturbation. In general, a critical
point describing a transition between two phases has one, and only one, relevant
perturbation. If an unstable fixed point has two relevant perturbations, then the
fixed point will describe a tri-critical point.

The model (3.5.3) contains a marginal perturbation. Its flow diagram is more
complicated. (See Fig. 3.11(b), where (<h, #2) corresponds to (f),g).) The system
has three phases. The phase below the DCD' line is controlled by the stable fixed
line AC. This phase has algebraic long-range correlations. The exponent of the
algebraic long-range correlations depends on the position on the AC line. The
phase above the DC A' line is controlled by the stable fixed point B. It has no long-
range correlation and is characterized by, say, (cos($)} < 0. The phase to the right
of the D'CA' line is controlled by the stable fixed point B'. It has no long-range
correlation either, and is characterized by (cos(#)} > 0. The transition between
phase AC and phase B (or phase B') is controlled by the unstable fixed point C,
and the transition between phase B and phase B' is controlled by the unstable fixed
line CA'. The critical exponents depend on the position on the CA' line.

From the above two simple examples, we see that we can learn a lot about the
phases and phase transitions from the RG flow diagram of a system. In Section
3.3.2, we discussed phases and phase transitions from the point of view of sym-
metry breaking. In this section, we see that phases and phase transitions can also
be understood based on an RG picture. Here, I would like to point out that the RG
picture (although less concrete) is more fundamental than the symmetry-breaking
picture. The symmetry-breaking picture assumes that the two stable fixed points
in Fig. 3.1 l(a) have different symmetries and the phase transition line DCD' is a
symmetry-breaking transition line. This symmetry-breaking picture is not always
true. We can construct explicit examples where the fixed points A and B have the
same symmetry and the phase transition line DCD' does not change any symmetry
(Coleman and Weinberg, 1973; Halperin et al, 1974; Fradkin and Shenker, 1979;
Wen and Wu, 1993; Senthil et al., 1999; Read and Green, 2000; Wen, 2000).
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3.6 Boson superfluid to Mott insulator transition

• The Berry phase term (the total derivative term —podt8 in eqn (3.3.20)) is
important in the quantum XY-model. It qualitatively changes the properties of
vortices.

In 1 + 1 dimensions and at zero temperature, the quantum boson superfluid
is also described by an XY-model (3.3.10) at low energies. In imaginary time,
the quantum XY-model is identical to the two-dimensional XY-model studied in
the last section if we set v — 1. The vortices in the imaginary-time XY-model
correspond to tunneling processes which can change the dynamics of the quantum
system. Based on the results obtained in Section 3.4, it appears that when

the instantons will destroy the long-range order and make all correlations short
range in both space and time directions. This means that the instantons will open
up an energy gap for all excitations. The above conclusion is obviously wrong. A
boson system in free space is always compressible. It at least contains a gapless
mode from the density waves.

The mistake in the above argument is a tricky one. To understand the mistake,
we need to first discuss the excitation spectrum above the boson superfluid. There
are two types of low-energy excitations in a boson superfluid, namely local excita-
tions that correspond to sound waves, and global excitations that correspond to the
total number of bosons and the Galileo boost. Let us use a free boson system as an
example to illustrate the two types of excitations. The ground state of a free boson
system is given by \ki,..., fc/v) — |0, ...,0). The local excitations are created by
changing a few of the fcs to some nonzero values. At low energies, YJ; |fc, <C ^fp.
The global excitations are created by adding (or removing) a few bosons to the
k = 0 state, or shifting all of the k-i by the same amount. The latter is called the
Galileo boost. For interacting boson systems, a Galileo boost can be obtained by
twisting the boundary condition of the bosons from 0 to 2jv or 2yr x integer, i.e.
changing the constant

Let us consider the energy levels of an interacting JV-boson system in the
superfluid state. The low-energy and small-momentum excitations are given by the
sound waves. The energy levels for these excitations are described in Fig. 3.12(a).
The Galileo boost involves only the center of mass motion. The smallest Galileo
boost corresponds to shifting all of the kj by 2-jr/L, where L is the linear size
of the system. Such a Galileo boost gives an excitation of momentum A'i =
2^N/L = 2-Kp and energy E± = K'f/2mN. We see that the Galileo boost has
very low energy but large momentum. Thus, the Galileo boost cannot be generated
by the sound waves. A more general Galileo boost generated by a 2-rrn/L shift
has momentum and energy Thus, the
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F I G . 3 ,12. Energy levels of (1 + 1)-dimensional interacting bosons, (a) for k ~ 0 and (b) for large

k.

low-energy levels of an interacting ./V-boson system are as given in Fig. 3.12(b).
The levels near k = Kn are given by the nth Galileo boost plus the sound waves.

Now the question is can the low-energy XY-model for the superfluid, namely

reproduce the above spectrum? Let us expand

The second term describes the winding of e
to x = L, The action can be rewritten as

around zero as x goes from x = 0

We see that                describes a two-dimensional oscillator which corresponds to
the sound modes. From Section 3.3.7, we see that OQ describes the boson number
fluctuations, which are ignored here. Now it is clear that the winding term n^p
describes a Galileo boost. This is because the Galileo boost twists the boundary
condition of the boson field from                              which
changes                                Such a relationship between the winding
of the B field and the Galileo boost is also consistent with the energy ̂ ^ that the
winding generates.

A vortex at (x, t) in the (1 + l)-dimensional superfluid corresponds to an oper-
ator Ov(x, i). The above analysis indicates that the operator Ov(x,t) maps the
states near k = 0 to states near k = 1-xp. This is because the vortex changes

Thus, the vortex generates a Galileo boost. In imaginary
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FIG. 3.13. The phase diagram of (1 + 1)-dimensional interacting bosons in a weak periodic
potential. Here

FIG. 3.14. Mott insulator of (1 + f)-dimensional interacting bosons in a strong periodic potential.

time, the partition function with vortices should have the form

where ZQ is the partition function with no vortex. The additional phase term
reflects the large momentum carried by the vortices. Due to the phase

term, vortices and anti-vortices have to move in pairs to cancel the phase, in order
to have a large contribution. Thus, the phase term confines the vortices and anti-
vortices, and the 'Coulomb' gas has no plasma phase. Therefore, the boson system
is in the superfluid phase for any values of % and v, even after we include the
vortices.

However, if we add a weak periodic potential whose period is equal to the aver-
age boson separation, a = l/p, then the phase term can interfere with the periodic
potential and on average becomes a constant. Now we can have the KT transition
at the critical value xv — 2/7T. The phase diagram of (1 + 1)-dimensional inter-
acting bosons in a weak periodic potential is plotted in Fig. 3.13. For xv > 2/7T,
the bosons form a conducting state with algebraic long-range order and gapless
sound modes. For xv < 2/vr, all excitations will have a finite energy gap and the
bosons form an insulator, called the Mott insulator, because the insulating prop-
erty is caused by interactions rather than energy bands. The Mott insulator in the
large-potential limit is easy to understand. In that limit, the ground state has one
boson per potential well. Moving a boson to another well causes a finite energy
due to the repulsion between bosons (see Fig. 3.14).

The above understanding of vortices also allows us to calculate density corre-
lations at low energies and large momenta. Let us consider the spectral expansion

and
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of the density correlation function:

where the state |n, k) has energy en^ and momentum k. We have also assumed
that the ground state |0) has zero energy. As the low-energy states only appear
near Ki, at low energy we may regroup the above summation as follows:

where the state n, 6k, i} has energy en,$k,i and momentum 5k+Ki. We see that the
density correlation at large momentum, say for k ~ Ki, is generated by the matrix
elements                   We know that the vortex operator 
i < 0) maps the low-lying states near k = 0 to low-lying states near k = Ki. So
here we make the following bold assumption:

The old result                      y describes the low-energy long-
wavelength density fluctuations. The new result describes the low-energy all-
wavelength density fluctuations. We find that the correlation function has the
form

where I is a short-distance cut-off. Note that the correlation 

imaginary time is given by e~v, where V is the potential between the vortex/anti-
vortex pair. Then, the real-time correlation is obtained by analytic continuation.

The low-energy density operator can now be generalized as
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Problem 3.6.1.
Prove eqn (3.6.2).

Problem 3.6.2.
Susceptibility at finite momenta.

1. Assume that the bosons see a weak potential V(x). The potential induces a change
in density 6p. Express the finite-momentum susceptibility \-(fc) in 5pk = x(k)Vk in
terms of a density correlation function in frequency-momentum space.

2. Determine for which values of x andt> the susceptibility x(Kn) diverges. (Hint: You
may want to do the calculation in imaginary time first.)

3. If we turn on a weak periodic potential with a period a — p~l /n (n is an integer),
then for which values of x and v do the bosons form a Mott insulator?

3.7 Superfluidity and superconductivity

3.7.1 Coupling to a gauge field and conserved current

• A theory with global C7(l) symmetry contains a conserved charge.

* A theory with global 17(1) symmetry can be coupled to a [/(I) gauge field.
The electromagnetic vector potential is a t/(l) gauge field.

A charged boson system couples to an electromagnetic gauge field. In the
presence of a nonzero electromagnetic field, the Lagrangian for a charged boson
system needs to be modified. The question here is how do we find the modified
Lagrangian? We know that the boson Lagrangian

is invariant under a global U(l') transformation

i.e. that L(e l^c/?) = L(tp). However, it is not invariant under a local U(l)
transformation

where the subscript 0 indicates the time direction and the subscript i = l,...,d
represents the spatial directions. We will use the Greek letters p,, v, etc. to represent

We have
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space-time directions. For example, x^ represents the space-time coordinates.
The coupling between the bosons and the electromagnetic gauge field can now be
obtained by simply replacing d^f by A^.

The resulting Lagrangian has a nice property in that it is gauge invariant:

are the electric field and the magnetic field, respectively, of the C7(l) gauge theory.
We know that the model with a global U(l) symmetry has a conserved charge.

We can show this easily with the help of the gauge field. The gauged action is
gauge invariant:

Let if>c(x, t) be a solution of the classical equation of motion. Then

The above constructions do not contain much physics. It is simply a trick to obtain
a gauge-invariant Lagrangian. Such a trick generates the simplest Lagrangian and
is called minimal coupling. We can also write down a different gauge-invariant
Lagrangian by, say, replaci
QvAiJL are the field strengths of A^. Note that F^v is invariant under the gauge
transformations.

Equation (3.7.3) only describes the coupling between the charge field (p and
the gauge field A^. The complete gauge-invariant Lagrangian that describes the
dynamics of both if and A/jk is given by/jk is given by

where c is the speed of light and

where
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Therefore

where J^ is the current

We see that, if <p(x,t) satisfies the classical equation of motion, then
for any / and the current J^(y?c, A^) is conserved:

where p = J° is the density and Jl is the current. Certainly, the above result is
also true for a zero A^ field and we have c^J^^c) = 0, which is the current
conservation for neutral systems.

For our boson system, we find that the conserved current is given by

It is interesting to see that the current in our boson system depends on the gauge
potential.

Problem 3.7.1.
Consider a lattice boson system coupled to a gauge field:

where the summation is over all pairs (ij), and o^ is the gauge field

1 . Show that L is invariant under a lattice gauge transformation

2. Find the equation of motion for yjj (t) .

3 . Calculate the time derivative of the density, namely Show that one can intro-
duce a current J;., defined on the links and recover the lattice current conservation
relation

4. Show that Jij can be expressed as



where the response function is given by

Due to the At dependence of the current, we have an extra contact term

Tf we introduce the correlation function

The above result applies for both zero and finite temperatures. We note that

S U P E R F L U I D I T Y A N D S U P E R C O N D U C T I V I T Y 1 2 7

3.7.2 Current correlation functions and electromagnetic responses

• Current conservation puts constraints on current correlations. Many important
physical quantities, such as compressibility and conductivity, are determined
by current correlations.

• To obtain the correct responses, it is important to take the k —> 0 and u —x 0
limits in the right order.

Now let us calculate the response of the system to an external gauge potential.
We would like to see how much current J11 the gauge potential A,,, can generate.
Introducing j/Jl according to

we see that the Lagrangian has the form

Using the linear response theory to calculate ( j ^ ( x , £)) to leading order in AM, we
obtain the current ,/'' = — OAU^

then
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or, in the u—k space,

where fco = u.
Due to current conservation, the components of IP" are not all independent.

We have, in the ui—k space,

For a rotationally invariant system, we can further decompose IF-' and vr^ into a
longitudinal component H,k ^ and a transverse component H^, ^ as follows:

Equation (3.7.7) can now be written as

The response function IP" is related to many important physical quantities.
Let us consider a metal as an example. In the LU —> 0 limit, we have

Note that AQ(X) is just the external potential and is simply the compress-
ibility (at wave vector fc):

Usually, we expect 119° ̂  to be finite for all k. Thus, for small ui and in the w <C k
limit (note here that we let u> —> 0 first), we have

From eqn (3.7.9), we see that, in the ui —>• 0 limit must exactly cancel     in

order for to vanish like 

Thus, the full IP1' can be determined from IT-7' as follows:

and eqn (3.7.6) as
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Now let k tend to zero first. In the |fc| -C u limit, is an almost
uniform electric field, which is expected to generate a current whose direction is
given by Ai and whose wave vector is given by k:

From eqn (3.7.8), we see that the limit k — * 0 exists only when in
the limit a; S> |fe|. Suppose that this is the case; then we obtain the conductivity

corresponds to dissipation. The imaginary part of the conductivity gives us the
dielectric constant

We note that the polarization vector P satisfies dx • P = — Sp or (assuming that
Ai = 0)

and we see again that is the dielectric constant.

We have considered the u; » \k\ limit of III' and II-1-, as well as the u <C \k\
limit of     What about the            limit of II-1-? One natural guess is that

The real part of the conductivity,

Thus, in the uj 3> \k\ limit, we may write

Therefore
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it corresponds to the magnetic susceptibility. The magnetic moment density M
satisfies x M = —j. Thus (assuming that AQ = 0), we have

Therefore

Note that the choice iO+sgn(u;) gives us the response function. The total IP" is
given by

Therefore

and                    is the magnetic susceptibility.
Now let us calculate IP" for the boson superfluid. We start with the boson

Lagrangian with the gauge field (3.7.3). We integrate out the amplitude fluctuations
and obtain an XY-model with a gauge field. To quadratic order in (c?M0, A^), we
hs\\7f*

We see that
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and

The compressibility is finite and equal to \. The magnetic susceptibil-

diverges as fc — »• 0. The real part of the conductivity

This is the famous London equation. It is responsible for many novel properties of
superconductors, such as the persistent current, the Meisner effect, etc.

3.7.3 Superfluidity and finite-temperature effects

• Excitations reduce superfluid flow, but cannot kill it. This leads to superfluid-
ity.

• Superfluid flow can only be killed by tunneling of vortex.

• The critical velocity of the superfluid flow.

Finally, we are ready to discuss the superfluid property of the symmetry-
breaking phase of interacting bosons (Landau, 1941). First, we consider a boson
system in free space. The boson system is invariant under a Galileo transforma
tion. Let us assume that the excitations above the symmetry-breaking ground state
have a spectrum f.(k) and that we ignore the interactions between excitations. The
latter assumption is valid at low temperatures when the excitations are dilute.

Consider a single excitation (e, k) above the ground state (at rest). The total
energy and the momentum of the system are -Egromid + e and P = k, respectively.
If we boost the system by the velocity v, then the total energy and the momentum
of the system will be and 
respectively. Compared to the energy and the momentum of the boosted ground
state, namely respectively, we see that

is zero for finite frequency.
If we choose the Coulomb gauge then, from              we find a

simple relationship between the current and the gauge potential:



In the equilibrium state, the excitations should have occupation numbers
^s(e-i)(fc)). We see that the boosted superfiuid is not in the equilibrium state.
If we let the system relax into the equilibrium state in the laboratory frame by
redistributing the excitations, then the energy and the momentum will change to

for small k, then for small T.

24 The result for Pv is easy to see. To obtain Ev, we note that
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the excitations above the boosted ground state have a new spectrum

In the boosted superfluid, the occupation number of the excitations at momen-
tum k is given by where                      The energy and the
momentum, respectively, for the boosted superfluid can be written as

respectively. For small v, the above can be rewritten as24

where

If
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Here we see a striking property of the symmetry-breaking phase: after we let
the excitations relax into an equilibrium state, the total momentum Pv of the sys-
tem does not relax to zero. The bosons keep moving forever in the equilibrium
state. It is this property that gives the symmetry-breaking phase the name super-
fluid. To gain a better understanding of this phenomenon, we recall that in the
symmetry-breaking phase the boson field can be written as

where <f>o describes the condensate and 6<p the excitations above the condensate.
Let us assume that the bosons are in a box of size L with a periodic boundary
condition. As we boost the system, we twist the boson boundary condition from
ip(L] = <p(0) to y>(L) = eimt)Ly?(0). Thus, under the boost, y is changed to
Gimvxip. In the boosted superfluid, the condensate is twisted: </?o —> eimvx(f>Q
(see Fig. 3.15(a)). Due to the periodic boundary condition, mvL is quantized as
2?r x integer. Now it is clear that, because |^o| 1S fixed, we cannot untwist the
condensate without tearing it. Untwisting the condensate requires pushing the con-
densate ipo to zero, which costs large energies. More precisely, untwisting requires
the creation of a vortex and the moving of the vortex all the way across the sample
(see Fig. 3.15(b)). Thus, untwisting the condensate is a tunneling process with a
finite energy barrier. According to this picture, we see that a moving superfluid,
although it has a higher energy, cannot relax into the ground state if we ignore the
tunneling process. We also learn that the superfluid cannot really flow forever. The
tunneling will cause the flow to relax to zero. However, it can take a very, very
long time for this to happen. The key to superfluidity is the infinite energy cost
of the vortex in an infinite system. The infinite energy cost comes from the finite
phase rigidity rj ^ 0 in eqn (3.4.2).

However, the story is very different for the excitations. Here 8<p fluctuates
around zero, and can twist and easily change its phase. Thus, the fluctuations (or
the excitations) can easily relax to an equilibrium state through their interaction
(which can be very weak) with the environment.

The above discussion suggests a two-fluid picture. A boson superfluid contains
two components, namely a superfluid component related to the condensate and a
normal fluid component related to the excitations. When a boson superfluid flows
through a pipe, only the superfluid component flows through without any friction.
The normal fluid component cannot flow if the friction is too large. (In a steady
state there is no pressure through the pipe and the normal fluid component simply
cannot flow.) Certainly, the superfluid velocity cannot be too large. If v is too large,
the excitation energy in the laboratory frame 6v(k) may become negative, indicat-
ing instability and the end of frictionless flow. Therefore, the critical velocity is
(see Fig. 3.1)
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FIG. 3.15. (a) The phase of ihe condensatc for a twist of n times around the circle, which represents

a supcrfluid flow, (h) A vortex can change the phase twist from n times to n — 1 limes.

It is interesting to see that v,. — 0 for tree bosons, even at zero T. Thus, although
the free bosons at zero T have long-range order, they do not form a superfiuid
because vc = 0.

Let us examine the two-fluid picture in more detail. Note that mv determines
the twist of the condensate. Thus, each boson in the superfiuid component carries
a momentum mv, and Pv/mv gives us the number of bosons in the superfiuid
component. We find the superfluid density to be

and pn can be regarded as the normal fluid density. From eqn (3.7.13), we see that
at zero temperature ps = p, despite the fact that the number of bosons in the k — 0
state is less than TV.

If the bosons are charged and couple to the electromagnetic gauge field AI{,
then the twisted condensate with zero gauge potential
gauge equivalent to an untwisted condensate with a nonzero gauge potential

In this case, eqn (3.7.12) can be interpreted as generating a finite
momentum Pv by turning on a constant gauge potential A = mv. Due to the
Galileo invariance, the momentum density PV/V is proportional to the current
density j ~ Pv/mV. Thus, eqn (3.7.12) can be rewritten as

which is simply the London equation. We see that, at finite temperatures, the coef-
ficient in the London equation is given by p»/m and eqn (3.7.13) allows us to
calculate its temperature dependence.

is
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Problem 3.7.2.
Galileo non-invariant superfluid. Although the above discussions concentrate on the
Galileo invariant superfluid, most of the results obtained above also apply to the Galileo
non-invariant superfluid.

1. Derive the XY-model for a boson system with a constant gauge potential A, assum-
ing that the condensate 9? = constant. Find the dispersion CA (k) of low-lying modes
and compare your result with ev(k) obtained above.

2. Repeat the above calculation, but now add an extra ter
Lagrangian to break the Galileo invariance.

3. Derive the London equation for the above Galileo non-invariant system. (Hint: You
may first derive the London equation at zero temperature. Then consider how exci-
tations at finite T may correct the current. Note that the current of an excitation at k
is given by

3.7.4 Tunneling and Josephson effects

We have seen that the Green's functions of the boson in a superfluid phase are
quite different for different dimensions. In this section, we are going to discuss
tunneling between two superfluids or superconductors. We will see that tunneling
experiments allow us to measure the properties of the boson Green's functions.

Consider two boson systems described by HR and HL which are coupled by a
tunneling operator I, so that

and F describes the tunneling amplitude. In the presence of an electromagnetic
gauge field, the total Hamiltonian needs to be rewritten as

where

where a Ada; is an integration of the vector potential across the tunneling
junction. The tunneling current operator is given by

If (JT] > 0, then the current flows from L to R. In the AQ = 0 gauge, the voltage
difference between the two systems, V = VL — VR, can be included by setting

The AQ = 0 gauge has the advantage that HR!L are not affected by turning on the
voltage.

to the boson
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With the above set-up, we can write down the following expression for the
tunneling current using linear response theory (see eqn (2.2.3)):

where 8 is the phase difference of the two condensates <PR and (pi,. We see that,
even at zero voltage a(t) = 0, the tunneling current can be finite if 9 ̂  0:

where Ic is the maximum tunneling current (which is called the critical tunneling
current).

If one of the boson systems is in the normal phase (including the algebraic-
decay phase), then (jT}0 (t) = 0 and {[/(t), /(*')]) = 0. We have

As                          is a correlation in the absence of tunneling, it can be expressed
as the product of the Green's functions on two sides of the junction. For example,

In 1 + 1 dimensions, the time-ordered Green's functions have the following
algebraic decay:

where          is an average in the absence of the tunneling term.
If both boson systems are in a superfluid or superconducting phase, then the

main contribution comes from



Th

We see that the exponent of the algebraic decay 77^ + TJL can be measured in
tunneling experiments.

Problem 3.7.3.
Find the expression for the tunneling I-V curve at finite temperatures and show that the
differential conductance at V — 0 has a temperature dependence

3.7.5 Anderson-Higgs mechanism

• The Anderson-Higgs mechanism combines the gapless Nambu-Goldstone
mode and the gapless gauge mode into a mode with a finite energy gap.

In the above discussions, we have treated the electromagnetic gauge field A^ as
a background field, which is fixed and does not respond to the changes of charge

We have used the fact thai

to show that

26 We have used ihe fact that
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We find that the tunneling current has the form25

25

curve26

and
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and current. In this section, we will treat A^ as a dynamical field with its own
fluctuations.

The quantum theory of bosons and the gauge field can be defined through the
path integral

here we have set the speed of light c = 1. Here L(           the gauged boso
Lagrangian given by eqn (3.7.3). Here we will only consider the classical theory
described by

The quantum gauge theory will be discussed in Chapter 6.
Because of the gauge invariance (3.7.4               s a solution

of the equation of motion, then the gauge transformed fields
also satisfy the equation of motion. In a gauge theory, we do not view

                   wo different motions. We view
them as the same motion. In other words, the fields
many-to-one labels of physical motions. Two sets of gauge equivalent fields,
                     and                      ,  are two labels that describe the same
motion.

In the symmetry-breaking phase we have               . We can make
real, namely                                         , through a gauge transformation. This
procedure is called fixing the gauge or choosing the gauge. After fixing the gauge,
different pairs          will describe physically different motions. In the           =
real gauge, we have

After integrating out the small fluctuations of                        we obtain the following
low-energy effective theory:

The above can also be obtained from the gauged XY-model (3.7.10) by setting
 Note that

and AQ contain no time derivative terms. Thus, AQ is not dynamical and we
integrate it out to give

and
are
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Introducing the transverse and longitudinal components as follows:

where A:, h\, and h'i form a local orthogonal basis, we can rewrite Leff as

From the equation of motion, we find that all of the three modes described by
have the same energy gap                         There are no gapless modes. The cou-
pling between the gapless gauge mode and the gapless Nambu-Gold stone mode
gives those modes a finite energy gap. This phenomenon is called the Anderson-
Higgs mechanism (Anderson, 1963; Higgs, 1964). We can further simplify by
replacing  by       in                 in          rm as follows:

we
can study all of the classical electromagnetic properties of the charged superfluid.

Problem 3.7.4.
Derive the Maxwell equation from the Lagrangian L                      Show that
the gauge fluctuations are gapless and c is the speed of light.

3.8 Perturbative calculation of the thermal potential

3.8.1 Perturbation and Feynman rules

• Feynman diagrams and Feynman rules for interacting bosons.

In this section, we will discuss how to systematically calculate the thermal
potential of an interacting boson system. For simplicity, we will assume the
boson field to be real. A complex boson field can be treated as comprising two
components which are each real boson fields. The discussion below can be eas-
ily generalized to a boson field with multiple components. We start with the
imaginary time path integral at finite temperatures. The first step in calculating
the thermal potential is to find a classical solution  and expand the action 5

ter

(Note that is the velocity of the XY-model.) Starting from



140 I N T E R A C T I N G B O S O N S Y S T E M S

around it as follows:

where V(       —                              + ... If we ignore the higher-order terms  
then we have a free system and its thermal potential OQ can be calculated through a
Gaussian integral, as discussed in Section 3.7.5. To calculate the thermal potential
of an interacting system, we note that

where means the average with weight e    and So is the quadratic part of
the action, namely, S0                                                                        If there are

several classical solutions (or stationary paths)       , then we should include all of
them as follows:

We see that, to calculate the total thermal potential, we need to calculate the
multi-point correlation               F°r n = 2,it is the Green's function of the
boson field                 1,2), where 1 and 2 represent the coordinates

and    of the first and the second boson fields, respectively. As an operator,
    l, 2) is the inverse of /                                                                                                                                                  Here
we have also used the abbreviations

                      , etc. Introducing the generating functional

we find that (for n even)

all distinct permutations

The above is another form of the Wick theorem.
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FIG. 3.16. Two vertices representing

Using the Wick theorem, we find that, for example,
contains many terms:

The integral factors 4!, 62 x 2, etc. arise from the different terms in the Wick
expansion which happen to have the same form. For example, in a simpler case,
the Wick expansion (ABCD) =                                           leads
to

It is more convenient to use Feymnan diagrams to directly obtain the result of
the Wick expansion (3.8.1) through Feynman rules. Instead of describing Feyn-
man diagrams and Feynman rules in a general setting, we choose to explain them
using the particular example given in eqn (3.8.1). I feel that it is easier to under-
stand Feynman diagrams and Feynman rules in action. The Feynman rules that
we are going to describe here are the real-space Feynman rules. We will describe
momentum-space Feynman rules later in Section 5.4.2.

 ertices in
Fig. 3.16 that represent                           To obtain the expectation value
{...}0, we need to connect all of the legs' of the vertices with each other. This gen-
erates the diagrams in Fig. 3.17. These diagrams are called Feynman diagrams.
To construct the result of eqn (3.8.1), we simply use the following three Feynman
rules.
(i) Each line in the Feynman diagrams represents a propagator       (a, b), where a
and b are the two vertices at the ends of the line.
(ii) Each vertex represents #4
(iii) The value of a connected diagram is given by rules (i) and (ii), and the value of

=(AB) (CD)+ (AC)(BD)+ (AD) (BC)1

WESRARTWITHTWOVER 
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FIG. 3.17. Three Feynman diagrams corresponding to the three terms in eqn (3.8.1). Here (a)

and (b) are connected diagrams and (c) is a disconnected diagram which contains two connected

diagrams.

the disconnected diagram is given by the product of the connected sub-diagrams.
In this way, we obtain the first, second, and third terms in the last line of eqn (3.8.1)
from the three Feynman diagrams given in Fig. 3.17(a), (b), and (c), respectively.

Well, not exactly. We neglect the numerical factors such as 4!, 62 x 2, etc.
These numerical factors are the most difficult part of the Feynman rules. Where
do they come from? Let us first consider the factor 4! associated with the diagram
in Fig. 3.17(a). This factor comes from the fact that each vertex has four legs,
and there 4! different ways to connect the four legs of vertex 1 to the four legs of
vertex 2. The factor 62 x 2 associated with the diagram in Fig. 3.17(b) is more
complicated, but it still represents different ways to connect the eight legs with
each other. First, two legs of vertex 1 connect to each other. There are six ways to
choose two legs among the four legs. In this way, we obtain the factor 6 in 62 X 2.
The second factor 6 arises similarly from vertex 2. There are two ways to connect
the remaining two legs of vertex 1 to the remaining two legs of vertex 2. We get
the final factor of 2. The factor 3 in the third term corresponds to different ways to
divide the four legs of a vertex into two groups with two legs in each group. (Note
that this is different from the different ways of choosing two legs out of four.)

Let us return to the thermal potential that we want to calculate. After obtaining
all of the averages, the correction to the thermal potential due to the interaction
can be obtained as follows:

There is a linked-cluster theorem which simplifies the above calculation. Accord-
ing to the theorem, <5O is given by the sum of all of the connected diagrams as
follows:

where      is obtained from                      by dropping all
of the contributions from disconnected diagrams.
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3.8.2 Linked-cluster theorem

• The effective action can be calculated directly by summing only the connected
Feynman diagrams.

We will derive the linked-cluster theorem by using the replica technique, both for its
brevity and to introduce this useful method. The basic idea of the replica method is to
evaluate Zn, for integer n, by replicating the system n times as follows:

Now (J7/Z0)" can be calculated through a perturbative expansion. In each Feynman dia-
gram, every propagator carries an index a, and all propagators entering and leaving an
interacting vertex have the same index. As we sum a from 1 to n, it is clear that each
connected graph is proportional to n, and each disconnected graph is proportional to ?i'Vi',
where N,, is the number of connected graphs in the disconnected graph. Therefore,

and we have proved the linked-cluster theorem.

Problem 3.8.1.
Consider an anharmonic oscillator L                     Calculate the finite-
temperature free energy of the system to order </2. (Hint: it may easier to do the calculation

0space.)
Note that, within perturbation theory, the above anharmonic oscillator is a well-behaved
system. The instability comes from the bounce. Show that the decay rate of the ground
state has an order of                         in the small-;; limit. Such a term cannot appear in the
perturbative calculation around the ground state x ~ 0. However, the bounce as another
stationary path does contribute to the free energy. Show that the contribution from the
bounce appears as a n on -perturbative term proportional to e

IN
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FREE FERMION SYSTEMS

The fermion system is one of the most important systems in condensed matter
physics. Metals, semiconductors, magnets, superconductors, etc. are all fermion
systems. Their properties are mainly controlled by the Fermi statistics of electrons.
In this chapter, we will study some properties of free many-fermion systems.

4.1 Many-fermion systems

4.1.1 What are fermions?

• Fermions are characterized by the Pauli exclusion principle and a hopping
Hamiltonian that generates a    phase shift when two identical fermions are
exchanged.

• Fermions are weird because they are non-local objects.

• Fermions can be described by anti-commuting operators.

For a long time, we have felt that we know what fermions are. After reading
the next few sections, if you start to feel that you do not understand what fermions
really are, then I have achieved my goal. We will give an answer to what fermions
are later in Chapter 10. Here we will just introduce fermions in the traditional way
and show, within the traditional picture, how strange and unnatural fermions are.

Let us first try to describe a system of spinless fermions on a lattice. Due to the
Pauli exclusion principle, the Hilbert space of the lattice fermion system can be
expanded by the bases {\n^ , n^,...}}, where «; = 0. 1 is the number of fermions
at site i. To have a second quantized description of the free fermion system, we
introduce the annihilation operator ai and the creation operator a£ for each site
i. They have the following matrix form:

where crx-'y'z are the Pauli matrices. The annihilation operator     changes a state
with one fermion, 1} = (*), into a state with no fermions, |0) = (f). As
creates/annihilates a fermion, we will, for the time being, call them 'fermion'
operators.
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Using the 'fermion' operators af, we can write down the following Hamilto-
nian for a fermion system:

Although, mathematically, HI, is a hermitian operator acting within the fermion
Hilbert space {\n^ , n^ , ...}}, a system described Hb is not a fermion system. It is
actually a hard-core boson system or a spin-1/2 system.

This is because our fermion Hilbert space can be equally regarded as a hard-
core boson Hilbert space, where |0) is the zero-boson state and 1} is the one-
boson state.27 So, from the Hilbert space alone, we cannot determine if the system
is a fermion system or a boson system. We have to look at the Hamiltonian to
determine if the system is a fermionic or a bosonic system. As the Hamiltonian Hb
is written in terms of the       which commute with each other on different sites, so

6

the system described by HI, is a boson system. We should really call the crT" boson
operators.

It is quite amazing to see that a natural local Hamiltonian in a fermion Hilbert
space does not describe a fermion system! This raises an interesting question: what
makes a many-particle system a fermion system? Obviously, the Pauli exclusion
principle alone is not enough. A fermionic system not only has a fermionic Hilbert
space that satisfies the Pauli exclusion principle, but it also has a Hamiltonian with
a very special property. In fact, a fermion system is described by a highly non-local
Hamiltonian

where tij is a function of the erf operators, which involve products of many <r|
operators. The number of operators erf is of order         for a d-dimensional lattice
of Ns sites. If it were not because nature offers us such non-local systems, then
no physicist in his/her right mind would want to study them. As such non-local
systems do exist in nature, we have to study them. But how?

Here we are extremely lucky. The non-local fermion systems in nature have
some special properties which allow us to simplify them. To write down the
simplified Hamiltonian, we first order all of the lattice sites in a certain way:
(ii, 12,..., *<z> • • • ) • Then we introduce another kind of fermion operator as follows:

27 The fermion Hilbert space can also be regarded as a spin-1/2 Hilbert space, where |0) is the
spin-down state and |1) is the spin-up state.
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If we order the sites properly, then Hf will take the following simpler form when
written in terms of Q:

where lij is independent of                      One can check that

where {A.B} = AD + BA is called the anti-commutator. The mapping between
the boson operators       vand the fermion operators Ci is the Jordan-Wigner trans-
formation (Jordan and Wigner, 1928). We note that ctcj — i. Here |0) and

|1) are the two eigenstates of etc* with eigenvalue 0 and 1, respectively. Thus, c\c.i
is the fermion number operator at the site i.

Usually, we do not talk about where fermions come from. We just take eqns
(4.1,3) and (4.1.2) as the definition of a free fermion system. If we do ask where
fermions come from and if we think that bosons are more fundamental than
fermions,28 then the above discussion indicates that fermions are non-local exci-
tations. In fact, fermions in nature do behave like non-local excitations because
fermions cannot be created alone. Nature seems to want to keep track of the total
number of fermions in our universe to make sure that the number is an even integer.
It is impossible for a local excitation to have such a non-local constraint. In Chap-
ter 10, we will see that fermions can be interpreted as ends of condensed strings,
and are indeed non-local.

4.1.2 The exact solution of free fermion systems

• All of the eigenstates and the energy eigenvalues of a free fermion system can
be obtained from the anti-commuting algebra of the fermion operators.

On a lattice of Nsae sites, the Hilbert space of the fermion systems has 1N:""
states. The Hamiltonian (4.1.2) is a 2jY-"" x 2jV-"" matrix. Solving the Hamiltonian
amounts to finding the eigenvalues and eigenvectors of such a big matrix.

The Hamiltonian (4.1.2) can be solved exactly using the anti-commuting
algebra (4.1.3). For simplicity, let us assume that our system has translational sym-
metry. In this case, tij only depends on the difference i — j, so that t^+Ai = /-Ai-

Introducing c^                     here TV, is the total number of lattice sites,

28 See Section 10.1 for a delinilion of boson systems.
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we find that

One can check that the state |0) satisfying Cfc|0) = 0 is an eigenstate of Hf
with zero eigenvalue. Using the anti-commutation relation, we find that the state

0,1, is a common eigenstate oc

lcfc|{nfe}} = nk\{nk}}- It is also an eigenstate with energy E = X^knfcefc-
The above form of eigenstates gives us all of the eigenstates of Hf. Here n& is
the fermion occupation number at momentum k. Adding a fermion to the fco lev£l
increases the total energy by efe0. Thus, efe0 can be interpreted as the single-particle
energy.

It is remarkable that we can obtain all of the eigenstates of Hf via an algebraic
approach without explicitly writing down the eigenvectors. The commuting boson
algebra and the anti-commuting fermion algebra are two of only a few algebraic
systems that we can solve exactly. Actually, for quite a long time they were the
only two algebraic systems that we could solve exactly beyond one dimension.
Finding exactly soluble algebraic systems beyond one dimension is very important
in our understanding of interacting systems. Chapter 10 will discuss some other
algebraic systems discovered recently (Kitaev, 2003; Levin and Wen, 2003; Wen,
2003 c) that can be solved beyond one dimension. These algebraic systems lead to
exactly soluble interacting models beyond one dimension.

If we include a chemical potential p,, then the Hamiltonian of the free fermion
system will become

The ground state of H is given by a state |\l/o}» where all k states with £& < 0 are
filled and all k states with £& > 0 are empty. Here |$o) is defined by the following
algebraic relation:

The occupation number raj, = 4cfc nas a jump at the Fermi surface (see Fig. 4.1).

Problem 4.1.1.
Jordan-Wigner transformation Prove eqn (4.1.3) from eqn (4.1.1).

Problem 4.1.2.
Spectrum of a one-dimensional superconductor A one-dimensional superconductor is
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FlG . 4.1. The ground slate of a. free fcrmion system is a Fermi sea. Here EF is called the Fermi

energy and kf is the Fermi momentum. The occupation number rife = nj. '(£fe) is discontinuous at

the Fermi momentum kf-.

described by the following free fermion Hamiltonian:

Show that, in momentum space, the operator

satisfies the fermion anti-commutation relation                   = 0 and that
Show that, by properly choosing Uf; and Vf:, we can

rewrite H as

Find the quasiparticle excitation spectrum Ek and the ground-state energy Eg.

Problem 4.1.3.
Solving the one-dimensional spin-1/2 system (or hard-core boson system) using the
Jordan-Wigner transformation Consider a one-dimensional spin-1/2 system (or hard-
core boson system) with

1. Use the Jordan-Wigner trans formation (with a natural ordering of the one-
dimensional lattice) to map the above interacting spin-1/2 (or hard-core boson)
system to a free fermion system.

2. Assume that JT — Jy = J and B / 0. As we change the value of ,1 from — oo
to +OG, the system experiences several phase transitions. Find the critical values
of J for these phase transitions. For each of the phases and each of the critical
points, sketch the region in the total energy-momentum space where the system has
excitations. You should include all of the low-energy excitations, regardless of their
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momentum. You do not need to include high-energy excitations. (Hint: One should
first think and guess what the spectrum should look like based on our knowledge of
the one-dimensional interacting boson system.)

3. Assume that Jx = aJy = J, 0 < a < I, and B ^ 0. As we change the value of J
from -co to +00, the system experiences several phase transitions. Find the critical
values of J for these phase transitions. For each of the phases and each of the critical
points, sketch the region in the total energy-momentum space where the system has
excitations. You should include all of the low-energy excitations, regardless of their
momentum.

4. Discuss why the above two cases, namely Jx = Jy and Jx ^ Jy, are qualitatively
different.

4.1.3 Majorana fermions

The free fermion system (4.1.2) is an exactly soluble many-body system whose Hilbert
space has dimension 2^°"" (i.e. two states per site). There is a smaller exactly soluble
system with only 2JY"*«/2 states in its Hilbert space (assuming that NM& is even). The
system is called a Majorana-fermion system. It is described by the following Hamiltonian:

where the A, satisfying

are the Majorana-fermion operators. The Hilbert space of the Majorana-fermion system
forms a representation of the above anti-commuting algebra.

To construct the Hilbert space, let us consider a one-dimensional periodic system with
Nsue sites. We also assume that Naue is even and that the A; satisfy the anti-periodic
boundary condition \i+Ns.te = -A». In the k space, the Hamiltonian (4.1.7) takes the form

where
One can check that

We see that the A(fe) for k > 0 satisfy the anti-commuting algebra of the complex fermions.
Let |0) be the state that satisfies A(fc)|0) = 0 for k > 0. We can regard JO) as a state
with no fermions. Let where

we can view nk as the occupation number at level fe. Note that there are only
NSite./2 levels because the levels are labeled by positive fc (see Fig. 4.2). Therefore, the
Hilbert space has            states. It is interesting to see that a Majorana system has
states per site! The state is an energy eigenstate with energy

For a system with two Majorana fermions and with
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F I G . 4.2. Single-particle energy levels for the Majorana fermion exist only for k > 0, A many-body

state is described by the occupation numbers n/c on these single-particle levels.

the many-body Hilbert space has 2%le states (or \/2 x \/2 = 2 states per site), which is
the same as the Hilbert space for one complex fermion. In fact, a system of two Majorana
fermions is equivalent to a system with one complex fermion (see Problem 4.1.4).

Problem 4.1.4.
The superconducting Hamiltonian (4,1.6) can also be solved using Majorana-fermion oper-
ators. The Majorana-fermion operators are simply the real and imaginary parts of the
complex fermion operators Ci\

Show that the ai satisfy the anti-commuting algebra of the Majorana fermions. Use
the Majorana fermions to find all of the energy eigenstates and their energy eigenvalues.
Compare your result with the one obtained in Problem 4.1.2.

4.1.4 Statistical algebra of hopping operators

• The statistics of identical particles is determined by the algebra of their
hopping operators.

Usually, a boson system is defined as a system described by commuting operators and
a fermion system is defined as a system described by anti-commuting operators. However,
these definitions are too formal. To gain a physical understanding of the difference between
a boson system and a fermion system, we would like to consider the following many-body
hopping system. The Hilbert space is formed by a zero-particle state |0), one-particle states
|ti), two-particle states i\,i-i), etc., where *„ labels the sites in a lattice. As an identica
particle system, the state i\,i-i,...) does not depend on the order of the indices ii,i2, ••••
For example, |ii,ta) = ia,ii). There are no doubly-occupied sites and we assume that
ii,»2, • • • ) = 0 if im — in-

A hopping operator iij is defined as follows. When iij acts on the state ii,^, • • • ) < if
there is a particle at site j but no particle at site i, then t^ moves the particle at site j
to the site i and multiplies a complex amplitude t(i,j: ii,ia,...) to the resulting state. Note
that the amplitude may depend on the locations of all of the particles and may not be local.
Otherwise, the hopping operator^- annihilates the state. The Hamiltonian of our system is
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FIG. 4.3. (a) The first way to arrange the five hops swaps the two particles at i and j. (b) The
second way to arrange the same five hops docs not swap these two particles.

given by

where the sum Y^(i3) is over a certain set of pairs (ij), such as nearest-neighbor pairs. In
order for the above Hamiltonian to represent a local system, we require that

if i, j, k, and I are all different. Now the question is whether the above hopping Hamiltonian
describes a hard-core boson system or a fermion system.

Whether the many-body hopping system is a boson system or a fermion system (or
even some other statistical system) has nothing to do with the Hilbert space. The fact that
the many-body states are labeled by symmetric indices (e.g                      does not
imply that the many-body system is a boson system, as we have seen in Section 4.1.1. The
statistics are determined by the Hamiltonian H.

Clearly, when the hopping amplitude t(i,j;»i,t2,...) only depends on i and j, i.e.
the many-body hopping Hamiltonian will describe a hard-core

boson system. The issue is under what condition the many-body hopping Hamiltonian
describes a fermion system.

This problem was solved by Levin and Wen (2003). It was found that the many-body
hopping Hamiltonian describes a fermion system if the hopping operators satisfy

for any three hopping operators tij, in, and in,, with i, j, k, and I all being different. (Note
that the algebra has the structure iifefe = -£3*2*1.)

Consider the state \i,j,....) with two particles at i, j, and possibly other particles further
away. We apply a set of five hopping operators                    to the state
but in different orders (see Fig. 4.3):

where we have assumed that there are no particles at sites k and I. We note that after
five hops we return to the original state \i,j,....) with additional phases Ci,2. However,
from Fig. 4.3, we see that the first way to arrange the five hops (Fig. 4.3(a)) swaps the two
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particles at i and j, while the second way (Fig. 4.3(b)) does not swap these two particles.
As the two hopping schemes use the same set of five hops, the difference between C\ and
C2 is due to exchanging the two particles. Thus, we require C\ = -<72 in order for the
many-body hopping Hamiltonian to describe a fermion system. Noting that the first and the
last hops are the same in the two hopping schemes, we find that C\ = -C2 if the hopping
operators satisfy eqn (4.1.9). In fact, eqn (4.1.9) serves as an alternative definition of Fermi
statistics if we do not want to use the anti-commuting algebra.

We would like to remark that, on a two-dimensional lattice, the fermion hopping algebra
can be generalized to the more general statistical algebra for hopping operators:

In this case, the many-body hopping Hamiltonian describes an anyon system with statistical
angle 0.

Problem 4.1.5.
Show that the fermion hopping operator tYj — c\Cj satisfies the fermion hopping algebra.

Problem 4.1.6.
We know that the string operator creates a particle at i and annihilates

a particle at j. So we may want to write

(a) Show that, if the hopping operators fy satisfy the fermion hopping algebra (4.1.9), then

the string operators satisfy (You may assume that the three
strings only intersect at one point I . )
(b) Show that C^ and C^ cannot commute, even when i and j are far apart. However, if

Cf and C* anti-commute (for i / j), then the fermion hopping algebra (4.1.9) can be
satisfied.

4.2 Free fermion Green's function

• The algebraic decay of the Green's function over a long time is related to gap-
less excitations across the Fermi surface. The algebraic decay at long distance
is related to the sharp features (discontinuity) in momentum space.

• Electron Green's functions can be measured in tunneling experiments,

• The spectral function of an electron Green's function.

In the next few sections, we will discuss one-body and two-body correlation
functions of free fermion systems. One-body correlation functions are important
for the understanding of tunneling and photoemission experiments. Two-body cor
relation functions are even more important, because they are related to all kinds
of transport, scattering, and linear response experiments. In these two sections I
will include some calculation details. The purpose of the discussion is mostly to
introduce mathematical formalisms. Many explicit results are listed for d = 1,2,3



FREE F E R M I O N G R E E N ' S F U N C T I O N 153

dimensions. I hope that these results may be useful as references and as concrete
examples of various correlations.

4.2.1 Time-ordered correlation functions

• Fermion operators behave like anti-commuting numbers under the time-
ordered average.

Consider a free fermion system described by eqn (4.1.5). In the Heisenberg
picture, the time-dependent fermion operator is given by

The fennion propagator (the Green's function) at zero temperature and at finite
temperatures is defined as the time-ordered average

Note the minus sign in the above definition, and that, by definition,

Knowing the fermion occupation at the k state, namely

we can calculate the zero-temperature Green's function G and the finite-
temperature Green's function G® in momentum space:
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In the u}-k space,
have the following simpler forms:

Now let us consider the imaginary-time Green's function at finite temperatures.
The time-dependent operator in the Heisenberg picture is now given by

From the definition

one can show that (see Problem 4.2.1)

Thus, the fermion Green's function is anti-periodic in the compactified imaginary-
time direction. For free fermions, we have

In the (jj-k space, we have

where
The time-ordered Green's function in u-k space can be written as a time-

ordered average of the fermion operator in u-k space. For imaginary time, we
introduce

After a little work, we find that

and

eith integer
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Similarly, one can show that, for real time,

This allows us to perform calculations of time-ordered correlations directly in LJ-
k space. We also note that, within the time-ordered average, c and rf behave like
anti-commuting numbers.

In the above, we discussed time-ordered correlations of two operators. How
do we calculate time-ordered correlations of many operators? Here we have the
Wick theorem for fermions. Let Oj be linear combinations of c and c^. For W =

we have

where (i\.ji) is an ordered pair with i± < ji, and ± is determined by the even or
odd number of permutations needed to bring OJt to the right-hand side of O^ and
Oj2 to the right-hand side of Oj2. As (0| : W : |0) = 0 by definition, we find that

where ̂  is a sum over all of the possible ways to group 1,2,..., n into ordered
pairs
and ii,!?, ...,in differ by an even number of permutations, and ( — ) p — —I if
1, 2,.. . , n and ii, 12, - • - , in differ by an odd number of permutations. For example,

When applied to a time-ordered correlation, we have

The Wick theorem allows us to express a many-operator correlation in
terms of two-operator correlations. The Wick theory also implies that

Thus, c and c< behave like
anti-commuting numbers in the time-ordered averages of many c and c* operators

we have

Here
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F I G . 4.4. The density of states near the 'Fermi point' vanishes like

(for both real time and imaginary time). This fact allows us to construct a path
integral formulation of fermion systems (see Section 5.4.1).

Problem 4.2.1.
Prove eqns (4.2.7) and (4.2.9).

Problem 4.2.2.
Prove eqn (4.2.8) from eqn (4.2.6).

Problem 4.2.3.
Prove eqn (4.2.10).

Problem 4.2.4.
Show the validity of the Wick theorem for the cases of

4.2.2 Equal-space Green's function and tunneling

• The algebraic decay of the Green's function over a long time is related to
gapless excitations across the Fermi surface.

The Green's function in real space-time is given by
For translation-invariant systems (such as the free fermions

systems), the Green's function only depends on x\ — x%, so that
For free fermion systems, we have                                        When

x = 0 (or when the fermion operators in                       arc at an equal
space point x\ = #2), we have
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F I G . 4.5. The number of the available states for tunneling is proportional to V

The above can be evaluated by introducing the density of states (number of states
per unit volume per unit energy)

where

At T — 0 and for large t, only JV(c) near e = E/.' is important. Thus, we may
assume that JV(e) = AT(^) is a constant. After substituting

F), for large t, we find that

The algebraic long-time correlation is a consequence of the discontinuity in the
density of the occupied states. If the density of states vanishes like N(e.) ex

(see Fig. 4.4), then the long-time correlation will have a faster decay
(assuming that g > 0):

The fermion Green's function is meaningful only if we can measure it in exper-
iments. To see how to measure the fermion Green's function in experiments,
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consider tunneling between two metals with densities of state.
(Note that QR^L — 0 for ordinary metals.) Assuming that the tunneling Hamiltonian
is given by

the tunneling current from left to right is (see eqn (3.7.15))

where I ( t ) = cR(t, O)CL(( , ()) is the tunneling operator. The correlation of the

tunneling operator                                is (assume that t > 0 and T = 0)

We see that the tunneling experiment measures the product of the equal-space
Green's functions on the two sides of the junction. The above correlation has
the same form as the correlation of the tunneling operator between two (1 + 1)-
dimensional interacting boson systems. Repeating the calculation in Section 3.7.4,
we find the tunneling current to be

When c;/, = §R = Q, it is very easy to see that the available states for tunneling
are proportional to V (Fig. 4.5), and hence I   V. When <//, and g^ are not zero,
the available states will have corresponding suppressions, and hence the tunneling
current is suppressed by the factor

We would like to stress that tunneling directly measures the fermion Green's
function. Although we only discussed free fermion systems above, the results
apply equally well to interacting fermions. Imagine that interactions change the
long-time decay exponent g in the fermion Green's function; then such a change
can be measured by tunneling experiments.

4.2.3 Fermion spectral function

• The spectral function of the fermion Green's function.

• Fermion Green's functions (or, more precisely, the overlap of fermion spectral
functions) can be measured in tunneling experiments.
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For interacting electrons, G^fi(t, 0) are more complicated. To understand
tunneling between two interacting fermion systems, it is useful to introduce the
spectral representation of the fermion Green's functions as follows:29

where                are the following spectral functions:

and 77 = — 1 for the fermion operators (ry = 1 if we want to introduce a spectral
representation of the boson Green's functions). We can also introduce spectral
functions in momentum space:

where

We see that

From their definition, we also see that are real and positive. In the
ui-k space, we find that

The spectral functions in momentum space completely determine the
Green's function.

29 The following discussion also applies to boson operators if we choose rj = I.

and
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F l G . 4.6. The speclral functions and (heir overlaps.

The response function             can be expressed in terms of the spectral
functions in the R and L metals. We find, for t > 0, that

Thus, the response function in u space is given by

The tunneling current from left to right is determined by the imaginary part:

At zero temperature, A+(u) is nonzero only for w > 0 and A-(UJ) is nonzero only
for LU < 0. Thus, only one of the two terms contributes, depending on the sign of
V (see Fig. 4.6). The contribution is an overlap integral of the spectral functions
on the two sides of the tunneling junction.
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For free fermions, from the imaginary-time Green's function (4.2.9), we find
that (see eqn (2.2.37))

(Substituting the above into eqn (4.2.14) allows us to recover the free electron
Green's function (4.2.5) at finite temperatures.) After integrating over k, we obtain

The tunneling current is

which is a very simple result and can be obtained directly using second-order
perturbation theory.

Problem 4.2.5.
Calculate the time-ordered fermion Green's function in real space-time for d = 1 dimen-
sion and in the (t, x) —> oo limit (but t/x is arbitrary). Check your result in the t/x —* 0
and t/x —> oo limits.

Problem 4.2.6.
Two identical free fermion systems in d = 1 dimension are connected at two points located
at x — 0 and x = a. The tunneling Hamiltonian is given by

for finite temperatures. (Hint: Use {ck, c,k} = I . )

Problem 4.2.8.
Tunneling between parallel two-dimensional electron systems (Eisenstein etal., 1991):
Consider two identical fermion systems in two dimensions connected by a vertical area

Use the result of the previous problem to find the tunneling conductance as a function of a.

Problem 4.2.7.
Prove the spectral sum rule
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FIG. 4.7. (a) A vertical area tunneling [unction, and (b) two shifted Fermi surfaces.

tunneling junction that conserves the two-dimensional momentum (see Fig. 4.7(a)). The
tunneling Hamiltonian has the form

In the absence of a magnetic field parallel to the two-dimensional layers, the fermions in
both layers have the same dispersion relation e^- In the presence of a magnetic field B
parallel to the two-dimensional layers, the momenta of the fermions in the two layers have
a relative shift (see Fig. 4.7(b)) and the dispersions in the two layers become

where Q oc D and Q • B = 0.

1. Show that for free fermions the finite temperature tunneling current is zero for B = 0
and a finite voltage V / 0.

2. Assume that, due to interaction, the spectral functions of the fermions have the forms

where F <g; Ep is a decay rate (note that the above A± satisfy eqn (2.2.28)). Find
an expression for the tunneling current for small but finite temperatures

3. What is the temperature dependence of the tunneling conductance in the T —> 0 and
T 'S? F limits for D = 0? Estimate the tunneling conductance per area at T = 0.

4. Assuming that at zero temperature the tunneling conductance for 5 = 0 is <TO> esti-
mate the tunneling conductance OQ for finite Q in terms of  . What is the behavior
of      for Q near 0 and near 2kp.

4.2.4 Equal-time Green's function and the shape of the Fermi surface

• The algebraic decay at long distances is related to the sharp features (discon-
tinuity) of the fermion occupation number in momentum space.
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Let us turn to the Green's function at equal time. The equal-time correlations
are solely determined by ground-state wave functions. It also easy to see from
the definition that            and                differ by the average of the anti-
commutator (or commutator if the operators are bosonic):

Here we would like to pick a direction x and study the large-x behavior of

At T = 0,                     can be written as

where

which can be viewed as the density of occupied states in momentum space.
From Fig. 4.8(a), we see that, in general, N(k, x) contains two singularities at

(For example, in one dimension N(k, x) has two discontinuous steps.) These two
singularities lead to an algebraic long-range equal-time correlation as follows:

For a spherical Fermi surface, we have

If the Fermi surface contains a flat piece (see Fig. 4.8(b)), then N(k, x) will have
a discontinuous step in the corresponding direction. In that direction, 
will have a slower algebraic decay. The decaying power is equal to that of a one-
dimensional system:
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F I G . 4.8. (a) The definition of kj.-(x) where the line is normal to x, (b) A Fermi surface with a flat
piece.

4.3 Two-body correlation functions and linear responses

• We can calculate linear responses from two-body correlation functions. This
allows us to calculate many measurable quantities.

• Two-body correlation functions reveal many potential instabilities of the free
fermion ground state.

Two-body correlation functions are the most important correlations. Most
quantities measured in experiments are directly related to two-body correlations.
These quantities include electrical and thermal conductance, neutron and light
scattering cross-sections, elastic constants, dielectric constants, magnetic sus-
ceptibility, etc. (see Section 3.7.2). In the following, we will discuss two-body
correlations of a spinless free fermion system.

4.3.1 Density-density correlation functions

We first consider one of the two-body correlations—the density correlation
function

where

Density correlation functions are related to compressibility and neutron/light scat
tering. To calculate P°°(i, x) we can use the Wick theorem for free fermion



T W O - B O D Y C O R R E L A T I O N F U N C T I O N S A N D L I N E A R R E S P O N S E S 165

FIG. 4.9. A nested Fermi surface with nesting wave vector Q.

operators as follows:

Using the fermion Green's function calculated previously, we find that, in the
i = 0 limit and for a spherical Fermi surface, we have

For the nested Fermi surface in Fig. 4.9, we have

when x\\Q.
We know that in a crystal the density correlation keeps oscillating without any

The oscillating part represents
the long-range order in an ordered crystal. We see that a free Fermi ground state
has no long-range crystal order, but it has an 'algebraic long-range1 crystal order,
in particular for the nested Fermi surface (see Fig. 4.10). In a sense, a nested free
fermion system is on the verge of becoming a crystal. We will see later in this
chapter that, by turning on a small interaction, 'algebraic long-range' crystal order
can be promoted to long-range crystal order.

To obtain the linear response of the free fermions, we need to calculate the
density response function        . In the t-k space the density response function can

decay
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FIG. 4.10. The 'algebraic long-range' crystal order in the density correlation iPnn(0, a;) for a

nested Fermi surface.

be found using Wick's theorem as follows:

The average is nonzero only when q' = q+k. In the first term, we create a fermion
at q + k and annihilate one at q, which leads to the factor
The second term has a similar structure, where we create a fermion at q and
annihilate one at q + k.

In the (jj-k space, we have

The imaginary part of    Lc;,fe) is nonzero only when (w,fe) corresponds to
the energy-momentum of particle-hole excitations (see Fig. 4.11). This fea-
ture appears in any two-body correlation function, including current and spin
correlations.

In the limit            and for finite T, we have

where v — q/m. In the T —> 0 limit, we have                                 and the integral
becomes an integral over the Fermi surface. Let us first consider the imaginary part
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FlG. 4.11. (a) The shaded area represents the energy and momentum of particle-hole excitations

(lor d > 1). Imn00(uj,fe) is nonzero only in the shaded area. The edge at (w, k) — (0,0) has a

slope o f v p , as one can see from (b).

We find that (see Fig. 4.12)

To obtain the real part, we note that      (LJ, k) is a sum of functions of the form

where A(e..k) is the spectral function of    (u;,fe}. The spectral function is
directly related to the imaginary part of       a>, fc) as follows:

of
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FIG. 4.12.       for fixed small k in (a) d = 3 dimensions, and (b) d = 2 dimensions.

Thus, we can calculate the real part from the imaginary part Im       u;, fc). We find
that

We notice that when ImII00(u;,fe) has a discontinuous jump at, say, WQ, then
Ren°°(w, fc) will have a log divergence at the same place. We would also like
to remark that the time-ordered correlation functions P°°(c<;, fe) are given by the
same formula, except that the imaginary part has an extra factor of sgn(u;).

The compressibility of the free fermions determines how much change in den-
sity can be induced by a change in potential. It is given by
a finite wave vector k), and is independent of k for small k. From eqn (4.2.12), we
find that the compressibility is given by the density of states at the Fermi energy in
all dimensions:

as one expected. From

we also see that the optical conductivity vanishes at       = 0, except at uj =
0. This is also expected. Without any interactions, a uniform oscillating electric
field cannot excite any particle—hole excitations, and hence causes no dissipations.

(at
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Fl 0. 4.13.       for |fc| >     (a) The inlersection between the dashed line and the shaded area

determines (b) the value of 

has the following form for all d > 1 dimensions:

where C-2 = I for d — 2 and 63 = w/2 for d — 3. We see that, when k ^ 0, an
oscillating electric field causes dissipations. The conductivity has the form

in the uj <C vpk limit.
In general,            is a smooth function of k for small u>, except near k =

0 and |fc| = 2kp (for a spherical Fermi surface). We have studied the singular
behavior of      (w, fc) near k = 0; next we turn to the behavior of II00(w, k) near

Let us consider the T = 0 limit of

In Figs 4.13,4.14, and 4.15, = 1 in the lightly-shaded area,
and
0 to the right of the y axis, and                         0 to the left of the y axis. The dashed
line is where                  The intersection between the dashed line and the
shaded area determines the value of                   From Figs 4.13 and 4.14, it is
clear that, for small                                 when
when and 
results imply that for d > 1 the real part          (0, k) is finite near k — 2kF.

However, for a nested Fermi surface,               has a discontinuous jump
at u = 0 if re is equal to the nesting vector Q (see Fig. 4.15). This leads to a log

When

in the darkly-shaded aaarea. Also,

when These
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divergence in the compressibility at the nesting vector Q:

At finite temperatures, the discontinuous jump at a; — 0 is smeared by T and the
log divergence is cut off by T:

We have seen, from the equal-time density correlation function, that the ground
state for a nested Fermi surface contains an 'algebraic long-range' crystal order at
the nesting wave vector Q. Here we see, from the zero-frequency density correla-
tion function, that turning on a small periodic potential with wave vector Q induces
a large density wave. This is again a property similar to a crystal, where an infinite
small periodic potential pins the crystal and induces a finite density wave. Later,
we will see that, because a nested Fermi surface is so close to a crystal order,
turning on an infinitely small interaction can actually cause a spontaneous sym-
metry breaking and changes the Fermi liquid state into a crystal (which is, more
precisely, called a charge-density-wave (CDW) state).

Problem 4.3.1.
Free fermions and interacting bosons in one dimension Calculate the T — 0 time-
ordered density correlation {Tp(x,t)p((Y)) in a one-dimensional free fermion system for
large (;c, t). (Hint: Use the results of Problem 4.2.5). Your result should be a special case
of the density correlation for one-dimensional interacting bosons in eqn (3.6.2). Determine
the values of \, v, Kn, and Cn in eqn (3.6.2) so that it reproduces the time-ordered density
correlation of the free fermions.

Problem 4.3.2.
Calculate, for a two-dimensional free fermion system, the zero-temperature time-ordered

FIG. 4.14. IniET"' for \k\ < rlkP.
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FI G. 4.1 5. I in 1100 for a nested Fermi surface at fe = Q.

density correlation 7>0( )(w,A;) in imaginary time for small (w.fc) . Perform the analytic
continuation to obtain II00 for a real frequency.

4.3.2 Current operator

• The current operator for particles with a generic dispersion.

To calculate the current response functions vry and IF-' (see Section 3.7.2), we
first need to know what the current operator j" is. We start with the time derivative
of the density operator                                                       d t and obtain j from the con-
servation law                    = 0. Assume that the fermion system is described
by

We find that

These results tell us that, on a lattice, the current operator is given by j ^ j , which
describes the number of particles that flow from site j to site i per unit time. This is
very different from what we are looking for. We are looking for a current operator
j(x) which is a vector and depends on one coordinate (rather than two). Such
a current operator simply does not exist for a lattice model. However, if A is a
smooth function of x, then the coupling between A and the current can only see
the smooth part of the current. In this limit, we can find such a vector-like current
operator, even for a lattice model.

and



However, in the small momentum limit we may ignore the diAj term and treat di
and Ai(x) as commuting quantities. In this limit, we obtain
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The trick is to start with a gauged Hamiltonian. Let us first consider a
continuum model with

where e(k) is the energy spectrum of the fermion. The gauged Hamiltonian is

The total current operator J is obtained through

The current operator obtained this way satisfies the current conservation law (see
Problem 4.3.3). For a quadratic dispersion e(fe) = k2/2m, we have

The first term has the form           The second term is present only when 
and has the form                                      is the velocity, the current has
the form Vip, as expected.

For a more general dispersion, the current can be quite complicated because
di and Ai (x) do not commute. For example, for a one-dimensional system with

we find the following 'nasty' form:

where
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In momentum space, eqn (4.3.7) can be rewritten as

We would like to stress that the above is only valid in the small-g limit. So, we
can also write the current as                                                                                          (g/2)) which agrees with
eqn (4.3.9) up to O(q). If we view £]fc as a summation over the Brillouin zone,
then eqn (4.3.8) or eqn (4.3.9) can be viewed as the (approximate) current operator
for a lattice model.

Problem 4.3.3.
Gauge invariance and current conservation

1. Show that the gauged Hamiltonian (4.3.4) is invariant under the gauge transformation

2. Use the gauged Hamiltonian (4.3.4) in one dimension to calculate dt (c^c) and show
that the current defined in eqn (4.3.5) satisfies x J = 0.

Problem 4.3.4.
Find the current
two dimensions.
Find the current operator J* for a free fermion system with dispersion

4.3.3 Current correlation functions

Using eqn (4.3.9), we can now calculate the first part of the current response
function               (see eqn (3.7.6)). Remember that the density response
function contains two contributions with particle-holes at (q, q + k) and at
(q + k,q). When we calculate the current response function we also have the
same two contributions, except that both of the contributions are weighted by an
additional weighting factor                                                  Therefore

When A = 0, the current operator becomes
and

and 
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In the k <C kp- limit, we have

Let us first limit ourselves to t — J^, T = 0, and d = 2. We have already

calculated IT00, and hence 11". To calculate II-1, we assume that k = (k, 0). Then
We find that (see Section 4.3.6.1)

For a quadratic dispersion                       the current has the form (4.3.6) when 
which implies that IP" and        are related through eqn (3.7.6). We find that

where we have used                            We note that the contact term    exactly cancels
the constant term in      (what a relief!). Without this cancellation, the free fermion
system would behave like a superconductor (see eqn (3.7.11)).

In d = 3 dimensions, we find that (see Section 4.3.6.2)

Problem 4.3.5.
Calculate        (a.1, k) exactly for a one-dimensional free fermion system. Sketch the regions
where              together with all of the boundary lines where     (w. fc) becomes
non-analytic. Identify the particle-hole excitations that correspond to these boundary lines.

4.3.4 Conductivity

• A finite a.c. conductivity is caused by impurities and/or interactions that break
the Galileo invariance.

• An approximate calculation of conductivity.

As mentioned before, the uniform electric field only couples to the center-
of-mass motion. As a result, the fc = 0 a.c. conductivity is

To have a finite a.c. con-
ductivity, we need to break the Galileo invariance. One way to do so is to include
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impurities. Another way to break the Galileo invariance is to include an interaction
term that violates the Galileo invariance.

The Green's function iG(t, k) in eqn (4.2.3) has the following physical mean-
ing. If we create a fermion in the fc state at t = 0, then iG(t, fe) is the amplitude of
finding the fermion in the k state at time t. For a free fermion system, the fermion
that occupies the k state does not go anywhere. As a result iG(t, fc)|2 = 1. In
the presence of impurities, the fermion in the fe state can disappear into states with
different momenta, as a result of the scattering by the impurities. Similarly, the
interaction between fermions can cause a fermion in the fe state to decay into a
multiparticle state with two particles and one hole. Again, the fermion in the fc
state disappears into other states. To a certain degree, such an impurity/interaction
effect can be simulated by including a decay term in the fermion propagator as
follows:30

As \G(t, fc)|2 decays as e~2rt, the decay rate is 217 and r = 1/2F is the relaxation
time.31 In the w-fc space, eqn (4.3.12) becomes

Equation (4.3.14) allows us to obtain the fermion spectral functions

However, the above A± do not satisfy eqn (2.2.28). Thus, the way that we use
eqn (4.3.12) to simulate the impurity/interaction effect is not self-consistent. This

30 For a system with impurities, the Green's function G(ti, zi; £2, x%) is not a function of xi — x%,
because the translational symmetry is broken. In this case, we cannot even define G(t, k). However,
the impurity-averaged Green's function only depends on Xi — X2, and G(t, k) can be defined. So,
for a system with impurities, G(t, fc) should be regarded as an impurity-averaged Green's function.

31 Using decay to simulate interaction/impurity effects, we violate the fermion number conserva-
tion.

as follows:
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problem can be fixed easily by modifying A± to be

The modified A± become the A± of the free fermions when F = 0+. The modified
Green's function is no longer given by eqn (4.3.12), but by the one derived from
eqn (4.3.15).

To calculate the density response function Q(t)([p(t, q), p(0, -</)]}, we need
to evaluate (see eqn (4.3.1))                   lt is very tempting to
use Wick's theorem to evaluate the above correlation. Here we would like to point
out that Wick's theorem only applies to correlation functions in free fermion (or
boson) systems. It does not apply to interaction fermions or average Green's func-
tions of impurity systems. Here we will use Wick's theorem anyway, but as an
approximation:

Following the calculation from eqn (4.2.15) to eqn (4.2.17), we find that

To calculate the current response function we iust need
We findto put in the weighting ractor

that

Setting q = 0, we find the a.c. conductivity to be



TWO - BODY CORRELATION FUNCTIONS AND LINEAR RESPONSES

Taking uj —s> 0, we obtain the following very useful formula for d.c. conductivity:

where we have assumed that T and F are small and have used

4.3.5 Other two-body correlation functions

When electrons have spin, we can also calculate the spin correlation function
and electron-pair correlation function. The spin density operator is given by

where cp, with (3 = 1,2, are spin-up and spin-down electron
operators, and <r* is the Pauli matrix. The spin-spin correlation is equal to the
density correlation:

We see that the spin-spin correlation also has an algebraic long-range order. For a
nested Fermi surface,

ifoj||Q.
The electron-pair operator is given by b(x, i) = c\(x, t)c2(x, t) and is related

to superconductivity. Its correlation is equal to the square of the Green's function
of the spinless electron:

Once again, we have algebraic long-range order in electron-pair correlations.
In summary, we find that many correlations in free fermion systems have a

power law decay. This indicates that the free fermion ground state is a kind of
critical state. Sometimes, an arbitrary weak interaction can change algebraic long-
range order into true long-range order and induce spontaneous symmetry breaking.
For example, an infinitely weak attractive interaction will generate long-range
order in an electron-pair correlation and produce a superconducting state.

177
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of the iO term, the two poles for |ce| < 1 will be on the unit circle |z| = 1.

4.3.6 Remarks: some calculation details

4.3.6.1 Calculation o/       n two dimensions

We calculate      as follows:

and (see Fig. 4.16)

4.3.6.2 Calculation ofi     in three dimensions

To calculate       we can take k = (0,0, k) and use

FIG. 4.16. Two poles of for 1. In the absence

We also note that

and
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4.4 Linear responses of insulators and quantized Hall conductance

• The Hall conductance of insulators is a topological quantity and is quantized.

In the last section, we discussed the linear responses of free fermion systems
with a Fermi surface. These responses are caused by the particle-hole across the
Fermi surface. In this section, we would like to discuss the linear responses of
insulators. Here, by 'insulator' we mean any state with a finite energy gap. (Such a
state is also called a rigid state.) As there is no low-energy excitation, the imaginary
part of the responses is zero for small uj (i.e. there are no low-energy dissipations).

Consider an interacting fermion system coupled to the electromagnetic field:
 The result that we are going to obtain is very general,

and we do not even need to know the form of    We only assume that
the ground state of the fermions has a finite energy gap and that               is
invariant under a gauge transformation:

After integrating out the fermions, we obtain an effective action of the gauge field
as follows:

where      is the contribution from the fertnions and P^(x — x'} is the
current-current correlation function.

For insulators (or rigid states),       s local and      is a polynomial of kllr in

the frequency-momentum space. This is in sharp contrast to       for the metals
calculated in the previous section. The singularity in the small-(fc,u/) limits for
metals is caused by gapless particle hole excitations across the Fermi surface.

Here   should also be gauge invariant. Thus,               should depend
on AH only via the field strength E and B. Therefore, &C,cs has the following
form:

where '. . .' represents higher-derivative terms. The tensor xlj is the magnetic sus-
ceptibility and p'J represents a correction to the dielectric constant. In general, the
above are the only forms of linear responses from an insulator.

However, in 2 + 1 dimensions,    may contain a new term — the Chern-
Simons term — as follows:
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where /z, is,     0,1, 2 and e^         the total anti-symmetric tensor. Despite the fact
that the Chern-Simons term cannot be written in terms of the field strength, it is
nevertheless gauge invariant. Under the gauge transformation

where V is the space-time volume and 5 is the surface of V. We see that, if our
system lives on a closed space-time that has no boundary, then the Chern-Simons
term is gauge invariant.

The linear response of the Chern-Simons term is

where L\^ are the sizes of the system in the x and y directions. The many-body
ground state of the fermions,     is parametrized by                   If we integrate
out the fermions, then we will obtain an effective Lagrangian

where the first term comes from the Chern-Simons term and the second term from
the E2 term. If we view 9 as the coordinates of a particle, then <5<S describes a
two-dimensional charged particle in a uniform 'magnetic' field b:

In Section 4.4.1, we will show that the fermion states \0\, 62), |#i + 27T, 62),
and |#i, #2 + STT) are related by a gauge transformation. Physically, this means that
                                 and             are actually the same physical state (see

We see that the Chern-Simons term gives rise to a Hall conductance
(or xy = Ke2/h if we put back e and K).

In the following, we are going to show that the Hall conductance axy or K
is quantized (Thouless et al, 1982; Avron et ai, 1983). First, let us consider a
periodic system and a special gauge field configuration as follows:

the action undergoes the following change:
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the discussions in Section 6.1). Thus, actually describes a particle on a torus
parametrized b   

Let us move the particle along the loop C: (0, 0)
    —»• (0,0). The phase accumulated by such a move is given by the
'magnetic' flux enclosed by C:

where D is the area enclosed by the loop C. On any closed surface, such as a
sphere or torus, any loop will enclose two surfaces on the two sides of the loop
(see Fig. 6.5). Here D is simply one of the two surfaces enclosed by C. The
other surface D' enclosed by C has zero area (because D covers the whole area
of the torus). So the phase <fc dO • a can also be written as                      To be
consistent, J and                         should represent the same phase. Hence

Mathematically, one can prove that the total magnetic flux through any closed
surface must be quantized as an integer. This is why the magnetic charge of a
monopole is quantized. For our case, this means that K is quantized as an integer
(see also Section 4.4.1).

We would like to stress that the quantization of K is very general. It applies to
any interacting system of fermions and/or bosons. The only assumption is that the
ground state \0} is not degenerate. As a result, the Hall conductance of a system
is quantized as integer x e2 /h if the many-body ground state on a torus is not
degenerate and has a finite energy gap. We would like to point out that, if the
many-body ground states have degeneracies (see Section 8.2.1), then K and the
Hall conductance can be a rational number (Niu et al., 1985).

The quantization of the Hall conductance has some interesting consequences.
Let us consider a non-interacting electron system in a uniform magnetic field. If
n Landau levels are filled, then the system will have a finite energy gap and the
Hall conductance will be ne2/h (or K = n). Now let us turn on an interaction,
periodic potential, or even a random potential. As long as the gap never closes
in the process, the Hall conductance cannot change! As the Hall conductance is
robust against any perturbations, we call it a topological quantum number. The
only way to change the Hall conductance is to close the energy gap, which induces
a quantum phase transition.

To explicitly calculate K, we note that f dt <JLeff is the action for the adia-
batic evolution \Q(t)). Thus, we have
eqn (2.3.4))

and

integer
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Here we would like to remark that, as the ground state of the fermions, the phase
of |0(i)) is not fixed. If we redefine the phase of |                     , then the
Berry phase term will change by a total derivative term:

Therefore, the relationship between the Chern-Simons term and the Berry phase
(4.4.2) cannot be correct, because the Berry phase for an open path is not even
well defined (see Section 2.3). The correct relationship should be an integration of
eqn (4.4.2) along a closed loop:

In particular, along the loop C, the Berry phase is given by

where Ci has n components, tij are n x n matrices that only depend on i — j,
and M(k) is the Fourier transformation of tij. After coupling to a uniform gauge
potential A which has the form given in eqn (4.4.1), we obtain

Then let    be the eigenvectors of Me(k). Here are labeled by the crystal
momentum k, and a = 1,..., n, where a labels the ath eigenvector. Note that
is an n-dimensional complex vector.

Let us assume that the ground state |0) is obtained by filling the a = 1 band.
We have

Let us use the Berry phase (4.4.3) to calculate the quantized Hall conductance
of a band insulator, for which

Using the additive relation of the Berry phase, namely

we find that
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FlO. 4.17. The small loop traced out by k' = k + 9L 1 for a fixed k. The small loops for all

different ks cover the whole Brillouin zone. The loop integral along all of the small loops corresponds

to the loop integral along the loop Ck because the contributions from the internal lines cancel each

other.

How do we calculate the Berry phase for V>f fc? Here we note that M9(k) =
M(k + 9L~1}, where, for simplicity, we have assumed that LI = L^ = L in
eqn (4.4.1). Thus, ijjfk is an eigenvector of M(k + 9L~l). Let V>a,fc' be the eigen-

vectors of M(k'); then we have As 6 moves
along the loop C, for a fixed k, k' moves along a small loop (see Fig. 4.17). As
the discrete k has the form           , we see that all of the small loops for
different ks cover the whole Brillouin zone without overlap. Thus, the sum of the
Berry phases for the i/)fk in eqn (4.4.5) is equal to the Berry phase for ^i,*;' along
a large loop Ck that encloses the whole Brillouin zone:

If several bands are filled, then we need to sum over the contributions from each
band.

As a concrete example, consider the following spin-dependent hopping Hamil-
tonian on a square lattice:

where the 2 x 2 hopping matrices are given by
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We see that our system has two bands. Here H^ is just like the Hamiltonian of a
spin-1/2 spin in a magnetic field B(k). The lower band corresponds to spin in the
B direction. Moving along a loop in k space, the spin in the B(k) direction traces
out a closed loop on the unit sphere in the spin space and gives rise to a Berry
phase. If we fill the lower band, then the Hall conductance can be calculated from
the above spin-1/2 Berry phase if we choose the loop to enclose the entire Brillouin
zone. From the expression for B(k) in the small-t' limit, we see that B is in the
x-y plane, except near the four points k =                 . By examining the spin
near k =                 (see Fig. 4.18), we find that, as k goes over the Brillouin
zone, B/\B goes over the unit sphere twice. Or, more precisely, B(k}/\B(k}\
maps the Brillouin zone S1 x 51 to the unit sphere S2 with winding number 2. The
total Berry phase is thus 2 x 2?r. We find that K = 2 and the Hall conductance of
the half-filled hopping system is

Problem 4.4.1.
For the Hamiltonian (4.4.4), if the a — 1 band is partially filled, then show that the Hall
conductance is given by an integration of the filled levels as follows:

(Note that, for the partially filled band, K is not quantized because \0) does not have 2?r
periodicity, see eqn (4.4.9).)

At finite temperatures, we have

FIG. 4.18. The arrows represent the direction of B. The winding number receives contributions

only from the neighborhood of four points k —                     . Around each point, B covers half

of the sphere and contributes a winding number of 1/2. The total winding number is 2.

In momentum space, the Hamiltonian becomes
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4.4.1 Remarks: periodic structure of \6) and quantization of K

First, let us study a periodic structure of the fermion ground state \0) in the 6 space. Here
\9) is the ground state of the Hamiltonian

We note that the U(l) gauge transformations

do not change the periodic boundary conditions of the fermion operator c(x) in the x and
y directions. However, the gauge transformations generate the following shift: (61,62) -*

Or, more precisely, we have

As [Wi,W2] = 0, we have

and

Therefore, if \0) is the many-body ground state for 0, then Wi\0} is the ground state for the
shifted 9. Hence

for a choice of fi(0). Similarly, we have

Fhe two unitary operators
that relate

We can always redefine the phase of

venerate the qauqe transformations

if we choose
<j> to satisfy

Then, from

we find that

and

to make
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Comparing the above equation to eqn (4.4.8), we find that

We see that \9} is quasi-periodic in Oi and 6*2 with period 2?r:

where Wi,2 are unitary operators which are independent of 6.
Using (8\de\0) = (0\Wf 2deWi,2\0) and eqn (4.4.9), we can reduce the Berry phase

(4.4.3) to

As
quantized as an integer.

is periodic in we find that integer and K is
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INTERACTING FERMION SYSTEMS

Electron systems in nature have quite strong Coulomb interactions. Many inter-
esting properties of materials, such as magnetism, superconductivity, etc. are due
to interactions. In this chapter, we will study the effect of electron-electron inter-
actions. In particular, we will discuss Landau's Fermi liquid theory for metals and
symmetry-breaking transitions induced by the interaction.

5.1 Orthogonality catastrophe and X-ray spectrum

• Orthogonality catastrophe is a phenomenon that illustrates how many-body
effects affect fermion Green's functions and the associated experimental
results.

• Orthogonality catastrophe is a general phenomenon that can appear in many
systems, such as an X-ray spectrum, an I-V curve of tunneling into quantum
dots, etc.

5.1.1 Physical model

The X-ray spectrum is caused by a transition between a core level and a conduction
band of a metal (see Fig. 5.1 (a)). An absorption of X-rays removes an electron
from a core level and adds it into an unoccupied band state. An emission removes
an electron from an occupied band state to an unoccupied core state. The system
can be modeled by the following Hamiltonian:

where C describes a core electron at x — 0, and Fe~itirt is the time-dependent
coupling induced by the X-rays, For simplicity, we will assume spinless electrons
in this section.
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F l G . 5. 1 . (a) X-ray absorption/emission are caused by transitions between a core level and a con-

duction band of a metal. Also shown are the X-ray spectra of the transitions (b) with no interaction,

and (c) with interaction.

Note that the emission rate is equal to the current from the conduction band to
the core state. According to linear response theory, the emission rate is given by

where
spectral function of the core electron and the conduction electron (see eqn (4,2.17))
as follows:

For free fermions, the spectral function is given by the density of states, as in
eqn (4.2.18). If we choose our energy to be zero at the Fermi surface, then

We note that, before emission, the core state is completely empty. This gives rise
to the above non-equilibrium core-electron spectral function. We find that

We can express the emission rate A in terms of the

and the emission rate directly measures the density of states for free fermions
note that At zero temperature, has a step-like(see Fig. 5.1(b);
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F I G . 5.2. The density of the conduction electrons has to be changed after the tunneling if there is
an interaction between the core electron and the conduction electrons.

The physics is illustrated in Fig. 5.2. In the absence of the interaction between
the core electron and the conduction electrons, the matrix element for the emission
at a given frequency involves the matrix element of single-particle wave functions
of the conduction electron at a certain energy and the core electron. To generalize
to interacting cases, we should view the above matrix element as a matrix element
between two many-body eigenstates: one eigenstate has a filled Fermi sea and an
empty core state, and the other has a hole in the Fermi sea and a rilled core state.
In the presence of the interaction, the core electron induces a change in the density
of the conduction electrons, and hence a change in the many-body electron wave
function. Thus, the matrix element for the emission involves the matrix element
between the following two eigenstates. One has a filled but deformed Fermi sea
and an empty core state. The other has a hole in the uniform Fermi sea and a
filled core state. We can approximate the above matrix element as the product
of the matrix element between the single-particle states and the overlap between
two many-body states of a uniform Fermi sea and a deformed Fermi sea. If the
overlap is finite, then the discussions in the last section remain valid for LJ near

singularity of the emission/absorption rate at in a significant way.

Now we would like to include an interaction between the core electron and the
conduction electrons. We will see that such an interaction can modify the edge

5.1.2 The physics of orthogonality catastrophe

• Orthogonality catastrophe is caused by the vanishing overlap between two
many-body wave functions, which describe the deformed and undeformed
Fermi seas.

Problem 5.1.1.
Calculate the absorption rate spectrum

also applies to interacting electrons if we use the spectral function of interacting
electrons.

indicating the sharpness of the Fermi surface. The above resultjump



This phenomenon is called intra-red catastrophe or orthogonality catastrophe.
We know that a many-body wave function for free fermions can be constructed

from single-body wave functions through the Slater determinant as follows:

where

The many-body wave function for the uniform Fermi sea, 
the plane waves pkjdhlhjkljljjljljkljkl;kl';kl'l;l';l';'l'l';l';l';l';l'l'l';l'l
gies are less than the Fermi energy EF. The many-body wave function for the
deformed Fermi sea, $, is constructed from the eigenfunctions in the presence of
the potential of the core electron. We can then calculate the overlap {*3/o|\l/} to
determine if there is an orthogonality catastrophe or not.

To illustrate our point in a simple calculation, we will calculate (1I>o|1!'} by
treating the fermions as a fluid described by the density p(x). This treatment give
us a correct result in one dimension, but an incorrect result beyond one dimension.
Such an approach is called the hydrodynamical approach, or the bosonization of
fermion systems. Let us first develop the hydrodynamical approach.

5.1.3 Hydrodynamical approach (bosonization)

• The collective density fluctuations in a metal can be described by a bosonic
field theory.

• In one dimension, the boson theory provides a complete description of the
particle-hole excitations across the Fermi surface.

The potential energy of a compressible fluid is given by

where x > s the compressibility. Here we assume that p(x) is a fluctuation around
the uniform density, PQ, of the ground state. The kinetic energy is

1 9 0 I N T E R A C T I N G F E R M I O N S Y S T E M S

except that the tunneling amplitude F may be reduced by a finite factor. However,
if the overlap is zero, then the results in the last section must be modified in a
significant way. In particular, the step-like singularity at is destroyed.

is a single-body wave function and is the following matrix:

sdrsdfe

iskjkljlkjljlkjlkjkljlkjkl
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F l G. 5,3. The dispersion of the linear mode always lies within the particle-hole continuum.

Thus, the Lagrangian that describes the dynamics of the fluid is given by

and the Lagrangian can be written in terms of density only as

Such a Lagrangian is identical to the phonon Lagrangian (3.3.15) studied pre-

For free fermions, the compressibility is equal to the density of states:
We find the velocity of the hydrodynamical mode to be

191

is the current of the fluid atwhere is the velocity and

From current conservation we find that assuming
that
follows:

where is the volume of the system.and

The phonons are described by theviously, with
following quantum Hamiltonian (see eqn

x.
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The dispersion of the hydrodynamical mode always lies within the particle-hole
continuum (see Fig. 5.3). One can show that the specific heat of the single lin-
ear mode is less than the specific heat of the corresponding free fermion system
in d > I dimensions. Thus, for d > 1, the hydrodynamical treatment does not
reproduce the full low-lying excitations; it only describes some average density
fluctuations. However, in d = 1 dimension and at low temperatures, the specific
heat of the single hydrodynamical mode is exactly equal to the specific heat of the
corresponding free fermion system, suggesting that the single boson mode repro-
duces all low-lying excitations of the free fermion system. This indicates that the
single boson mode is a faithful description of the fermion system at low energies,
and we can use a boson theory to describe the low-energy properties of a fermion
system. The method of using bosons to describe a one-dimensional fermion system
is called bosonization (Tomonaga, 1950; Luttinger, 1963; Coleman, 1975).

To compare the hydrodynamical model and the fermion model in more detail,
let us consider the many-body low-energy excitations in the quantum Hamiltonian
(5.1.5). In one dimension, the hydrodynamical Hamiltonian (5.1.5) reproduces
the spectrum of all of the low-energy excitations in the corresponding fermion
system. To see this, let us put the system on a circle of size L and assume that
the ground state has zero energy. The hydrodynamical model has two eigenstates
with energy   and momentum K namely and c

at momentum which have exactly the same energy E The
two particle-hole states are given by and < Here

is the ground state of the fermion system where the single particle states
are filled by one termion. The hydrodynamical model has

one eigenstate with energy    and momentum K namely
The fermion system also has one particle-hole state with the same momentum and
energy, namely hi fact, the excitation spectrum of
the hydrodynamical model is identical to the particle-hole excitation spectrum of
the fermion model (see Problem 5.1.3). The hydrodynamical model is a faithful
description of the fermion system at low energies and small momenta.

Problem 5.1.2.
Write in terms of and Show that carries a definite momentum.

Problem 5.1.3.
Show that, in one-dimension, both the hydrodynamical model (with a fixed number of
particles) and the fermion system (with a fixed number of fermions) have the following
properties.
(a) There are excited states with energy and momentum where
(P01£>1)P2> •••) = (1) 1) 2,3,5, 7,...) are the partition numbers. (It you cannot find the
general proof, then you may check the result up to p$.)
(b) There are excited states with energy and momentum

where The fermion system also has two particle-hole excited states
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(c) There are  states with en
Thus, the hydrodynamical model and the fermion system have an identical excitation
spectrum at low energies and small momenta.

Problem 5.1.4.
(a) From eqn (4.3.2), we see that the compressibility
imaginary part. Using such a compressibility and the equation of motion of the Lagrangian
(5.1.2), find the decay rate of the density mode (the phonons) in
dimensions. Compare the decay rate with the frequency of the mode. Does the density
mode gives rise to a well-defined phonon?
(b) In fact, part (a) is not quite right. One should calculate the density response function of
the hydrodynamical model using eqn (5.1.2) and then obtain         i by choosing it to fit
the fermion results of eqn (4.3.2). Find x(^'> k) using this method. Are the main results in
(a) changed by the new 

5.1.4 Orthogonality catastrophe from the hydrodynamical approach

• In the hydrodynamical approach, the overlap of many-body wave functions
can be calculated easily from the shifted harmonic oscillators.

In the presence of the potential caused by the core electron, the Hamiltonian
(5.1.5) contains an additional term (see eqn (3.3.17)):

rescribes kkkkkkkkkkkkkka collection of shifted oscillators. The ground state of the
system in the presence of the potential is given by

where
corresponds to the deformed state. The overlap between

phe. In d > 1 dimensions, the integral is finite for small k. For large k, the integral

is the ground state in the absence of the potential. Here
and

For a short-range potential, is nonzero for small In 1 dimension, the
integral diverges for small k and 0. We have an orthogonality catastro-

doiyukijhasdjs

ioju

cjhgjghsdj

kdjjklj
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is cut off by a short distance scale (say I = l/kp). Therefore, the overlap is finite
within the hydrodynamical approach. (This result turns out to be incorrect.)

In the following, we will calculate the correlation of the tunneling operator I(t)
to obtain the u dependence of the emission rate. We approximate the time-ordered
imaginary-time correlation as

The above is exact only when there are no interactions between the core and the
conduction electrons.

It turns out that the influence of the core electron on the conduction elec-
tron Green's function is not important and we can approximate GC(T) by the free
fermion Green's function. To calculate GC(T), we note that the path of the core
electron in space-time is a straight line in the time direction. Thus,

where p(r) is the density operator of the conduction electrons, and — EC is the
energy of the core electron. Within the hydrodynamical approach, we may use the
path integral to evaluate the above expression. In Problem 5.1.5 it will be shown
that the Lagrangian for the hydrodynamical approach (5.1.2) is equivalent to the
standard Lagrangian of the XY-model, namely

In imaginary time 

Therefore

The long-time behavior of GC(T) depends on the spatial dimension. In d = 1
dimension (see eqn (3.3.25)), we have

where we have assumed that the temperature T = 0. In real time, we have

dfgfgfgff
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We see that the Green's function is very different from the one for the free core
electron, namely
electron is

In one dimension, the exponent is given by

function. Thus, according to the hydrodynamical model, the emission rate should
be similar to the one for the non-interacting case. This result is consistent with
the above analysis of wave function overlap. However, as we will see in the next
section, such a result is incorrect for fermion systems.

Problem 5.1.5.
In the hydrodynamical approach, the energy (Hamiltonian) of the conduction electrons is
given by

We may replace j by if we assume that

1. If we view        s the canonical coordinates, c
canonical momenta,   Here x can be regarded as an index which labels different
canonical coordinates and momenta.) Show that the current conservation
0 can be reproduced by one of the Hamiltonian equations

if we choose the value of C properly. Find the value of C.

2. Show that the Hamiltonian equations

reproduce the equation of motion of the Lagrangian (5.1.2). Show that the Hamil-
tonian and the canonical coordinate—momentum pairs
reproduce the Lagrangian (5.1.2).

which is the same as the free core-electron Green'slarge and
In > 1 dimensions, approaches a constant for

and the emission rate behaves like (see Fig. 5.1(c))

The spectral function for the dressed core

da

can be viewed as the



196 I N T E R A C T I N G F I I R M I O N S Y S T E M S

3. Now let us view       as as coordinates a    
Hamiltonian and the canonical coordinate-momentum pairs
reproduce the Lagrangian of the XY-model.

4. We know that, in the standard XY-model, the
describe the same point. Find the periodic condition of td
the             J mode and find the relationship between the quantization of the total par-
ticle number and the periodic condition of the <j> field.) We see that, after a proper

scaling,     n be identified as the   field and our hydrodynamical model ca
identified as the XY-model.

5. Compare the density correlation function (say, time-ordered) calculated from
eqn (5.1.2) and the XY-model. Comment on your results.

Problem 5.1.6.
Use the relation between the hydrodynamical model and the XY-model obtained in the
previous problem, to show that the one-dimensional hydrodynamical model can reproduce
the low-energy excitations near
(see Section 3.6).

and

as follows:

for       in a fermion system. Here we view  as the fluctuations around the
constant density po- (The constant part can be absorbed into        We can remove
the constant part from p through a normal ordering with respect to the filled Fermi
sea, i.e. Here :
i f ,

To calculate i we first expand

Using the linked-cluster theorem, we find that

5.1.5 Direct calculation for fermion systems

• The hydrodynamical approach can only produce the corrected overlap of
many-body wave functions in one dimension.

• In higher dimensions, the single boson mode is not sufficient for describ-
ing particle-hole excitations across the Fermi surface. The particle-hole
excitations correspond to many-boson modes, which leads to a smaller
overlap.

Let us directly calculate

in the one-dimensional fermion system

asehkhhjljhlkjkljljlkjljklpiokpfh

dj,hkjhkljljkljklklvgf anb
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contains only the connected graphs. The first term
vanishes, and the second term is the leading term. If we assume that the density
fluctuations are small, then we may ignore the higher-order terms. Thus,

We see that the edge singularity is modified as long as the fermions have a finite
density of states, regardless of the number of spatial dimensions. The result from
the hydrodynamical approach is incorrect for d > I.

In one dimension, the result (5.1.7) from the hydrodynamical approach is sim-
ilar to the one obtained here. However, if we compare the value of the exponent,
then the exponent obtained here is twice as large. So, one may wonder, what can
go wrong in our one-dimensional hydrodynamical approach? After all, the hydro-
dynamical modes reproduce the specific heat of the particle-hole excitations near
the Fermi surface in one dimension. It appears that the hydrodynamical modes
capture all of the low-lying excitations of the fermion systems in one dimension.
Thus, one expects that the one-dimensional hydrodynamical approach should give
us the correct result. As we will see below, the one-dimensional hydrodynamical
approach indeed gives us a correct result in a certain sense.

To understand the discrepancy, we note that the fermion Green's function at the
equal-space point,                            contains two contributions from the two
Fermi points. For a small but finite x, we have

Therefore, the density correlation also contains two parts with momenta            and

where

we find thatUsing

and

The emission rate behaves like

is a short-time cut-off andwhere

197
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In the hydrodynamical approach, only the small-momentum part

is included, which leads to a smaller exponent.

that all of these low-lying excitations could contribute to the suppression of the
edge singularity. In general, if the core electron induces a potential of finite range,
then the coupling between the core and the conduction electrons will have the form
        The correlation of such an operator is given bsdfy

In this case, the exponent is given by

singularities. Thus,    only contains contributions from VQ andI    n the hydrofg-
dynamical approach, the contribution from  lf< dropped. This is the source of
the discrepancy.

Problem 5.1.7.
Calculate the Green's function of the core electron, Q in the long-time limit, assuming
that the interaction between the core and the one-dimensional conduction electrons is given

Problem 5.1.8.
Calculate the Green's function of the core electron,            in the long-lime limit, assuming
that the core electron interacts with a one-dimensional interacting boson system through a
(5-potential, i.e.                   iwhere p(x) is the density of the bosons. We may describei
the interacting boson system by its effective XY-model (3.3.23). Note that the boson den-
sity correlation contains singularities at momenta (see eqn (3.6.2)). For a given
value of (,v, v), determine which singularity controls the long-time behavior of GC(T) and
calculate this long-time behavior.

5.2 Hartree-Fock approximation

• The Hartree-Fock approximation can be viewed as a variational approach.

When we encounter a condensed matter system, we would like to answer two
questions. What are the properties of the ground state and what are the properties
of the excitations above the ground state? In this section, we are going to use

What is the resulting emissionb j
rate

where

We know that a free fermion system contains low-lying excitations with
momenta near From the above discussion, it is clear

For free fermions, the density correlation contains only



H A R T R E l i - F O C K A P P R O X I M A T I O N 199

the Hartree-Fock approximation to answer these two questions for an interacting
electron system.

5.2.1 Ground-state energy and ferromagnetic transition

• The Hartree term represents the interaction between the total densities, while
the Fock term represents an effective attraction between the like spins.

« Just like the Hund rule in atoms, a strong repulsion between electrons in a
metal can lead to a ferromagnetic state.

Let us assume that the electrons are on a lattice and carry spin-1/2. The elec-

where Ns\t,f. is the number of sites.
To understand the ground-state properties of the above interacting system, let

us use the ground state            of a non-interacting system as a trial wave function
More precisely  is simply a state described by a set of occupation numbers

We determine the occupation number /?,&„ by minimizing the average energy of the
trial state.

Using Wick's theorem, we find thaa                    icontains three terms as follows:

The first term            's the kinetic energy, which is minimized when 
NI, where N^ is the number of spin-up electrons and JVj is the number of spin-
down electrons. The second term is called the Hartree term:

which is independent of
simply the classical potential energy. If we only include the first two terms, then
the average energy of the trial state will be minimized at
ground state is then a spin singlet and does not break spin-rotation symmetry.

trons interact through
given by (in momentum space)

The Hamiltonian is

if N is fixed. It is clear that the Hartree term is

thelkjklj

Here if the state k is occupied by an spin, and otherwise.
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The third term in the above equation is the Fock term, which can be rewritten
as

where TV is the total number of electrons. We see that, if we ignore the constant
term ^V(0)N, then the Fock term represents an effective attractive interac-
tion between parallel spins, but no interactions between opposite spins. The
contribution from the Fock term becomes more negative as               increases.

To understand this effective attraction between parallel spins, we note that the
average potential energy can be written in terms of density correlation functions as
follows:

where           and      are the densities of the spin-up and the spin-down electrons,
respectively. Comparing this with the Hartree term

term overestimates the interaction between the parallel spins. This is because when
site i has an electron, it is less likely to find another electron with the same spin
on a nearby site j. In fact the probability will be zero if j = i due to the Pauli
principle. We find that                                               The Fock term simply cor-
rects this error and hence represents an effective attraction between parallel spins
(assuming that      V(> 0). As a consequence of the attraction between parallel
spins, the Fock term may make a ferromagnetic state (with              have a
lower energy than the paramagnetic state (with ATf = JVj_), if the Fock term is
larger than the kinetic energy term. This is an example in which an interaction can
cause symmetry breaking.

As the trial wave function describes a state of uniform density, the Hartree term
is given by

we find that the Hartree term correctly reproduces the cross-term because and
However, the Hartreeare independent and
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Thus, the total energy of the trial state is given by

then the change in the energy is given by

               ite is the number of electrons per site, and we have only kept the terms
which are linear in

The occupation     that minimizes the energy has the property that i   is
positive for any   Such a set of occupation numbers satisfies

5.2.2 Spectrum of excitations in the Hartree-Fock approximation

After obtaining the ground-state occupation numbers n^, we can consider the
excitations above the ground state. Let us assume that the trial wave function for
an excitation is described by a different set of occupation numbers
The (average) energy for such an excitation has been calculated above:

We see that, under the Hartree-Fock approximation, the low-lying excitations of
the interacting system are described by a free fermion system. In particular, the
following statements hold.

1. The many-body eigenstates (the ground state and the low-lying excitations)
are labeled by the occupation numbers  0,1. The number of low-lying
excitations is the same as in free fermion theory.

If we change

where

where We see that 0 at the Fermi
change from 0 to 1. The ground-state occupation numberssurface, where

are obtained by solving the coupled eqns (5.2.5) and (5.2.4).
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2. The energy of a many-body eigenstate is given by the sum of the energies
of the occupied states. To be more precise, we can assign an energy to
each momentum state (k. a) such that the total energy of an eigenstate can

One can directly derive the above effective Hamiltonian using mean-field theory
(see Problem 5.2.2).

We note that the renormalized Fermi velocity

has not been observed experimentally, and this particular result from the Hartree-
Fock approximation turns out to be incorrect.

Problem 5.2.1.
Consider a one-dimensional electron system on a lattice with an on-site potential interac-
tion, so that

1. Find the energy    of a single-particle state with momentum k for a non-interacting
system with V — 0.

2. Use the Hartree-Fock approximation to find the ground-state energy
assuming that the numbers of spin-up and spin-down electrons are given by JVf and

diverges as — In when However, this divergence

For a Coulomb interaction in three dimensions, we find that

constant.be expressed as

3. The energy for each momentum state is modified by the interaction
is called the self-energy of the electron.The correction

The above statements can be summarized by the low-energy effective Hamiltonian

we have

32
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7V|, respectively. You may assume that the total number of electrons N is less than
the number of lattice sit    N

3. Consider the energy  in the neighborhood of 7V| - TVj = 0 and for fixed
N. Show that E(N^ Arj) has a local minimum at Ar

r - N\. = 0 if V < V0, and a
local maximum at Ar|- — N~i = 0 if V > VQ. Find the critical value V0.

4. Calculate the spin susceptibility \ of the spin-unpolarized state for V < V(). What is
the behavior of x as V — > l/b?

5. Minimize the ground-state energy obtained above with fixed Ar, Determine the crit-
ical value Vc of V beyond which the system becomes a ferromagnet. Determine the
value of the total spin SZQ in the minimized ground state, assuming that the spin of
the ferromagnet is pointing in the z direction.

6. Calculate Sfen for both V < Vc and V > Vc, and determine the energy spectrum of
the excitations above the minimized ground state.

7. Find the minimum energy cost to create an excitation of flipping one spin (i.e. change
the total spin Sz by 1 ), for both V < Vc and V > V,.. Comment on your result (do
you believe it?).

Problem 5.2.2.
Derive eqn (5. 2. 7) by replacing a pair
field approximation.) There are several contributions from different replacements. Note
that (Hf,f[) is different from the ground-state energy (H) calculated in the Hartree-Fock

approximation. Include a constant term (which can be written in terms of

that

5.3 Landau Fermi liquid theory

• Low-energy excitations of an interacting fermion system are described by free
quasiparticles. In other words, interacting fermions sa free fermions.

• Perturbation theory works even when the interaction is much much larger than
the level spacing.

Landau Fermi liquid theory (Landau, 1956, 1959) is one of the two corner-
stones of traditional many-body theory. It essentially states that a metal formed
by interacting electrons behaves almost like a free fermion system. Landau Fermi
liquid theory is very useful because it describes (almost) all known metals. It also
forms the foundation of our understanding of many non-metallic states, such as
superconductors, anti-ferromagnetic states, etc. These non-metallic states are real-
ized as certain instabilities of a Fermi liquid. On the other hand, Landau Fermi
liquid theory is very mysterious because the Coulomb interaction between elec-
trons in ordinary metals is as large as the Fermi energy. It is much larger than

oihjudf.m,h,mnklfnh lihdhjdldkhjkjklhjklhs
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the energy-level spacing near the Fermi energy. Perturbation theory (in the usual
sense) breaks down for such a strong interaction. It is hard to see why a gapless
system with such a strong interaction resembles a non-interacting system.

To appreciate the brilliance of Landau Fermi liquid theory, let us look at the
many-body Hamiltonian of interacting electrons, namely

It is hopeless for a theorist to solve such a 'nasty' system, not to mention to guess
that such a system behaves almost like a free electron system. Certainly, condensed
matter physicists did not provide such a bold guess. It is nature itself who hints to
us over and over again that metals behave just like a free electron system, despite
the strong Coulomb interaction. Even now, I am amazed that so many metals can
be described by Landau Fermi liquid theory, and puzzled by the difficulty to find
a metal that cannot be described by Landau Fermi liquid theory.

On a technical level, Landau Fermi liquid theory implies that a perturbative
expansion in interaction works, despite the interaction being much larger than
the level spacing. Due to this, to understand the physical properties of a metal,
we can start with a free electron system and use perturbation theory to calculate
various quantities. This approach was so successful that Landau Fermi liquid the-
ory became the 'standard model' for interacting fermion systems. The dominant
position of Landau Fermi liquid theory was only challenged not so long ago by
fractional quantum Hall states in 1982, and by high-Tc superconductors in 1987.

5.3.1  Basic assumptions and their consequences

• The concept of a quasiparticle.

Landau Fermi liquid theory has only one really basic assumption.

The low-energy eigenstates (including the ground state and the
low-lying excitations) are labeled by a set of quantum numbers
"fca = 0> 1. which are called the 'occupation numbers'.

As the excitations are in one-to-one correspondence with those in the free fermion
system, we can use the language of the free fermion systems to describe the exci-
tations in the Landau Fermi liquid, and we call these excitations quasiparticle
excitations. The energy of an eigenstate is a function of nfca. Expanding around
the ground-state occupation numbers no,feQ, we may write



within the Hartree-Fock approximation.
Equation (5.3.1) determines the energies of all low-lying excitations, and many

low-energy properties of the interacting fermion system can be expressed in terms
of the quasiparticle energy £* and the Fermi liquid function /. Creating an exci-
tation above the ground state by changing an occupation number n^a from 0 to 1
(or from 1 to 0) costs an energy ££a. However, in the presence of other excitations
(say, due to finite temperatures) the energy cost is different from ££a due to the
interaction between quasiparticles. From eqn (5.3.1), we find the new energy cost
tn hft

The momentum change due to the creation of such a quasiparticle is the same
as the free fermion system, i.e. AK" = k, and the total momentum of a state
described by

As we turn off the interaction, the low-energy eigenstates adiabati-
cally change into the corresponding eigenstates of the free fermion
system labeled by the same occupation numbers n^a.

As the momenta are quantized, they cannot change during the adiabatic turning on
of the interaction.

is

This result can be obtained from the second assumption of Landau Fermi liquid
theory, which is stated as follows.

Thus, we have

function, which is also very important in determining the low-energy properties
of the system. We note that the energy obtained in the Hartree-Fock approxima-
tion has the form (5.3.1) (see eqn (5.2.2)). The quadratic term in Sn^a which we
ignored in the last section has the form
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where ££a is the energy of the quasiparticles, and f(k,a;k',(3) represents the
interaction between quasiparticles. Here /(fc, a; fc', /3) is called the Fermi liquid
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From the momentum and the energy, we find the velocity of the quasiparticle
to be

At zero temperature, it changes to

We note that, near the Fermi surface, the quasiparticle behaves like a particle with
mass

Here m* is called the effective mass of the quasiparticle, which may not be equal
to the mass of the original electrons.

We see that the energy of the quasiparticle eT depends on the pres-
ence of other quasiparticles and is not a constant. However, because the
sum                                   effectively averages over many quasiparticles
(assuming that f(k, a; k', (3) is not too singular), its thermal fluctuations are small
and eT can be treated as a constant:

where            represents a thermal average. From this, we obtain the average
occupation number

To calculate the specific heat at low temperatures, we note that the average
occupation numbers can be approximated by

because
changes
average occupation numbers of a mass-m* free electron system. The specific heat
Cy is given by the same formula. In terms of the density of states (see eqn (4.2.12)

vanishes as when 0 (note that
its sign across the Fermi surface). Therefore, are the same as the

but with ?Ti replaced by , we have T. The interaction con-
We see that the specific heat depends only ontributes to a term of order

and we have to solve the above equation tc
all of the thermodynamical properties of the Fermi

depends onCertainly,
obtain Given
liquids can be determined.
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the effective mass m*. This gives us a way to experimentally measure the effec-
tive mass m* of a Landau Fermi liquid. In Problem 5.3.1, we will see that other
low-energy properties, such as the compressibility x, depend on both the effective
mass m* and the Fermi liquid function /.

We have mentioned that, in Fermi liquid theory, a quasiparticle above the
ground state is created by changing        from 0 to 1 . Can we create such a quasi-
particle state |Wfc) by applying    to the ground-state wave function     ? The

answer is no. Although         carries the same momentum as the quasiparticle

state, it may not be an energy eigenstate. The state         rnay be a superposi-
tion of a state with one quasiparticle, and a state with two quasiparticles and one
quasihole, etc. All of these states can carry the same momentum k but different
energies. Therefore, the overlap between 

may not be 1. The third assumption of Landau Fermi liquid theory is stated as
follows.

The overlap               is not zero in the thermo-
dynamic limit (i.e. the V —> oo limit) for k near the Fermi
surface.

Problem 5.3.1.
Calculate the compressibility     and the spin susceptibility     of a Landau Fermi liquid.
Calculate the ratios between           and GV> and compare them with the corresponding
ratios for a free electron system.

5.3.2 Boltzmann equation of a Fermi liquid at T = 0

In Section 5.1.3, we have tried to use density fluctuations to describe Fermi liq-
uids. The hydrodynamical approach works in one dimension but fails badly beyond
one dimension. The reason is that beyond one dimension there are a lot more
particle-hole excitations across the Fermi surface than a single density mode can
possibly describe. On the other hand, Landau Fermi liquid theory suggests that
a uniform Fermi liquid can be completely described by the occupation number
    The density      is just one combination of n^. This suggests that, if we
can generalize Landau theory to non-uniform and time-dependent       then we can
obtain the hydrodynamical theory that provides a complete description of Fermi

This implies that the electron spectral functior
   -function:      . The energies of the states with two quasiparticles
and one quasihole can spread over a finite range. These states contribute a finite
background to the spectral function.

at T = 0 contains

and kjhdjkdf

a
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liquids beyond one dimension. In this section, we are going to develop such a the-
ory. The hydrodynamical theory can also be regarded as bosonization beyond one
dimension (Luther, 1979; Haldane, 1992; Houghton and Marston, 1993; Neto and
Fradkin, 1994).

Let us consider a spin- 1/2 interacting electron system. The ground state is
described by the occupation number      A collective excited state is described
by
is a smooth function of x and t, and treat it as a local constant. The quasiparticle
energy on the background of a collective excited state is given by

Thus, the changes in the position and the momentum of the quasiparticle are given
u,,

The Boltzmann equation describes the dynamics of collective excitations.
As an application of the Boltzmann equation, let us calculate the current carried

by a quasiparticle. We know that the velocity of the quasiparticle is
So, naively, one expects that the current should be          It turngfs
out that the quasiparticle interaction has a non-trivial correction to the current. The
electron number conservation implies that
This allows us to show that

Boltzmann equation is obtained by letting dn/dt be equal to the redistribution of
n due to the additional scattering caused by electron-electron interactions:

Such a hydrodynamical equation is also written as follows:

The motion of the quasiparticle causes the following change in

xvfx sdgggsdfgdsfgsdfg

dfdgf

cfhdvh

as

The
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is the electron number density, J can be interpreted as the number current density.
If we only keep the linear Sn term, then J becomes

The second term in the expression of   is a correction to the free fermion result.
It is called the drag term or the back-flow term. To understand the correction,
we note that a quasiparticle at k also causes a slight change in the velocity of
the quasiparticles in the rilled Fermi sea, as a result of interaction between the
quasiparticles. Thus, the electrons in the Fermi sea also contribute to the number
current density. This is the source of the drag/back-flow term.

In the relaxation-time approximation, we assume that I                 To
include an external force F on the quasiparticle, we need to replace in
eqn (5.3.4) by      The resulting Boltzmann equation becomes

We can use the above equation to calculate many different transport properties.
Within Landau Fermi liquid theory, the quasiparticle is assumed to have infi-

nite lifetime and does not decay into any other states. For a uniform Sn^a and
vanishing F = 0, eqn (5.3.7) is reduced to
the quasiparticle lifetime. Thus, the collision term I[n] is assumed to be zero in
Landau Fermi liquid theory. For a real interacting electron system, I[n] behaves
like                      (see Section 5.4.4) and can be ignored at low energies.

5.3.3 Hydrodynamical theory of a Fermi liquid

In this section, we will obtain a reduced Boltzmann equation, which serves as the
classical equation of motion for the hydrodynamical description of a Fermi liquid
(Kim et al, 1995). Such a reduced Boltzmann equation generalizes the equation
of motion of the density mode discussed in Section 5.1.3.

The key to obtaining the reduced Boltzmann equation is to use the Fermi sur-
face displacement h to describe the collective fluctuations (see Fig. 5.4(a)). One
may wonder why we do not use the occupation number n    to describe the collec-
tive fluctuations. One important step in developing a hydrodynamical theory of a

Also,
Problem 5.3.2.
Prove eqns (5.3.5) and (5.3.6). (Hint:

sdfsdfdfsfd is
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F l G . 5.4. (a) Collective fluctuations in a Fermi liquid can be described hy the displacement of the

Fermi surface, (b) The I = 1 mode corresponds to a dipole fluctuation, and (c) the I = 2 mode

corresponds to aquadrupole fluctuation.

Fermi liquid is to identify the classical field that we can use to formulate the clas-
sical hydrodynamical theory. The uniform occupation numbers n^ can already
describe all excitated states. After including the spatial dependence, nka(x, I) will
be an over complete set of variables. It turns out that h, with its spatial dependence,
is a proper choice.

For simplicity, we limit our discussion to two-dimensional systems. We will
also suppress the spin index. The displacement h and the occupation number n^
are related as follows:

where                           )y is the unit vector in the 9 direction (see Fig. 5.4(a)).
It turns out that p(0) is more convenient. So we will use p instead of h. From
the definition, we see that             is the fluctuation of the total density of the
electrons, and it corresponds to the p in eqn (5.1.2).

For small fluctuations, h is close to zero and the quasiparticle energy (5.3.3)
can be simplified to give

where   is the angle of k and
between two points on the Fermi surface. The reduced Boltzmann equation can be
obtained from eqn (5.3.7) by performing the integration        on both sides of

is the Fermi function



is a function
     The above can be viewed as a classical equation of motion for a field ghin
(1 + 2)-dimensional space parametrized by           The linearized equation has the
form

eqn (5.3.10) can be viewed as an equation of motion for
a Fermi liquid which has a form:

The corresponding Fermi liquid energy (or Hamiltonian) (5.3.1) can also be
written in terms of

The Lagrangian that reproduces the equation of motion and the Hamiltonian is
given by

(5.3.13) is a hydrodynamical description of a two-dimensional Fermi liquid, or,

andis the unit vector which is perpendicular towhere

When

Equationaccording tois related towhere

We find that and33 Note that

L A N D A U FERMI L I Q U I D T H E O R Y 211

the equation. Assuming rotational symmetry, we find that33
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F I G . 5.5. A panicle-hole excitation of momentum q at the angle Q.

in other words, a bosonization of a two-dimensional Fermi liquid. Comparing
this with the hydrodynamics! description discussed in Section 5.1.3, we see that
eqn (5.3.13) contains more than just the density mode.

Problem 5.3.3.
In this section, we have derived the reduced Boltzmann equation and the associated Hamil-
tonian for a two-dimensional rotationally-invariant system. Generalize these results (eqns
(5.3.11) and (5.3.12)) to a Lwo-dimensional system with no rotational symmetry.

Problem 5.3.4.
(a) Derive the bosonizated Lagrangian (the one similar to eqn (5.3.13)) for a one-
dimensional Fermi liquid.
(b) Consider eqn (5.1.3) in one dimension. Introduce <p through     Write
eqn (5.1.3) in terms of <f>. Find the canonical momentum of <•/> (denoted by 4>), and the
Hamiltonian // in terms of    and    Compare the action                      with the
result in (a).

5.3.4 Application of the hydrodynamical description of a Fermi liquid

As the first application of the bosonized description of a Fermi liquid, let us calcu-
late the spectrum of the collective modes. In q space, the Fermi liquid equation of
motion (5.3.11) becomes

where   is the angle of q (see Fig. 5.5).
Equation (5.3.14) can be solved easily if                 The eigenmode has the

form
                Such an eigenmode describes an excitation with momentum
  . Depending on 9, the energy of such an excitation ranges for

ljsdlhdhkhlhfjkjkkj

dgfdf
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agrees with the energy range of a particle-hole excitation of the same momentum
(see Fig. 4.11). In fact, the eigenmode corresponds to the particle-hole excitation
in Fig. 5.5.

To find the energies of the collective mode for nonzero            we note that
eqn (5.3.14) can be rewritten as

From the energy of the Fermi liquid, see eqn (5.3.12), we find that the stability
of the Fermi liquid requires M to be positive definite. Thus, we can write M as
            Letting                 then eqn (5.3.15) becomes 
The energies of the collective excitations with a fixed momentum q are given by
the eigenvalues of the real symmetric matrix qM^KM.

The rotational symmetry requires that                              Because the energy
spectrum does not depend on the direction of q, we can choose q to be in the
direction, i.e.                 Introducing (see Fig. 5.4)

From M, we see that the Fermi liquid is unstable if one of the j\ is less than

The eigenvalues of     give us the frequencies of the collective modes.
Here  l,iidescribes a particle hopping on a one-dimensional lattice. The

nearest-neighbor hopping amplitude between site  and site I + I is given by

eqn (5.3.15) can be written as

where the two real symmetric operators K and M are given by

We also see that and

x
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F I G . 5.6. (a) The spectrum of H when      0, and (b) the corresponding particle-hole spectrum,

(e) The spectrum of     when        and (dj the corresponding particle-hole spectrum

When fi = 0, H has a continuous spectrum rang-

ing from             (see Fig. 5.6(a)). It reproduces the particle-hole continuum
of a free fermion system (see Fig. 5.6(b». However, if            , then the pa
ticle described by HU> is attracted to the small-/ region. Thus, the spectrum of
H has isolated eigenvalues corresponding to the bound states in the attractive
region, in addition to the continuous spectrum (see Fig. 5.6(c)). The corresponding
particle-hole spectrum contains well-defined collective modes (see Fig. 5.6(d)).34

In the second application, we would like to use the linearized hydrodynamical
equation of motion (5.3.10) to calculate the d.c. conductance of the Fermi liquid.
In the presence of a uniform static electric field E, the force is given by F = eE.
The force F will induce a uniform and static   — 0. Equation
(5.3.10) becomes

From eqn (5.3.6), we see that the above   induces an electric current:

14 A bosonic mode must have a positive energy. A negative energy implies an instability. However,
// has both positive and negative eigenvalues, corresponding to positive and negative frequencies. If
the positive eigenvalues of    correspond to the positive energies of the bosonic collective modes,
then do the negative eigenvalues ob  df also correspond to the negative energies of the collec
modes? Here we would like to point out thai so far we have treated eqn (5.3.13) as a classi-
cal Lagrangian and only discussed the resulting classical equation of motion. After quantization,
the equation of motion becomes an equation for an operator p. It turns out that the modes with
positive frequencies correspond to creation operators of the bosonic mode and the modes with neg-
ative frequencies correspond to annihilation operators of the bosonic mode. The quantization of a
one-dimensional version of eqn (5.3.13) will be discussed in Section 7.4.5, sec cqns (7.4.35) and
(7.4.36).
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Due to the rotational symmetry,                    We find that

The conductance is                . The above reduces to the Drude result
if the Fermi liquid function              vanishes.

Problem 5.3.5.
In the presence of a uniform magnetic field B = Bz, the force F in the two-dimensional
reduced Boltzmann equation (5.3.9) has the form F
(a) Show that, after linearization, the reduced Boltzmann equation in the magnetic field
has the following form (Kim et al, 1995):

if we set             =0. Find
(b) Show that the energy spectrum of the collective mode with momentum q is determined
by the eigenvalues of

Show that the spectrum of     is symmetric around zero. (Hint:              = real.)
(c) Show that, when          the eigenvalues of H are given by     integer. (Hint:
Consider    — exp      So we can recover the free fermion result
using hydrodynamical theory.

Problem 5.3.6.
The a.c. transport of a two-dimensional Fermi liquid
(a) Assume that the force F in eqn (5.3.9) has the form                         Find     assum-
ing that 
(b) Find        to the first order in 
(c) Find the induced electric current eJ = <r(w, q)E, and the optical conductance 
to the first order in               Here J is the quasiparticle current given in eqn (5.3.6).

5.3.5 The essence of Fermi liquid theory

It is commonly believed that the essence of Fermi liquid theory is the concept
and the existence of well-defined quasiparticles. We adopted this point of view in
Section 5.3.1. The existence of well-defined quasiparticles implies that, not only is
the total number of quasiparticles conserved, but the number of quasiparticles in a
given momentum direction is also conserved. Thus, a Fermi liquid has an infinite
number of conserved quantities (Luther, 1979; Haldane, 1992). This allows us to
develop a hydrodynamical theory for a Fermi liquid which contains many bosonic
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modes, one mode for each conserved quantity. Thus, the existence of an infinite
number of conserved quantities is also an essence of Fermi liquid theory. In Section
5.3.3, we developed a Fermi liquid theory based on this point of view.

We would like to point out that the two points of view are not equivalent, and the second
point of view is more general. The existence of well-defined quasiparticles implies that the
number of quasiparticles at each momentum is conserved. In the second point of view, we
only assume that the quasiparticles in each momentum direction are conserved. In one
dimension, the hydrodynamical theory in Section 5.3.3 actually describes one-dimensional
Tomonaga-Luttinger liquids/15 In higher dimensions, the hydrodynamical theory describes
Fermi liquids.

5.4 Perturbation theory and the validity of Fermi liquid theory

In this section, we will test the correctness of Fermi liquid theory. We will develop
a perturbation theory to calculate the electron Green's function for an interacting
system. We will check if ImG(fc, w) contains a 5-function. The presence of the
^-function indicates the presence of well-defined Landau quasiparticles and the
validity of Landau Fermi liquid theory.

5.4.1 Path integrals and perturbation theory for fermions

• The path integral for fermions is a bookkeeping formalism that allows us to
formally express the correlation functions of a fermion system. Unlike the
path integral for bosons, the physical meaning of the fermion path integral is
unclear.

• The path integral for fermions allows us to systematically develop a perturba-
tion theory for an interacting fermion system.

• The structure of perturbation theory is captured by Feynman diagrams and
Feynman rules.

To develoo a nath integral for fermions. we first note that the time-ordered cor-

Scc Section 7.4.4 for a discussion of a Tomonaga-Luttingcr liquid.

Thus,relation of fermion operators satisfies
we will use (complex) Grassmann numbers  to represent the fermion operators.
The reader may ask, what do you mean by 'use Grassmann numbers to represent the
fermion operators'? Well, I have to say I do not know. I do not know the physical meaning of
a Grassmann number. I will treat the following fermion path integral as some kind of book-
keeping device, which allows us to formally pack various fermion correlation functions into
a compact formula. The Grassmann numbers are anti-commuting numbers which

35
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satisfy

The derivative is identical to the ordinary derivative, except that, in order for the

We see that

The Grassmann integration, as a linear mapping, is defined as the Grassmann
derivative:

we find the Grassmannwhere P are permutations
Gaussian integral:

From the definition of the determinant, namely

The Grassmann integration has the following properties of standard integration:

We have that

Functions of the Grassmann numbers are defined by the following expansion:

and

has to be anti-commuted throughthe variablederivative operator to act on

until it is adjacent to
definitions, we have

For example, With these
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and

Note that, compared to the boson Gaussian integral, the determinant appears in the
numerator instead of the denominator.

The fermion Gaussian integral allows us to obtain the Wick theorem for
fermion correlations (defined by the path integral):

where £ = — 1. (If we choose ( = +1, then the above will be the Wick theorem
for boson operators.)

Let us apply the above formalism to a free fermion system at zero temperature.
We consider the following path integral:

We can calculate the path integral average

In frequency space, we have

Using the Wick theorem, we can derive the following more general relationship
between the path integral average and the time-ordered average:

Thus, we can use path integrals to calculate arbitrary time-ordered correlations.

36 The calculation presented here is a formal calculation, which fails to reproduce the important
0+ term. Section 2.2.2 discussed how to produce the 0+ term.

which agrees with the time-ordered average36 in eqn (4.2.9).
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The above results are for free fermion systems. Let us apply the path integral
to an interacting system with

where HQ describes a free fermion system. Let us assume that Hj(t) is a slowly
varying function o f t , that Hj(t) — Hj for finite t, and HI(±OO~) — 0. Let

be the partition function, where |0) is the ground state for HQ. The partition
function Z has the following perturbative expansion:

the Schrodinger picture is equal
picture, both of these quantities

represent the time-ordered average. We see that the partition function Z for an
interacting system can be expressed in terms of the time-ordered averages in the
free fermion system HQ. This allows us to express Z in terms of a path integral as
follows:

Similarly, using a perturbative expansion, we can show that the time-ordered cor-
relation for an interacting system (in the Schrodinger picture) can be expressed in
terms of path integrals as follows:

Now, let us calculate the partition function Z perturbatively using path
integrals:

If we assume that the interaction has the form

in
in the Heisenberg

As
to
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FIG. 5.7. Diagrams that contribute to Z/Z0 at first order in V.

then we find that

The two terms of order V can be represented by the Feynman diagrams shown in
Fig. 5.7. The following Feynman rules for fermions are almost identical to those
of bosons, expect that each closed loop contributes an extra factor of — 1.
(a) Each line in the Feynman diagrams represents a propagator               where x
and     are the coordinates of the two vertices at the ends of the line.
(b) Each vertex represents an integration over the location of the vertex J dx.
(c) Each dashed line represents the interaction potential 
(d) Each closed fermion loop contributes a factor of —1.
(e) The value of a connected diagram is given by rules (a)-(d) and the value of a
disconnected diagram is given by the product of connected sub-diagrams.
Feynman diagrams capture the structure of a perturbative expansion. They not only
produce the order-F terms, but they also produce order- F2 terms and all other
higher-order terms.

In the perturbative expansion of Z/Zo, the path integral averages {...}o con-
tain both connected and disconnected diagrams. We can use the linked-cluster
expansion to rewrite the expansion of        as

where the path integral average includes only the connected graphs.

andwhere
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Problem 5.4.1.
(a) Calculate the order-V2 terms in the perturbative expansion of Z/ZQ. Draw the corre-
sponding Feynman diagrams.
(b) Calculate the order-F2 terms in the perturbative expansion of ln(Z/Z0). Draw the
corresponding Feynman diagrams.

5.4.2 Self-energy and two-body interactions

Now we are ready to calculate the electron Green's function perturbatively for the
following interacting electron system:

The time-ordered Green's function is given by the following path integral average:

is the Lagrangian of the interacting electrons. Note that here we have assumed

This formula lays the foundation for using Feynman diagrams to calculate the
time-ordered Green's function of interacting electrons.

Using eqn (5.4.2), we obtain

are Grassmann numbers.andjust likeandwhere
We see that

for interacting electrons, where

is spin-rotation invariant. As a result, it has the formthat

To calculate iG, it is convenient to introduce



where the free electron Green's function Go,fco> is given by eqn (4.2.4). The two
order-Vq terms are summarized by the Feynman diagrams shown in Fig. 5.8. The
Feynman rules in momentum space are different from those in real space and are
as follows.
(a) Each line in the Feynman diagrams carries an energy-momentum vector, say,
(q, v}. It represents a propagator iG
(b) The energy-momentum flowing into a node is conserved.
(c) Each loop represents the integral
(d) The dashed line represents the interaction —iVq, where q is the momentum
flowing through the dashed line.
(e) Each closed loop contributes an extra factor of —1 due to the anti-commuting
property of the fermion operators. (The momentum space Feynman rules for boson
systems do not have such a —1 factor.)

Equation (5.4.4) can be written as

Using the Wick theorem, we can express the above equation in terms of the free
electron Green's function GQ. In        space, we find that (see Problem 5.4.2)

To first order in , we find that

FIG. 5.8. The two Feynman diagrams that contribute to i The dashed line represents the

potential 
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FIG. 5.9. Two diagrams that contribute to the self-energy

F I G . 5.10. Higher-order diagrams that contribute to

where

The above can be represented by the diagrams in Fig. 5.9. If we include some of
the higher-order terms represented by the diagrams in Fig. 5.10, then the Green's
function can be written as

We find that

The dispersion relation can be obtained from the position of the pole in Gfew, or
from the position of the zero in We see that Sfew corrects the energy
of the electron (or quasiparticle) and is called the self-energy.

Note that

As we must close the contour in the upper-half complex ;/ plane, only the poles
is simply the total number ofwith negative v contribute. As
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FIG. 5.11. The diagrams (a)—(e) contribute to the self-energy at order Vq . The diagram (f) does not

contribute to the self-energy because it is already included in Fig. 5.10.

electrons, the first term in the self-energy is simply the Hartree contribution
(Fig. 5.9(a)):

Similarly, the second term in the self-energy (Fig. 5.9(b)) has the following form:

which is just the Fock contribution to the self-energy.
In the above, we have seen how to calculate the self-energy   and the

quasiparticle dispersion 
reproduces the Hartree-Fock result to first order in V. However, the diagram
approach allows us to calculate higher-order contributions to the self-energy in
a systematic way (see Fig. 5.11).

We can also use diagrams to calculate the Fermi liquid function in Fermi liquid
theory. We know that the interaction Vq can scatter two electrons with momenta
fci and &2 into two electrons with momenta k( and 2. The interaction term

in Fermi liquid theory corresponds to terms that scatter two
electrons with momenta k\ and k-z into two electrons with the same momenta.
Thus, the Fermi liquid function / receives two contributions, which are illustrated
by the two diagrams in Fig. 5.12:
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from the diagrams. This approach
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Problem 5.4.3.
Find the expressions for the order-V^ terms in the perturbative expansion of the self-energy
Ska,, as described in Fig. 5.11(a)-(e).

5.4.3 Random phase approximation and the effective potential

• The screening of the interaction potential by particle-hole excitations can be
included in the random phase approximation.

We have seen that, in three dimensions and for a Coulomb interaction, the
Hartree-Fock approximation results in a self-energy that is singular near the Fermi
surface. The singularity gives rise to an infinite Fermi velocity. The singularity
arises from the long-range potential of the Coulomb interaction. A short-ranged
interaction cannot produce any singular self-energy. However, we know that two

FIG. 5.12. Diagrams that contribute to the Fermi function (a) Here

is the energy transfer, (b) Hereis the momentum transfer and

is the energy transfer.is the momentum transfer and

The (—) sign arises from the exchange and arises from the requirement that the
two electrons must have the same spins before and after the scattering. As the inter-

does not depend on the energy transferaction considered here is instantaneous,
(see Fig. 5.12). The resulting Fermi liquid function is also instantaneous and

independent of the energy transfer

represents at equal time.at equal tune, while

Problem 5.4.2.
Prove eqn (5.4.4) using perturbation theory. We note that represents

The above is just the Hartree-Fock result (5.3.2) that we obtained before.

q = k1 – k1 = 0
q = k2 – k2
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FIG. 5.13. (a) The interaction generates particle-hole excitations, and (b) the particle-hole
excitations modify the interaction.

FIG. 5.14. The effective potential in the RPA approximation.

charges in a metal do not experience a long-range interaction due to the screening
from other electrons. Therefore, one may doubt the correctness of the Hartree-
Fock result about the diverging Fermi velocity; in particular, after realizing that
the Hartree-Fock approximation includes only direct interaction and no screening
effects.

To go beyond the Hartree-Fock approximation and include the screening
effects, we must include the effect that the interaction generates particle-hole
excitations (Fig. 5.13(a)), and the particle-hole excitations in turn modifying the
potential (Fig. 5.13(b)). In the random phase approximation (RPA), we include the
diagrams in Fig. 5.14 to calculate the screened effective potential as follows:

We find that

and for the Coulomb interaction we have

is equal to the negative of the compressibility, namely
We have

In the limit,
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FIG. 5.15. The decay of a quasiparticlc.

It is clear that, in the v <& vpq limit, the effective potential is not singular as
q —> 0. Such an effective potential represents a screened short-range interaction.
The same result can also be obtained through the Thomas-Fermi model.

The relationship between the RPA calculation and the screening can be seen
more clearly in the following way. The first term in the RPA calculation (see
Fig. 5.14) represents the direct (i.e. unscreened) interaction between two densities
(represented by two short vertical bars in Fig. 5.14) at two different places. The
second term in the RPA calculation represents the effect that the density at one
place induces a particle-hole excitation via the interaction Vqv. The particle-hole
excitation, representing a deformed density, interacts in turn with the density at
another place. In this way, the second term (and other higher-order terms) modify
or screen the interaction between the densities at the two places.

In standard practice, we replace the bare potential VqiJ with the screened poten-
tial and then use this effective potential to calculate
the self-energy and the Fermi liquid function. In this approximation, we ignore
the frequency dependence of P°°. An instantaneous bare interaction (a frequency-
independent interaction) is approximated by an instantaneous effective interaction.
If we include the frequency dependence of F°°, then an instantaneous bare inter-
action can result in a frequency-dependent effective interaction. Such a frequency
dependence represents the retardation effects.

5.4.4 Justification of Landau Fermi liquid theory

• The interaction causes the quasiparticle to decay, but the decay rate is much
less than the quasiparticle energy. Landau Fermi liquid theory remains to be
validated.

An electron-electron interaction can cause an electron with momentum k to
decay into an electron with momentum q and a particle-hole excitation with
momentum k — q (see Fig .5.15). The particle and the hole in the particle-hole
excitation can independently have energies in the range between 0 and £&. The
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FIG. 5.16. A contribution to the self-energy at order Vg. The diagram is formed by two halves,

each representing the decay process in Fig. 5.15. The above diagram produces the decay rate, while

the one in Fig. 5.15 leads to the decay amplitude.

energy of the particle at q is adjusted accordingly to maintain the energy conser-
vation. Thus, the number of available decay channels is proportional to the square
of the initial electron energy £&. As a result, the decay rate is also proportional to
£fc. As the decay amplitude is proportional to Vk-q, we find the decay rate to be

We would like to mention that such a self-energy can be obtained from the
Feynman diagram in Fig. 5.16.

As the decay rate T =                 ImS5.4.2 Self-energy and two-body int
energy £j£ in the low-energy limit, we can ignore the decay of the quasiparticle.
In this limit, the quasiparticle excitations can be regarded as eigenstates. This is
the foundation of Landau Fermi liquid theory. We see that ImGf   is almost a
5-function at £jjj. The width of the peak is only proportional to

Near the Fermi surface we may use the expansion

and rewrite the Green's function as follows:

function is off the real-w axis. This leads to a decay in the
real-time Green's function:

We see that the imaginary part of the self-energy iswhere
given by

The decay of a quasiparticle can be described by the imaginary part of the
has an imaginary part, the pole of the electron Green'sself-energy. When
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Here Z is the overlap factor introduced near the end of Section 5.3.1. In this way
we justify Landau Fermi liquid theory within a perturbative calculation.

5.5 Symmetry-breaking phase and the spin-density-wave state

• Ferrni liquids can have many instabilities. Interactions can lead to symmetry -
breaking phases.

Interacting fermion systems can have many different states, which lead to
materials with so many different properties, such as superconductors, magnets,
charge-density-wave states, etc. All of these different states of materials can be
understood as certain symmetry-breaking states induced by interactions. In this
section, we are going to discuss only one of the symmetry-breaking states—
the spin-density-wave state. The picture, the methods, and the results discussed
here can be easily generalized to other symmetry-breaking states, such as the
superconducting state.

5.5.1 Linear responses and instabilities

• A free fermion system, with so many gapless excitations, has many potential
instabilities. Interactions between fermions can turn the potential instabilities
into real instabilities. Different interactions induce different instabilities.

Consider an interacting electron system on a lattice with an on-site interaction:

where is the number of electrons at site i and N = J^ n^ is the
total number of electrons. The above model is called the Hubbard model.

In the following, we will concentrate on the Hubbard model in two dimensions.
In momentum space, the two-dimensional Hubbard model can be rewritten as

and A is the number of lattice sites. We note that, when // = 0, the Fermi sea
is half-filled       = 1) and the Fermi surface is a square (see Fig. 5.17) whichII

where
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FIG. 5.17. The electron dispersion &. in the Hubbard model.

FIG. 5.18. The compressibility and the spin susceptibility in the RPA.

satisfies a nesting condition, with nesting vector Q = (7r,7r). From eqn (4.3.3),
we see that the free fermion compressibility and the spin susceptibility at the nest-
ing vector Q diverge at low temperatures. As the density of states N(Ep) (now
N(Ep) means the number of states per site per unit energy) also has a logarithmic
divergence, we have

The divergent xo(Q) at T — 0 implies that the system is on the verge of
developing a density order or a spin order. In the following, we will show that,
for an interacting system, the susceptibility x(Q) diverges as T approaches a
finite critical temperature Tc. Below Tc, the system spontaneously generates a
charge-density-wave (CDW) or a spin-density-wave (SOW) state.

For interacting electrons, the compressibility and the spin susceptibility receive correc-
tions due to the interaction. Within the RPA, we only consider corrections described by the
graphs in Fig. 5.18. The one-loop bubble is given by the correlation
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FIG. 5.19. The ladder graphs that contribute to the spin and density correlations.

and the interaction line is given by

where pa is the density of the spin-a electron and C =      is a 2 x 2 matrix whose
elements are all equal to one. We find that, within the RPA,

where we have used
function is given by

C. Therefore, the density response

and the spin response function is given by

However, the above results are not quite complete. For an on-site interaction, the ladder
graphs in Fig. 5.19 have similar contributions to the graphs in Fig. 5.18. Including the mixed
ladder and bubble graphs, we have
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The new density response function is given by

We find that the compressibility

susceptibility for free electrons.
We see that a (short-range) repulsive interaction enhances the spin susceptibility and

suppresses the charge compressibility, while an (short-range) attractive interaction sup-
presses the spin susceptibility and enhances the charge compressibility. For a nested
Fermi surface and a repulsive interaction,           diverges as T approaches a finite
critical temperature Tc determined by 1 - t/x60)(Q) = 0. Below Tc, the system spon-
taneously generates an SOW and spontaneously breaks the spin-rotation symmetry and
translational symmetry of the lattice. The transition temperature can be estimated from the

We see that, for a nested Fermi surface, a repulsive interaction always generates an SOW,
no matter how weak the interaction. Similarly, for a nested Fermi surface, an attractive
interaction always generates a CDW, no matter how weak the interaction. The transition
temperature is

5.5.2 Mean-field approach for the spin-density-wave state

• In the mean-field approach, we replace pairs of fermion operators by
their ground-state average to convert an interacting Hamiltonian to a non-
interacting Hamiltonian (the mean-field Hamiltonian).

We have seen that a repulsive interaction in a system with a nested Fermi sur-
face may cause an SDW instability. In this and the following sections, we are going
study the ground state for such a system and show that the ground state indeed

and the spin susceptibility within the RPA are given

and the new spin response function is given by

are the compressibility and the spinwhere

low-temperature behavior of (see eqn (5.5.2)):

by

and
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FIG. 5,20. The shaded area is the reduced Brillouin zone. It is also Ihe filled Fermi sea for a
half-filled band.

has an SOW order. We are going to use two approaches, namely the mean-field
approach and the variational approach. The variational approach is conceptually
simpler and more correct. It can also calculate the interaction between quasipar-
ticles. The mean-field approach is mathematically simpler. We first consider the
mean-field approach.

To use the mean-field approach to study the SOW state at T — 0, we first
rewrite the Hamiltonian in a more convenient form. Using the identity

Now we can formally obtain a mean-field Hamiltonian by replacing one of the spin

Within the mean-field approximation, we say that the physical properties of our
system are described instead of the original interacting Hamiltonian
(5.5.1).

The mean-field Hamiltonian can be solved exactly. In the momentum space,
we have

by its average M, and replacing
We obtain

and absorbing the term 2Un^ into the chemical potential term, we can rewrite the
Hubbard model as
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is a summation over a reduced Brillouin zone (see

and

We can diagonalize the above mean-field Hamiltonian H^^ by introducing

where

fermion operators:

We can see that the mean-field ground-state energy is given by

The spectrum of quasiparticle excitations is given by i-Efc using mean-field theory.

where B
Fig. 5.20),

satisfy the following commutation relations for theAs

and

In terms of we haveand
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However, the above mean-field results contain an unknown parameter M—
the average of the staggered spins. To determine M, we minimize the mean-field
ground-state energy -Emean- We obtain

This equation is called the gap equation. We can also obtain the same gap equation
by imposing the self-consistency relation

where $mean} is the ground state of H^^. That is, the average spin obtained
from the mean-field ground state should be equal to the assumed average spin that
we used to obtain the mean-field Hamiltonian.

If the gap equation has a solution with          then the ground state of our
interacting system spontaneously breaks the spin-rotation symmetry and devel-
ops an anti-ferromagnetic order. As J T~W ̂ - —>• oo as B —» 0, we find that
eqn (5.5.4) always has M ^ 0 solutions as long as U > 0. Thus, the positive-
ly Hubbard model always develops an SDW, regardless of how small U is. This
agrees with the result obtained in the last section.

We would like to remark that the above result remains valid as long as £& =
—£k+Q- In this case, different points on the Fermi surface (where £& = 0) are
connected by Q, or, in other words, the Fermi surface satisfies the nesting con-
dition. For more general £&, where the Fermi surface does not satisfy the nesting
condition, the quasiparticle dispersion is given by

In this case, the gap equation (5.5.4) no longer applies. It turns out that the SDW
is not developed for small U.

Although the mean-field approach (and the variational approach discussed
below) correctly reproduces the anti-ferromagnetic ground state of the repulsive
Hubbard model, the resulting excitation spectrum is incorrect. This is because the
anti-ferromagnetic ground state spontaneously breaks the spin-rotation symmetry
and there should be gapless spin wave excitations above the the ground state. The
spin wave excitations can be probed through the spin correlation iS

Within mean-field theory, we have  where

Gmean *s me electron Green's function determined from Hmeari. Thus, ImSj^ is
nonzero only when             . However, if we go beyond mean-field theory and
calculate Sab using the RPA and the ladder graphs in Figs 5.18 and 5.19, then
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will be nonzero down to LJ = 0, indicating the presence of a gapless exci-
tation. Also, S^u has an isolated pole from which we can obtain the dispersion of
the spin wave excitations,

5.5.3 Variational approach for the spin-density-wave state — the hard way

• In the variational approach, we use the ground state of a non-interacting
Hamiltonian as the trial wave function to approximate the ground state of
an interacting Hamiltonian.

In the variational approach, we concentrate on the ground-state wave function,
instead of the Hamiltonian. We have seen that the Hubbard model with an on-
site repulsive interaction has an SDW instability. To understand the ground-state
properties using the variational approach, we just guess a trial wave function for
the ground state. One possible choice is to use the ground state

                 a$ the trial wave function, as we did in the Hartree-Fock approach.
However, l^o) does not break spin and translational symmetries. The presence of
an SDW instability suggests that we should be able to find a different trial wave
function which has a lower energy. From symmetry considerations, we would like
to use the ground state 

as the trial wave function. Instead of writing down the many-body trial wave func-
tion explicitly, we first diagonalize the 'variational' Hamiltonian HB, as we did in
the mean-field approach. The ground state of Ha satisfies
0. Such an algebraic relation determines our trial wave function.

Note that the Hamittonian HB is merely an operator that is used to obtain the
trial wave function. Scaling HB by a constant will not change the trial wave func-
tion. Thus, we can set t = t, and henc                      1° this case, HB has the same
form as the mean-field Hamiltonian             . Here B is a variational parameter that
changes the shape of the wave function. We will later vary B to minimize the
energy.

To calculate the average enerev of our trial state, we, note, that for nnr trial

we find that

wave function we have 1. Fromand

SDSFSDF
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In real space, we have

As expected, our trial state \^B)          anti-ferromagnetic order:

The average energy of our trial state is given by (see Section 5.5.4.1)

The value of B is obtained by minimizing (ty B\H\3t B} • We find that such a B
satisfies the gap equation (see Section 5.5.4.2):

We see that eqns (5.5.4) and (5.5.5) do not agree. This illustrates the point that
mean-field approaches may lead to different results at the leading order. This is
because different mean-field approaches correspond to different expansions, which
in general have different leading terms.

The variational approach also allows us study the properties of excitations.
The trial wave functions for excitations are created by and Aafe from the

trial ground state \^>B}- For the excited states, we have 

we obtain the average energy of our trial excited state (see Section 5.5.4.3) as
follows:

where
ground state. We see that the quasiparticle excitations have an energy spectrum
      Note that there is a finite energy gap                        for quasiparti-
cle excitations. The interaction between the quasiparticles can be easily included
through the              terms.

XSDFRFDSFSF

XCFCD

SFSDF

KLJHSDKHHDKHKLJHKLHFJKHH

with and

has an
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5.5.4 Remarks: some calculation details

5.5.4.1 Calculation of the average energy

We calculate the average energy of the trial state |$B> as follows:

5.5.4.2 Calculation of the gap equation

To obtain the value of B that minimizes the average energy, we calculate 
and obtain

The requirement that the above vanishes leads to the gap equation (5.5.5).

5.5.4.3 Calculation of the average energy for excited states

From the relations

we find that, in real space,
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This allows us to calculate

where we have used N

where   is the total number of electrons and      is the number of spin-a
electron at site

Expanding               to linear order in         we obtain

Using this result, we find that

and
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5.6 Nonlinear a-model

5.6.1 Nonlinear a-model for the spin-density-wave state

• The nonlinear a-model describes the dynamics of collective fluctuations
around a symmetry-breaking ground state,

• The Hubbard-Stratonovich transformation.

The mean-field approach used in the last section fails to reproduce the gapless
spin wave excitations in the SDW state. To obtain the spin wave excitations, we
have to go beyond mean-field theory and use, for example, the RPA. However, here
we wil l use the semiclassical approach and the related nonlinear <r-model to study
the spin wave excitations. In the semiclassical approach, we need to first derive a
low-energy effective Lagrangian for the spin waves.

In our variational approach, we have to include a B field in the 'variational'
Hamiltonian to generate a trial wave function with a uniform anti-ferromagnetic
spin polarization M. A natural way to include the spin waves is to replace B by
a spatially-dependent Bi field in the 'variational' Hamiltonian, which generates a
spatially-dependent anti -ferromagnetic spin polarization M$ in the new trial wave
function. The energy for the new trial wave function is a functional of Mi, i.e.
E[Mi], and can be regarded as the energy for the spin waves. However, E[Mi] is
the energy for the time-independent spin wave fluctuations and is only the potential
energy of the spin wave. To obtain the effective Lagrangian, we also need the
kinetic energy for time-dependent spin wave fluctuations. The easiest way to obtain
the kinetic energy (as well as the potential energy) of the spin waves is to use the
path integral approach developed in Section 5.4.1.

To obtain the low-energy effective theory for spin waves, we note that the Hub-
bard term               is equal t  o 0 for           0,equal to U/2 for      ,  nd

equal to 2 [7 for            . Also note that S? is equal to 0 fo        
for         , and equal to 0 fo             , where

is the total spin operator at site i. Therefore

We will drop the Un^ term by absorbing it into the chemical potential. Thus, the
Hubbard model is described by the following path integral:

,equal to
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where

The trick here is to write the interaction term as

which converts the fermion quartic term to a fermion quadratic term. Such a trans-
formation is called a Hubbard-Stratonovich transformation. Now the partition
function can be rewritten as follows:

where the fermion Lagrangian is quadratic.
If we integrate out the fermion first, then we obtain

where Le{f(B} is an effective Lagrangian. As B couples to the electron spin, it
describes the spin wave fluctuations.

Let us first study some basic properties of Leg(B). Assuming that B is a
constant in space-time, then

is the negative of the mean-field energy, where                           Minimizing

#mean(-B), we obtain the gap equation

which determines the mean-field value of B0. If           , then the mean-field
ground state is an SDW state. Let us assume that this is the case.



We see that the BO term is independent of n in the new basis. In the new basis, the
LB dependence on n is via the derivative of n.
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It is clear that the ground states associated with different spin orientations are
degenerate. If we have a long-wavelength spin orientation fluctuation, then locally
the system is just in one of the many possible ground states. This corresponds to a
low-energy fluctuation. To study this kind of low-energy fluctuation, we introduce

and replace Bi(t)\ by \BQ . This gives us a low-energy effective Lagrangian
                                          . In the long-wavelength limit, the effective Lagrangian can
be written as

The terms indicated by '...' are higher-derivative terms. The spin-rotation sym-
metry forbids the possible potential term (or mass term) V(n) and guarantees
gapless spin fluctuations. Such an effective Lagrangian is called an 0(3) nonlinear
<j-model.

We note that the effective Lagrangian is an expansion in powers of d^n. How-
ever, when                , LB in eqn (5.6.1) directly depends on n. It is not obvious
how to obtain an expansion in powers of d^n. In the following, we discuss a trick
to do so. The trick allows us to directly calculate g and v in the nonlinear cr-model.

We introduce ̂  — UiCi, where

Here ipn corresponds to the spin in the n^ direction and V>2i to the spin in the —n^
direction. Now LB can be rewritten as

where
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Consider small fluctuations around n = z as follows:

and the corresponding spinor field

Assuming further that (/> is real, Uij can be simplified as follows:

We note that the coupling of the fermions to the spin fluctuations takes the form of
a coupling to an SU(2) gauge field. For small spin fluctuations, LB can be written
as

If ao(«) and a^- are constant in space, then the Hamiltonian HQ + HI can be
solved in momentum space. Let           and                                                          ote
that                 and          n. For small By and a, the ground-state energy has the
form

The OQ(I) term is the (c^n)2 term in the effective Lagrangian eqn (5.6.3), i.e.
       and the a^- term is the (c^n)2 term, i.e.  

Also, UidtUi can be simplified to

where

n
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            This allows u to obtain g and v in La. We find that

and

where a is the lattice constant and
(see Fig. 5.20).

Problem 5.6.1.
Prove eqns (5.6.6) and (5.6.7).

is the sum over the reduced Brillouin zone

5.6.2 Stability of long-range orders

• The nonlinear tr-model allows us to study quantum fluctuations and the
stability of the SDW state.

• Stability and the topological term.

Classically, one of the ground states of the nonlinear tr-model (5.6.3) is
                 , which has a long-range spin order. The small-spin wave fluctuations
are described by eqn (5.6.4) with a Lagrangian

which has a linear dispersion            , just like the fluctuations in the XY-
odel. The quantityy                        measure the  s tr engh of  the  long  -rang
transverse spin fluctuations. If (\<p(x, t) — <?i(0)|2) ;§> 1, then the long-range order
cannot exist. This problem is identical to the one in the XY-model. The strength of
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FIG. 5.21. The soliton/instanton solution in the (1 + 1)-dimensional 0(3) nonlinear cr-model.

the fluctuations is controlled by g. A small value of g leads to weak fluctuations.
When g is too large, the long-range spin order will be destroyed by spin wave
fluctuations. However, when d ^ 1 we find that ( \ ( p ( x , t ) — </>(0)|2} diverges as
(a:, t) —> oo, no matter how small g is. Therefore, there cannot be long-range
order in d < 1 dimensions for any values of g. For the XY-model, we can still have
algebraic long-range order when d — 1 under certain conditions. The question now
is whether the O(3) nonlinear a-model has algebraic long-range order for d = 1.

To answer this question, let us consider imaginary time and investigate the
following (1 + 1)-dimensional system:

The above action has a non-trivial stationary 'path' , which is an instanton solution
(see Fig. 5.21). The action is independent of the size of the instanton and is equal
to                . This is because                                  for any n(x, r] and
any scaling factor b.

As the action of the instanton is finite, we always have a finite (space-time)
density of the instantons. The mean separation of the instantons is of order les°/2,
where I is a short-distance cut-off. The size of the instantons is also of order /e^0/2

(because that action of the instantons is independent of their size). Thus, the long-
range spin order is destroyed by the instantons. The spin-spin correlation is short-
ranged, with a correlation length

It is interesting to see that £ or l/£ is non-perturbative in g.
We see that the O(3) nonlinear a-model has a short-ranged correlation in 1 +

1 dimensions, and all excitations are gapped. However, this result is only half
correct. The O(3) nonlinear cr-model can contain a topological term that changes
the low-energy properties of the model.

To understand the origin of the topological term, let us consider the large- U
limit of the Hubbard model (5.5.1). When U ^> t, the low-energy properties of the
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Hubbard model (at half-filling) are described by the Heisenberg model:

where           and                z. Now let us assume that the ground state of the
Heisenberg model is the anti-ferromagnetic (AF) state                   , and we want
to study the small fluctuations around the AF ground state.

The gapless spin wave fluctuations are described by

It is very tempting to substitute the above into the Lagrangian (5.6.10) so as to
obtain a continuum effective theory. However, this simple-minded approach does
not lead to a correct result. For one thing, the resulting Lagrangian contains only a
first-order time derivative term and no second-order derivative term. One may say
that, at low energy, the first-order time derivative term is more important than the
second-order time derivative term. It should be alright to drop the second-order
time derivative term. However, it turns out that the first-order time derivative term
is a total derivative, which has no effect on the equation of motion. We need to
include the second-order time derivative term so that the equation of motion has
non-trivial dynamics. The situation here is very similar to what we encountered in
Section 3.3.3, where we derived the XY-model from an interacting boson model.

To obtain the second-order time derivative term, we consider the following
more general fluctuations:

where n(x,t) is a smooth function of (x,t) with          , and m(x,t) is
also a smooth function of (x, i) but with \m(x, t)| <C 1 and m(x, t) • 
Here n describes the low-energy AF spin wave fluctuations. Also, m describes the
ferromagnetic fluctuations which have high energies and which will be integrated
out. As J dt 1\z[zi is the solid angle spanned by rii, we have

where              is the spin operator and                   . The effective Lagrangian
of the Heisenberg model is



with             . Comparing this with the effective action that we calculated before, s
eqn (5.6.3), the above contains an extra term 9W with

Such a term is a topological term, because                           
small variation 5n.37 Therefore, W(n) takes the same value for different ns that
can continuously deform into each other. Note that n is a mapping from a two-
dimensional plane K2 to a sphere S2, i.e. 7£2 —> S2. The mapping does have
different classes that cannot continuously deform into each other. These different
classes are characterized by a winding number—the number of times the 73? wrap
around S2. Here W(n) in eqn (5.6.13) taking only integer values is a mathematical
expression of the winding number.

In contrast to g and v, the value of            in (5.6.12) is exact and quantized. It
does not receive corrections from high-order terms in the perturbative expansion.
To see this, we note that the translation by one lattice space induces a transfor-
mation n —>• — n in our effective theory (5.6.12). Under such a transformation,

37 We note that

where n or

where a is the lattice spacing. The
after integrating out m, we obtain
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because is parallel to n. Also,

and similarly

term induces aterm Thus,

for any

and
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S should be invariant. As W —» — W under the transformation, only        an d
TT are consistent with the symmetry of translation by one lattice space. Thus, as
long as the underlying lattice Hamiltonian has the symmetry of translation by one
lattice space, then 9 can only take the two values 0 and IT. Due to the quantiza-
tion of 0, eqn (5.6.12) not only applies to the Heisenberg model (5.6.9), but it also
applies to the AF state of the Hubbard model (5.5.1). We also note that, for the
spin-S Heisenberg model, the AF state is also described by the O(3) nonlinear
a-model, but now with               . (If we explicitly break the symmetry, say b
letting J^i+i 7^ Ji+i^+2, then the value of 0 is no longer quantized.)

The above discussion about an instanton changing the algebraic long-range
order to a short-range one is valid only when              mod 2-n. Therefore, the Heisen-
berg model with integer spin has short-range correlations and a finite energy gap.
The ground state is a spin singlet (for a chain with even sites). For the Heisen-
berg model with half-integer spin,           and the above instanton discussion is not
valid. In fact, the spin-spin correlation in this case has algebraic long-range order,
i.e. (Si • Sj) — l/\i - j\. The ground state is still a spin singlet (for a chain with
even sites), but now there are gapless excitations.

The winding number also provides a lower bound for the instanton action SQ,
namely SQ ^ 4Ttv\W\/g.'A8 In fact, the instanton solutions saturate the bound and

5.6.3 Quantum numbers and low-energy excitations

• Calculation of the crystal momenta of low-energy excitations from the
continuum nonlinear cr-model.

Let us assume that d > 1 and the system has a true long-range AF order.
The low-energy excitations above the AF ground state are described by the O(3)
nonlinear cr-model

Here we want to use S to calculate the low-lying excitations for a finite system.

38 Assume lhal v — 1. For a small square 6r x 5x with ST = <5x, we have

From Che winding number
(we have put v hack).

we find that ,S\>

y
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First, let us consider the uniform fluctuations, namely

We have assumed that the lattice has an even number of sites in each direction, so
that the above ansatz (5.6.15) can be consistent with the AF order. The effective
action for nn is

with M = V/g and V being the volume of space. Here SQ describes a particle of
mass M moving on a unit sphere. The energy levels are labeled by the 'angular
momentum', which is the total spin (S, Sz) in our system: 
—S, — S + !,...,£. As the lattice has an even number of sites, S is always an
integer. We note that ES,SZ scales like V"1, which is much less than the energy of
the lowest spin wave excitation, which scales like V"1^ if d > I.

Now let us consider the momentum for the excited state \S, Sz}. Naively, one
expects all |5, Sz) states to carry zero momentum because they come from a
constant no- However, no is invariant only under the translations that translate
the even (odd) lattice points to even (odd) lattice points. Thus, \S, Sz) is only
invariant under these translations. This restricts the momenta of \S,SZ} to 0 or
Q — (TT, TT, ..., vr). Under the translation by one lattice space, no —-> —no- Thus,
the states that are even under no —> —no carry momentum 0, and those that are
odd under no —> —no carry momentum Q. We find that even-5 states carry zero
momentum and odd-5 states carry momentum Q.

Problem 5.6.2.
Calculate the action S in eqn (5.6.12) from eqn (5.6.10) (i.e. determine the value of g and
v from J and the lattice spacing a).
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QUANTUM GAUGE THEORIES

Quantum field theories can be loosely divided into three classes, namely
bosonic theory, fermionic theory, and gauge theory. We have discussed quantum
field theories of bosons and fermions in the last few chapters. In this chapter, we
will discuss gauge theories. Here we will introduce gauge theory formally. A more
physical discussion will be given in Chapter 10.

One may wonder why there are three classes of quantum field theories. With
which quantum field theories does nature choose to describe itself? According to
the [/(I) x 311(2) x 5t/(3) standard model, nature chooses fermionic theory and
gauge theory. So, gauge theory is important for high energy particle physics. But
why does nature choose the more complicated fermionic theory and gauge theory,
and skip the simpler bosonic theory? Chapter 10 provides an answer to the above
questions. It turns out that we do not have to introduce fermionic theories and
gauge theories. They can emerge as effective theories of a local bosonic system.
As gauge theory is emergent, it is not surprising that gauge theories also appear
in some condensed matter systems. In fact, more varieties of gauge theories could
emerge from condensed matter systems than those offered by our vacuum.'"19

6.1 Simple gauge theories

6.1.1 Gauge 'symmetry' and gauge 'symmetry' breaking

• Gauge theory is a theory where we use more than one label to label the same
quantum state.40

• Gauge 'symmetry' is not a symmetry and can never be broken.

When two different quantum states a) and \b) (i.e. (a\b) — 0) have the same
properties, we say that there is a symmetry between |a) and \b). If we use two
different labels 'a' and '£>' to label the same state, |o) = \b], then a) and \b)
obviously have (or has) the same properties. In this case, we say that there is a

'"' This emergent picture also raises an interesting question: can new classes of quantum field
theories, other than (he fermionic theories and the gauge theories, emerge from bosonic models?

4U This notion of gauge theory is quite unconventional, hut true. See Seelion 10.7.4 for a discussion
of the historic development of gauge theory.
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gauge 'symmetry' between a) and \b}, and the theory about a) and \b} is a gauge
theory (at least formally). As |a) and \b), being the same state, always have (or has)
the same properties, the gauge 'symmetry', by definition, can never be broken.

Usually, when the same 'thing' has the same properties, we do not say that there
is a symmetry. Thus, the terms 'gauge symmetry' and 'gauge symmetry breaking'
are two of the most misleading terms in theoretical physics. In the following, we
will not use the above two confusing terms. We will say that there is a gauge
structure (instead of a gauge 'symmetry') when we use many labels to label the
same state. When we change our labeling scheme, we will say that there is a
change of gauge structure (instead of gauge 'symmetry' breaking).

6.1.2 Gauge theory without a gauge field

• The concepts of gauge transformation, gauge-invariant states, and gauge-
invariant operators,

The above simple example of gauge theory (containing only one state) is too
simple. So, in this section, we will study a more complicated example. Consider a
particle moving in a one-dimensional periodic potential, with

where H is the Hilbert space for the possible states in our system. Here we stress
that the Hamiltonian alone does not specify the system. It is the Hamiltonian and
the Hilbert space, (H, Ti), that specify the system.

The above system has a translational symmetry:

We can define a gauge theory by turning the symmetry into a gauge structure. The
resulting gauge theory is given by

That is, we define our gauge theory by modifying the Hilbert space while keeping
the 'same' Hamiltonian. The new Hilbert space is the invariant subspace under the
symmetry transformation. As the Hamiltonian has the symmetry, it acts within the
invariant subspace. We call the transformation Ta the gauge transformation and
the states in the new Hilbert space the gauge -invariant states. Our gauge theory
simply describes a particle on a circle.
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A lot of concepts of gauge theory can be discussed using our 'more compli-
cated' gauge theory. For a particle on a line, the states x) and \x + a) are different
states with the same properties. Thus, there is a translational symmetry. For a par-
ticle on a circle, \x) and \x + a) are the same state. Here x and x + a are just
two labels which label the same quantum state. Gauge transformations are just
transformations between those labels which label the same state. Thus, a gauge
transformation, by definition, is a 'do nothing' transformation. All of the physical
states are, by definition, gauge invariant. If a state is not gauge invariant (i.e. in
our example, a wave function i/)(x) which is not periodic), then such a state does
not belong to the physical Hilbert space (i.e. it cannot be a wave function for a
particle on a circle). All of the physical operators must also be gauge invariant, i.e.

  Otherwise, the operator will map a physical state into an unphysical
state which is outside the physical Hilbert space. We see that it is very important
to maintain gauge invariance in a gauge theory. Only gauge-invariant states and
gauge-invariant operators are meaningful.

Another familiar gauge theory is the identical-particle system, where the
exchange symmetry is changed into a gauge structure. The following two-particle
system:

has an exchange symmetry (xl, x2) —> (z2, x1). However, it is not an identical-
particle system. If we turn the exchange symmetry into a gauge structure (i.e. by
reducing the Hilbert space), then the new system is described by

Such a system is an identical-particle system. Note that the identical-particle sys-
tem does not have exchange symmetry because \xl,x2} and Ix2,^1} are simply
the same state. All of the special interference phenomena associated with identical
particles come from the gauge structure.

6.2 Z<i lattice gauge theory

In this section, we will study the simplest gauge theory with a gauge field—Z
gauge theory. The Zi gauge theory is the simplest topological field theory. It
appears as an effective theory of several topologically-ordered quantum liquid
states which we will discuss in Chapters 9 and 10. So, Z2 gauge theory is very
important for understanding the physical properties of these quantum liquid states.
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F I G . 6.1. A Zi gauge theory on a square.

Just like any quantum theory, to define a Zi gauge theory, we need to define the
Hilbert space and the Hamiltonian. To understand the basic properties of the Zi
gauge theory, we need to find the excitations spectrum. This is what we are going
to do in the next few sections.

6.2.1 The Hilbert space

• The states in 2?, gauge theory have a one-to-one correspondence with the
gauge-equivalent classes of configurations.

To define a quantum Z^ lattice gauge theory (Wegner, 1971), we need to first
define its Hilbert space. To be concrete, let us consider a two-dimensional square
lattice labeled by i. On every nearest-neighbor link, we assign a link variable
s^ — Sji which can take the two values ±1. The states in the Hilbert space are
labeled by configurations of Sij, i.e. |{.Sij}}- If the labeling was one-to-one, then
the Hilbert space would be a Hilbert space of a quantum Ising model (with spins
on the links). To obtain the Hilbert space of the Z2 gauge theory, the labeling is
not one-to-one: two gauge-equivalent configurations label the same quantum state.

By definition, two configurations Sij and Sij are gauge equivalent if they are
related by a Z2 gauge transformation:

where Wi is an arbitrary function with values ±1. The gauge transformation
defines an equivalence relation. If we group all of the gauge-equivalent configura-
tions together to form a class, then such a class will be called a gauge-equivalent
class. We see that the states in the Hilbert space have a one-to-one correspondence
with the gauge-equivalent classes.

As an exercise, let us consider a Zi gauge theory on a square (see Fig. 6.1). We
would like to find out the dimension of its Hilbert space. First, there are 4 links
and hence            different Sy configurations. Second, there are 4 sites and hence
              different Z? gauge transformations. If the number of configurations in a
gauge-equivalent class is equal to the number of different gauge transformations,
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FIG. 6.2. The links cross the x line and/or the y line may receive an additional minus sign.

then there will be only one gauge-equivalent class. However, we note that the two
gauge transformations

do not change the configurations Sij. The two gauge transformations form a
group which will be called the invariant gauge group (IGG) (see also Section
9.4.2). As a result, the 16 gauge transformations only induce           gauge-
equivalent configurations. The factor of 2 is the number of elements in the IGG.
As each gauge-equivalent class contains 8 configurations, there are
gauge-equivalent classes, and hence two states in the Hilbert space.

To find a way to explicitly label the states in the Hilbert space, it is important
to find gauge-invariant quantities that do not change under gauge transformations.
One of the gauge-invariant quantities is the Wegner-Wilson loop variable (Wegner,
1971; Wilson, 1974), defined for a loop C as

where i, j, k,..., and / are sites on the loop. We will call U(C) the Z% flux through
the loop. The reader can easily check that U(C) only takes the two values ±1 and
is invariant under the Z% gauge transformation. The two states in the Z2 gauge
theory on the square are labeled by ^12 823534541 — ±1.

Now let us count the number of states in the Z^ gauge theory on a finite square
lattice. We assume that the lattice has a periodic boundary condition in both direc-
tions (i.e. the lattice forms a torus). If the lattice has JVaite sites, then it has 27VSite
nearest-neighbor links. Thus, there are 22Arsite different sij configurations. There
are 2N"H* different gauge transformations and the IGG still has 2 elements. Thus,
there are          
to 2 x 2N^ different states.

diffrent gauge -equaavalaantt classes larsd whu corr
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To find a way to label the 2 x 2^" states, we consider the Z<i flux through a
plaquette:

As there are ./VBite plaquettes and Fi = ±1, one naively expects that different
s can provide 2N""- different labels. However, the F$ are not independent.

They satisfy

Thus, the {Fi} only provide 2^ i"/2 different labels. Obviously, we cannot use
to label all of the 2 x 2'^" states. In fact, each flux configuration

corresponds to four different states.
To see this, we consider the following four configurations obtained from one

configuration <y°-:

The functions f x , y ( i j ) take the values -1 or 1, with
crosses the x line (see Fig. 6.2) and f-.,;(ij) = 1 otherwise. Similarly,
if the link ij crosses the y line and f y ( i j ) — 1 otherwise. The four configura-
tions give rise to the same Z2 flux Fi through every plaquette. Despite this, the
four configurations are not gauge equivalent (see Problem 6.2.2) because they cor-
respond to inserting a different Zi flux through the two holes in the torus (see
Fig. 9.6). Therefore, 2JV""i/2 different flux configurations {Fi,} plus the four-fold
degeneracy allow us to recover 2 x 2^"" states.

Problem 6.2.1.
Prove eqn (6.2.2) for the Z% gauge theory on a torus.

Problem 6.2.2.
Show that the four configurations in eqn (6.2.3) are not gauge equivalent. (Hint: Consider
U(C) with C going all the way around the torus.)

Problem 6.2.3.
The Hilbert space Hz2 of the Z-2 gauge theory can also be constructed from the Hilbert
space 7ispi,i of a spin-1/2 model which has one spin on each link of the square lattice. Here
Wspin has a subspace Wsub which is formed by states that are invariant under all of the
unitary transformations of the form Y[(ij)(aij}Gi~C'3• Als°. Gj is an arbitrary function
on the sites taking the values                       , and crj - is the spin operator acting on the spi

transformation.

6.2.2 The Hamiltonian

• The Hamiltonian of a Z2 gauge theory must be gauge invariant.

if the link

on the link 

Show that and generates the gauge
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So far we have only discussed the Hilbert space of the Z% lattice gauge theory.
What about the Hamiltonian? We cannot just pick any operator in the Z% Hilbert
space as our Hamiltonian. The Hamiltonian should have some 'local' properties.
One way to construct a local Hamiltonian is to write it as a local function of s^-.
However, because Sij is a many-to-one labeling of the physical states, we have
to make sure that the equivalent labels give rise to the same energy. That is, the
Hamiltonian must be gauge invariant. A simple way to construct a gauge-invariant
Hamiltonian is to write the Hamiltonian as a function of gauge-invariant operators,
such as U(C) and Fj. In addition to U(C), the a\- operator that flips the sign of
Sij on a link cr^-, i.e. ,sy —* — ,Sy, is also a gauge-invariant operator (see Problem
6.2.4). Thus, a gauge-invariant local Hamiltonian for the Zi gauge theory can be
written as

Problem 6.2.4.
Let W generate a gauge transformation H7!!^ }} — \ { ^ i j } ) , where S^ and .ŝ  are related
through eqn (6.2.1). An operator O is gauge invariant if WOW~* = O. Show that a\. is
a gauge-invariant operator.

6,2.3 The physical properties

• Despite the finite energy gap, a Zi gauge theory at low energies is not triv-
ial. Its low-energy properties on a torus are characterized by the four-fold
topologically-degenerate ground states.

When t — 0 and g > 0, HZ., has four degenerate ground states on a torus which
are characterized by FI = +1. The excitations are created by flipping the signs of
FI (see Fig. 6.3). The excitations behave like local particles and will be called th
Zi vortices. Due to the constraint (6.2.2), the ^2 vortices can only be created in
pairs on a torus. The energy gap of these excitations is of order g. The t term in
H%.2 induces a hopping of the Z^ vortices. As the crj. operators commute with each
other, using the statistical algebra of the hopping operators, see eqn (4.1.10), we
find that the Z^ vortices are bosons.

We would like to point out that the four-fold degeneracy of the ground states is
a so-called topological degeneracy. The topological degeneracy, by definition, is
a degeneracy that cannot be lifted by any local perturbations of the Hamiltonian.
The topological degeneracy is very important. It allows us to define topological
orders in Chapter 8.

To understand the robustness of the four-fold degeneracy in the Z2 gauge the-
ory, let us treat the t term as a perturbation and see how the t term can lift the
four-fold-degenerate ground states of the t = 0 Hamiltonian. The four degenerate
ground states are given by eqn (6.2.3) with            We can see that the only way
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FIG. 6.3. A Zi vortex is created by changing Fi from +1 to —1.

to change one state s^"1 into a different state s^ 'n ' is to flip the signs of s
on a line of links all the way around the torus. If the torus is formed by an L x L
lattice, then we need at least L of the a\ • operators to connect different degenerate
states. This can happen only beyond the Lth order in perturbation theory. Thus,
the t term can lift the four-fold degeneracy. However, the energy splitting AE is
only of order tL/gL~l. In the thermodynamical limit, L —»• oo and AE1 —> 0.
The above discussion does not depend on any symmetry. It is valid even when t is
not uniform. The four-fold degeneracy (in the thermodynamical limit) is a robust
property of a phase. The four-fold degeneracy reflects the low-energy dynamics of
the Z2 flux and is the most important characteristic of the Z2 gauge theory.

When g = 0 and t > 0, the ground state of Hz2 is given by

where the summation ̂ {s } is over a^ configurations {sij}. The ground state i
non-degenerate and has an energy —tNi, where NI is the number of links. This
result is easy to see if we treat HZZ as an Ising model with spins on the links. Here
s^ can be identified as the eigenvalues of the spin operator <rf • in the z direction,
and a\- is the spin operator in the x direction. In the Ising model picture, the |\&o)
state is simply a state with all spins pointing in the x direction.

From the above discussion, we see that Hz2 has two phases. When g 3> t,
the ground states have four-fold degeneracy and the excitations are Zi vortices.
We will call this phase the Zi deconfined phase. The low-energy properties of
this phase are described by a Z2 gauge theory. When g <C t, the ground state is
not degenerate. We will call this phase the Z% confined phase. The low-energy
properties have no characteristics of a Z^ gauge theory.

If you feel that the definition of the Z<i gauge theory is formal and the resulting
Zi gauge theory is strange, then you get the point. The Zi gauge theory is actually
a non-local theory, in the sense that its total Hilbert space cannot be expressed as a
direct product of local Hilbert spaces. In Section 10.3, we will give a more physical
description of Zi gauge theory. We will see that Z^ gauge theory is actually a
theory of closed strings.
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FIG. 6.4. An open two-dimensional square lattice.

Problem 6.2.5.
(a) A Z-2 gauge theory H^ (see eqn (6.2.4)) is defined on an open square lattice of Lx x Ly

sites (see Fig. 6.4). Assuming that t — 0, find the ground-state energy and degeneracy.
(b) Assume that the lattice is periodic in the y direction and forms a cylinder. Assuming
that t = 0, find the ground-state energy and degeneracy.
(c) Assume that the lattice is periodic in the both the x and y directions. Assuming that
t — 0 and g < 0, find the ground-state energy and degeneracy for the following three
cases: (i) Lx — even and Ly = even; (ii) Lx = even and Ly = odd; and (iii) Lx = odd
and Ly = odd.

Problem 6.2.6.
Show that eqn (6.2.5) is the ground state of Hz2 when g = 0 and t > 0.

Problem 6.2.7.
Consider the two configurations s\^ and s?^ on a torus with L x L sites. The two config-
urations generate the same Z-^ flux Fi. Show that, if the two configurations are not gauge
equivalent, then one needs to flip the signs of sy for at least L links to change s\^ to s^
(or s| -s?. — — I on more than L links).

Problem 6.2.8.
Note that the hopping of the Z% vortices is generated by the hopping operators Po\^P,
Pa\jP<jjkP, etc., where P is a projection to a subspace with a fixed number of Z<^
vortices. Using the statistical algebra (4.1.10), show that the Z-2 vortices are bosons.

6.3 J7(l) gauge theory and the XY-model in 1 + 2 dimensions

We constructed the Lagrangian of the 17(1) gauge theory in Section 3.7.1 and
studied its classical equation of motion in Section 3.7.5. In this section, we are
going to study the quantum U(l) gauge theory. Instead of studying the U(l) gauge
theory by itself, we will study it together with the XY-model in 1 + 2 dimensions.
We will show that there is a duality relation between the XY-model and the U(l)
gauge theory. We will use this duality relation to study the instanton effect and
confinement in (1 + 2)-dimensional E/(l) gauge theory.
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6.3.1 Duality between U(l) gauge theory and the XY-model in 1 + 2 dimensions

• Gauge fixing and the Coulomb gauge.

• Quantization of the U(\) gauge theory.

• Quantized charge, large gauge transformations, and compact 17(1) gauge
theory.

• The quantized charge in the U(\) gauge theory is the quantized vortex in the
dual XY-model,

The XY-model is described by the path integral

The £/{!) gauge theory can also be described by the path integral

where e is the 'electric' field and b is the 'magnetic' field of a^. The two path
integrals are so different that it is hard to see any relationship between the two
theories. However, we will show below that the two path integrals describe the
same physical system.

We note that both theories are quadratic and thus exactly soluble. One way to
understand the relationship between the two theories is to quantize the two theories
and find all of the low-energy excitations in the two theories.

Let us first try to quantize the f/(l) gauge theory, i.e. find the Hilbert space and
the Hamiltonian of the C/(l) gauge theory. We note that £f/(i) 's invariant under
the transformation 

If we treat ufi and afl + d^f as two different paths, then the theory would have a
symmetry. However, here we treat alt and a^ + d^f as two different labels of the
same path. In this case, we get a gauge theory and 
gauge structure.

To obtain a Hamiltonian description, we first try to find a one-to-one labeling
of the paths. Consider a path labeled by atl. The gauge transformation tells us that
a                                abels the same path. Among so many different labels of the same

defines the 
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path, we can always choose the one that satisfies

by adjusting /. So aM that satisfies eqn (6.3.3) provides a one-to-one labeling of
the different paths. Equation (6.3.3) is called a gauge-fixing condition. There are
many different gauge-fixing conditions that can lead to a one-to-one labeling of the
paths. The particular gauge-fixing condition (6.3.3) is called the Coulomb gauge.

In the Coulomb gauge, the part of the action that contains ao has the form
       .  The cross-term / dtd2x <9jao<%a;

vanishes because 9jOj = 0. We see that ao decouples from a and has no dynamics
(i.e. no do terms). Thus, we can drop ao (by effectively setting OQ = 0). So, in the
Coulomb gauge, the path integral calculates the amplitude of the evolution from
a,i(x, ti) to a,i(x, tg) that satisfies didi(x, t) = 0, t-\ ^ t < £3- Thus, the quantum
state of the (7(1) gauge theory is described by a wave functional \f [aj(cc)], where
o,i satisfies <%a; = 0. This defines the Hilbert space for the physical states.

Next, we are going to find the eigenstates and their energies, by finding the
gauge-fixed action. We first expand a» as follows:

where k. The above a, always satisfies            . Thus, the wave functions
of the physical states are functions of bo, Xi, and c^. The gauge-fixed Lagrangian
takes the form

We see that the U(l) gauge theory on a torus is described by a collection of oscilla-
tors Cfc, plus a free particle in two dimensions described by (Xi, X%). The energies
of the eigenstates are

where n^ are the occupation numbers of the oscillators and P» are the momenta
that conjugate to Xi.

There are two kinds of £7(1) gauge theory, named compact and non-compact
£/(!) theories. The gauge transformations in the two U(l) gauge theories are
defined differently. As a result, the two theories have different Hilbert spaces and
should be distinguished. For the non-compact U(l) theory, aM —» aM + d^f is the
only allowed gauge transformation. We will see later that the gauge charge is not
quantized in the non-compact (7(1) theory.
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The compact 17(1) gauge theory has quantized gauge charge. Only the Wegner-
Wilson loop amplitude

can be observed. Here q is the charge quantum. By choosing small loops with
different orientations, one can show that Oc contains all of the components of
the electric field e and the magnetic field b. As Oc is the only observable, any
transformations of afji that make Oc invariant are gauge transformations. Such
transformations have the form a^ —> aM + d^f, but now / may not be a single-
valued function of space-time. In particular, the following / on the torus generates
a valid gauge transformation:

For example, for a loop C that wraps around the torus in the x1 direction, one
can check directly that the Wegner-Wilson loop amplitude transforms as Oc —*
Oc,e-i?/c dx»d,j __ QC un(jer the above gauge transformation.

In general, any multi-valued / that makes e19jf single valued will leave Oc
invariant. These / will generate valid gauge transformations. We also note that a
charge field with charge q transforms as

A gauge transformation with a single-valued e iqf will leave the charge field single
valued.

The gauge transformations in eqn (6.3.5) are called large gauge transforma-
tions. These transformations, namely e'iqj' = exp(ig(^j^ + —^p-)), cannot
be continuously deformed into the identity transformatio               1. As xl moves
from 0 to LI , e igf goes around the unit circle in the complex plane NI times. The
winding number NI cannot be changed continuously.

We note that, under the gauge transformation (6.3.5),

Therefore, for the compact U(l) theory, (X\,X-i), (X\ + 2vrg l,X^), and
(X\, X% + 27r<?~1) label the same physical state (because they are related by gauge
a
The momenta Pj are quantized as Pj = riiq.

For the non-compact U(l) theory, the large gauge transformations are not
allowed. As a result, X\ and X% have no periodic conditions. The free particle
described by X-t lives on the plane.

We see that, although their Hamiltonians have the same form, the compact and
non-compact £7(1) theories have different physical Hilbert spaces. We also see that

t
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F I G . 6.5. A loop on a unit sphere can be the boundary of two different disks D and D'.

the q —> 0 limit of the compact U ( l ) theory gives rise to the non-compact
theory. This is why we say that the charge is not quantized in the non-compact
£/{!) theory.

As our system is defined on a torus, every physical quantity must be periodic
in both the x1 and ,r2 directions. One may naively apply this requirement to a, and
require a,; to be periodic:

However, we note that a, itself is not physical. Different, but gauge-equivalent, a,
describe the same physical state. Thus, for a? to describe a physical state on the
torus, we only require that a.,.(xl,x'2}, a^x1 + Li,:c2), and tii(xL,x2 + L2) be
gauge equivalent. This can happen only when the total magnetic flux is quantized
(see Problem 6.3.1):

The above quantization of the total flux is necessary for the loop amplitude
g- 'y . /o (^*X. to make sense on a compact surface. This is because, for a loop C
in a two-dimensional space S, e~19-^ dx"fv — e

l<i.lD
 (JJa: ^ where D is a two-

dimensional disk with the loop C as its boundary. For a compact two-dimensional
space, the disk is not unique (see Fig. 6.5). Two different disks D and D' with the
same boundary differ by the total area 5 of the compact space. Hence q \D d2a; 6-
q JD, d2x b ~ q fs d2x b. Therefore, q j's d'2x b/2fr must be quantized as an
integer in order for e~u'•'<•• dx"a» to be well defined. We also note that, for the
non-compact U(l) theory, q = 0 and fs d2x b must vanish.

Now the total energy of the compact [/(!) gauge theory can be rewritten as

All of the eigenstates of the £/(!} gauge theory on a torus are labeled by the set of
integers (N, n,-. n*.). In this way, we have solved the compact U(l) gauge theory
on a torus.

s
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Next let us turn to the XY-model and its eigenstates. We expand

Here mi and mi are the winding number of 6 in the x1 and x2 directions,
respectively. The XY-model Lagrangian now takes the form

We see that the XY-model is described by a collection of oscillators (described
by Afe) and a free particle on a circle (described by 00)- The eigenstates of the
XY-model are labeled by (N, TOJ, n^) with energy

We see that the XY-model and the 17(1) gauge theory have identical spectra if

and if we identify n» as f-ijmj in the labeling of the eigenstates in the C/(l) theory
and the XY-model. The eigenstates also carry definite total momenta K, where

for the XY-model states | JV, m^ nk) or the [7(1) theory states
From the XY-model, we see that the label N has a physical meaning: it is

the total number of bosons minus the number of bosons at equilibrium, namely
                                                . Therefore, ^0 and ^b can be regarded as the boson-number

density minus the equilibrium density:

The constraint                       in the C/(l) theory can be regarded as a contin-
uous equation for the conserved current, namely           ji = 0. Thus, if ^b is
identified as the boson-number density, then the boson-number current density is
given by

in the [/(I) theory.
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The equation of motion for the XY-model, namely                         , can also be
regarded as a continuous equation for the conserved current. We find that the same
current is eiven bv

in the XY-model. We discover a simple relationship between fields in the U(l)
theory and the XY-model:

In fact, substituting eqn (6.3.9) into eqn (6.3.2) will convert the U(l} gauge
Lagrangian into the XY-model Lagrangian (6.3.1). This is the simplest way to
see the duality relation between the £7(1) gauge theory and the XY-model in 2 + 1
dimensions.

The C/(l) gauge theory can be coupled to charges. Let JM be the density and the
current density of the C/(l) charge. Then the coupled Lagrangian takes the form

For a point charge at x = 0 we have JQ = qS(x) and we find, from the equation
of motion, that

The above e corresponds to a circular flow in the XY-model:

We see that a quantized charge in the U(l) gauge theory is just the quantized vortex
in the XY-model.

Problem 6.3.1.
Show eqn (6.3.6). (Hint: You may find the expansion (6.3.4) useful.)

Problem 6.3.2.
Quantize the compact U(l) gauge theory in 1 + 1 dimensions, assuming that the space is
a ring of length L and the charge quantum is q. Find the set of integers that label all of the
energy eigenstates. Find the energies for these eigenstates.

or
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6.3.2 Confinement of the compact [/(I) gauge theory in 1 + 2 dimensions

• The instanton effect in the (1 + 2)-dimensional [7(1) gauge theory gives the
gauge boson a finite energy gap and causes a confinement between the [7(1)
charges,

• The instanton effect can be described by a cos(0) term in the dual XY-model.

Here we consider the U(l) gauge theory in imaginary time:

Formally, the U(\) gauge theory appears to be a free theory with gapless excita-
tions. However, it is not that simple. For the compact t/{l) gauge theory with a
finite cut-off scale, the theory contains instantons. The instanton effect will make
the U ( l ] gauge theory an interacting theory. We will see that the interaction will
affect the low-energy properties of the U(\) gauge theory in a drastic way.

What is the instanton? The instanton at            is described by the following
configuration:

The above instanton is designed to change the flux by 2-rr/q, i.e.

This is the smallest allowed instanton that is consistent with the charge quantum q.
In the presence of a finite cut-off, the path integral should not only include smooth
fluctuations of the gauge field, but it should also include instanton fluctuations.

When instanton effects are included, the [7(1) gauge theory is no longer a free
theory. The problem now is how to understand the low-energy properties of the
compact [7(1) theory with instantons. One approach is to use the duality between
the XY-model and the f/(l) gauge theory.

For imaginary time, 9 and aM are related by

which can be written as

After substituting eqn (6.3.12) into eqn (6.3.10), we obtain
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tghenton creates 2-Tt/q amount of flux. As we
have seen, such an amount of flux corresponds to a single particle in the XY-model.
Thus, an instanton creates or annihilates a single particle. In the XY-model, it is the
operator e±ld that creates or annihilates a single particle. We find that an instanton
at xIJj corresponds to e l6>(cl"). As both the instanton and the anti-instanton appear
with equal weight in the path integral, we can include the instanton effect in the
XY-model by adding a term elS + e~ld = 2 cos(6>) as follows:

When x is large» the fluctuations of 0 around 0 = 0 are small. We may
approximate £ as

The correlations between d^O or (6, ej) become short-ranged after including the
instanton effect. We see that the instanton effect opens up an energy gap of the
f/(l) gauge field in 1 + 2 dimensions. Here we would like to stress that the
K cos(8) term is a relevant perturbation and the C/(l) gauge boson will gain an
energy gap, no matter how small K is.

If the gauge boson is gapless, then the charged particles will interact through
a logarithmic potential in 1 + 2 dimensions. The potential between a particle of
charge q and a particle of charge — q is given by

After including the instanton effect, the gauge field gains an energy gap. But how
does the instanton effect affect the long-range interaction between charged parti-
cles? We note that a particle of charge q is described by a vortex in the XY-model.
In the presence of the instanton effect, that is, in the presence of the K cos(8)
term, the potential between a vortex and an anti-vortex grows linearly with the
separation of the two vortices (see Fig. 6.6). Thus, the instanton effect changes the
logarithmic potential to a linear potential between charges.

We have shown that, in 1 + 2 dimensions, the XY-model can be described by
the compact £/(!) gauge theory. We have also shown that the instanton effect in
the U(l) gauge theory opens up an energy gap. These two results seem to contra-
dict each other. How can the XY-model with its gapless Nambu-Goldstone mode
be equivalent to the 17(1) gauge theory, which has an energy gap? However, we
realize that an instanton creates flux. As the flux corresponds to particle numbers,
the existence of the instanton implies that the particle number in the correspond-
ing XY-model is not conserved. So everything is consistent. In the presence of the
instanton, the particle number is not conserved. The compact U(l) gauge theory

creats 2#amouint of flux AS we
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F l G . 6.6. For a vorlex-anti-vortcx pair in the XY-modcl separated by a distance /, the 0 field must

jump by 2?r across the line connecting the two vortices. In the presence of the — K c,oft(0) term, the

usual vortex ansatz 9(x, y ) = arctan(x/y) costs a huge energy which grows tike I 2 . To minimize

the energy, the nonzero 0 is confined in the shaded region. (The dashed lines arc the equal-value lines

for the 0 held.) This leads to a linear confining potential between the two vorlices.

describes an XY-model that does not have the U(l) symmetry. This explains why
the instanton effect corresponds to a potential term K cos((?) in the XY-model. On
the other hand, if the XY-model has the t/(l) symmetry and conserves particle
number, then the instanton is not allowed in the corresponding C/(l) gauge theory.

Problem 6.3.3.
Duality between the (1 + 2)-dimensional [/(I) gauge theory with instantons and the
XY-model with the cos(0) term

1. Calculate the partition function Z(xti,yii) of the £7(1) gauge theory with an
instanton at x1* and an anti-instanton at j/'', up to an overall constant factor.

2. Use the above result to write down an expression for the partition function for the
£7(1) gauge theory, including contributions from a multi-inslanton gas.

3. Calculate the following partition function Z(xli,yli) of the XY-model with a
insertion e'e at x1'and another insertion c~'a at y>\ up to an overall constant factor:

4. Show that the £7(1) partition function with instantons agrees with the XY-model
partition function with an added K oos(0) term (after expanding in powers of K).

6.4 The quantum U(\) gauge theory on a lattice

6.4.1 The Lagrangian of a lattice £7(1) gauge theory

• A lattice (7(1) gauge theory is described by variables on the links aij and on
the sites an(i).

• The compact and non-compact lattice £7(1) gauge theories.
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• The flux of the electric field eij.

The £7(1) gauge theory can also be defined on a lattice. The £7(1) lattice
gauge theory allows us to study the strong-coupling limit and confinement in any
dimension. For simplicity, here we will consider a £7(1) gauge theory on a two-
dimensional square lattice. The scalar potential (IQ(X) is defined at each lattice
site i and becomes a,o(i). The vector potential a(x) is defined on each link and
becomes a^-. We note that a^- and aji are not independent; they are related through
di = —ai. The continuous fields are related to the lattice fields as follows:

where $p is the [7(1) flux through the square labeled by p:

One can check directly that the above Lagrangian is invariant under the lattice
[/(I) gauge transformation

Equation (6.4.2) defines a non-compact lattice £7(1) gauge theory. A compact
lattice £7(1) gauge theory is defined by regarding u±j — emij as link variables.
In the compact lattice £7(1) gauge theory, a^j and a^ • = a^- + 2ir are regarded as
being equivalent. The Lagrangian for the compact lattice £7(1) gauge theory has
the form

which is modified from eqn (6.4.2) to be consistent with the periodic condition
a>ij ~ aij + 27T. In the rest of this section, we will consider only the compact f/(l)
lattice gauge theory.

where / is the lattice constant. The Lagrangian that describes the f/(l) lattice gauge
theory is the following function of ao(i) and a^:
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The classical equation of motion is obtained from 8L/6a,ij = 0 an
5L/5a0(i] = 0. We find that

where p^ and p2 label the two squares on the two sides of the link («, i + /i).
By comparing eij with the e in the continuum model, we see that eij can be

interpreted as the flux of the electric field flowing through the link (i, j). Equation
(6.4.7) states that the electric flux is conserved. It corresponds to Gauss's law dx •
e = 0 in the continuum model. Also, being the flux through the square Sp, $p

corresponds to $p = fs d2xb in the continuum model.
The simplest way to obtain the dynamical properties of the lattice [7(1) gauge

theory described by eqn (6.4.2) or eqn (6.4.5) is to take the continuum limit.
Assuming that a^ is small and is a smooth function of t and x, we substitute
the relation (6.4.1) between the continuous variables and the lattice variables into
the lattice Lagrangians. We obtain the following standard [7(1) Lagrangian:

From the resulting Maxwell equation, we find that the lattice [7(1) gauge theory
contains a gapless mode with velocity c. The coupling constant CHID has dimension
1/length in 1 + 2 dimensions.

In Section 3.7.1, we used the gauge invariance to construct a coupled theory of
charged bosons and the [7(1) gauge field in a continuum. The same construction
applies to the lattice model. We find that a lattice [7(1) gauge theory that couples
to a charged boson is described by the following Lagrangian:

The Lagrangian is invariant under the following lattice gauge transformation:

Problem 6.4.1.
(a) Generalize eqn (6.4.1) to a three-dimensional cubic lattice.
(b) Use eqn (6.4.1) to show that the Lagrangian for the three-dimensional lattice gauge

ss
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F I G . 6.7. A [/(I) gauge theory on a square.

theory becomes g~j((^ 1e2 — cb2) in the continuum limit, where et — d^a^ — <9,ao and
bi = f-ijkdjo-k- Find the values of a and c in terms of </, 5, and the lattice constant I. Here
the dimensionless constant a is the fine-structure constant and c is the speed of light.

6.4.2 The Hamiltonian of the lattice U ( 1 ) gauge theory

* The Hamiltonian of a lattice £7(1} gauge theory can be obtained via gauge
fixing or a phase-space path integral.

• The electric flux eij through a link is the canonical 'momentum' of the vector
potential a^j on the same link.

The Lagrangian (6.4.5) describes a classical C/(l) lattice gauge theory. In this
section, we are going to find the quantum description. For simplicity, we will
consider the lattice gauge theory on a single square (see Fig 6.7). The quantum
theory is described by the path integral

where i = 1,2,3,4. Here i = 1 and i = 5 are regarded as the same point.
As a gauge theory, (ajj(i), 0-0(2, t)} is a many-to-one labeling of the path. We
can obtain a one-to-one labeling by 'fixing a gauge'. We note that 5Zv=i±i °jj
transforms as £j-=i±i«ij -» £j=i±i "ij = Ej_j±i(aij + <& - </>j) under the
gauge transformation. By tuning 0,, we can always make X]^.^-! otj = 0. Thus,
for any path (ajj(t), «o(i, i)), we can always construct a gauge transformation to
make Y^j-a-i °u = 0- Therefore, we can fix a gauge by choosing a gauge-fixing
condition
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Such a gauge is called the Coulomb gauge, which has the form d • a — 0 for a
continuum theory. In the Coulomb gauge, our path integral becomes

We note that the configuration (ai2> &23i ^34,041) = (^/2, vr/2, Tr/2, Tr/2) is
gauge equivalent to (012, «23> «34! «4i) = (2vr, 0, 0,0) (i.e. there is a gauge trans-
formation that transforms (Tr/2, Tr/2, vr/2, vr/2) to (2?r, 0. 0,0)). Also, 012 = 27r
is equivalent to 012 = 0 because the a^.j+i live on a circle. Thus, $ = 2vr and
$ = 0 correspond to the same physical point. The path integral (6.4.11) describes
a particle of mass (8 J)"1 on a unit circle. The flux energy —g cos $ is the poten-
tial experienced by the particle. When g = 0, the energy levels are given by
En = 4,/n2.

There is another way to solve eqn (6.4.10). We first introduce the canonical
momentum of ciij, namely

and write the path integral (6.4.10) as a phase-space path integral (see Problem
6.4.4)

In general, a path integral in the Coulomb gauge can be obtained by the two sim-
ple steps of, firstly, inserting the gauge-fixing condition rjijf <S(]Cj=i±i a'j) anc^
secondly, dropping the OQ (i) field.

For our problem, the constraint Hi t ̂ (Z}j=i±i au) requires that 
Here <£> describes the U(l) flux through the square. The path

integral takes the simple form

We note that a coupling between 0,0(1) and a^- has the form
Thus, for Oij satisfying the constraint X^j=j±ia*j = 0' ao(^) and o-ij decouple.
As ao(i) has no dynamics (i.e. no do(i) terms), we can integrate out ao(i), which
corresponds to simply dropping GO- The resulting path integral becomes
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FIG. 6.8. A U(l) gauge theory on a square with a diagonal link.

Then we integrate out arj and obtain41

The quantum Hamiltonian of the above system is given by

The physical Hilbert space is formed by states that satisfy

As [e^j-i-i + e^i-i,H] = 0, H acts within the physical Hilbert space.
To find the energy levels of the system, we note that <Hj is periodic with a period

2-7T and the momentum of a,j is e^/2 J. Thus, e^/2 J is quantized as integers, n^-.
When g = 0, the energy levels of the system are given by J ]T^ n^i+1, where the
HIJ satisfy the constraint ^7-=i±i nij — 0- F°r our four-site system, the constraint
requires that n\i = n^ = n^ = n^\ = n. The energy eigenstates are labeled by
n and have energy En — 4Jn2, which agrees with the previous calculation.

Problem 6.4.2.
(a) Generalize eqn (6.4.10) to a square with a diagonal link (see Fig. 6.8).
(b) Find the energies of the ground state and the excited states, assuming that g = 0.

Problem 6.4.3.
(a) Show that, for a non-compact lattice [/(I) gauge theory on a two-dimensional square

41 Note that the coupling between ao(f) and dj has the form J]\ ao(i)(ei,i+i + e.i,i-\). The path
integral / Pan e's At^' ""WKw +=M-I) is proportional to Y[.it <J(e^i+i(t) + eM_i (f)).

j j ouir t
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lattice, the gauge-fixed path integral has the form

(b) Show that the constraint X^ ±a! ±y aiti+fj, = 0 can be solved by introducing a real
field Op defined on the squares, and write the gauge potential on the l ink as «i,i+M —
</>PL - <?V,, where p, and p2 are the two squares on the two sides of the l ink (z, i + /*).
Write the path integral in terms of the c6p field.
(c) Find the dispersion relation of the 0P fluctuations,

Problem 6.4.4.
Prove eqn (6.4.12). (Hint: The phase-space path integral is given by /' VpVq e '' d'N- "(PA
where H(p, q) = pq — L is the Hamiltonian.)

6.4.3 The Coulomb phase and the confined phase of the lattice [/(I) gauge theory

* In 1 + 3 dimensions, the compact lattice f (1) gauge theory is in the Coulomb
phase when g/ J > 1 and in the confined phase if g/ J <C 1.

We know that, in 1 + 2 dimensions, the compact [/(!) gauge theory is always
in the confined phase due to the instanton effect. In this section, we are going to
study a compact [/(!} gauge theory on a cubic lattice. We will argue that the (7(1)
gauge theory in 1 + 3 dimensions has both the confined phase and the Coulomb
phase.

The Lagrangian of the £/(!) gauge theory is given by

We can express the action of the above Lagrangian in the following diinensionless
form:

where t = \/gJt is the diinensionless time and OQ = a^/^/gJ is the dimensionless
potential. We see that, when g/J 3> 1, the fluctuations of $p are weak and we can
assume that a^j ~ 0. In this limit, L becomes a non-compact U ( l ) gauge theory
as follows:

The quadratic theory can be solved exactly. In the continuum limit, the above
becomes the standard Maxwell Lagrangian of the f/(l) gauge theory. We find that,
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at low energies, there are two linearly-dispersing modes ui = ca\k\ representing
the gapless photons.

When g/J <C 1, we can drop the cos($p) term. The resulting quadratic theory
can also be solved exactly, as we did in the last section. The Lagrangian for the
phase-space path integral has the form

After integrating out ao, we obtain the constraint

The Hamiltonian is given by

Since eij/IJ is quantized as an integer n^-, when g = 0, the energy levels are
given by
0. We see that all of the excitations in the g = 0 limit are gapped. The gapped
excitations are loops formed by nonzero n^-s. These loops represent lines of elec-
tric flux. In the presence of a pair of positive and negative charges, the two charges
are connected by a line of electric flux which causes a linear confining potential
between the two charges. Thus, the gapped phase is the confined phase of the U(l)
gauge theory.

Problem 6.4.5.
To show that charges interact with a linear potential in the confined phase, we consider the
lattice f/(l) gauge theory in the presence of charges as follows:

where qt is the E7(l) charge at site i.
(a) Find the Lagrangian in the phase-space path integral.
(b) Show that integrating out ao leads to the following constraint:

which is Gauss's law on the lattice.
(c) Find the ground-state energy of the gauge theory with a charge q = 1 at i = 0 and a
charge q — — 1 at i = Ix, assuming that g = 0. Show that the interaction energy between
the two charges grows linearly with I.

where sat isfy
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THEORY OF QUANTUM HALL STATES

• Fractional quantum Hall liquids represent new states of matter which contain
extremely rich internal structures.

• Different fractional quantum Hall liquids cannot be characterized by order
parameters and long-range orders of local operators. We need a completely
new theory to describe fractional quantum Hall liquids.

• Fractional quantum Hall liquids contain gapless edge excitations which form
the so-called chiral Luttinger liquids. The chiral Luttinger liquids at the
edges also have very rich structures, as a reflection of the rich bulk internal
structures.

The fractional quantum Hall (FQH) effect appears in two-dimensional electron
systems in a strong magnetic field. Since its discovery in 1982 (Tsui et al., 1982;
Laughlin, 1983), experiments on FQH systems have continued to reveal many
new phenomena and surprises. The observed rich hierarchical structures (Haldan
1983; Halperin, 1984} indicate that electron states that demonstrate a fractional
quantum Hall effect (these states are called FQH liquids) contain extremely rich
internal structures. In fact, FQH liquids represent a whole new state of matter,
which is very different from the symmetry-breaking states discussed in the last few
chapters. One needs to develop new concepts and new techniques to understand
this new kind of state. In this chapter, we will introduce a general theory of FQH
states. A detailed discussion of the new orders (the topological orders) in FQH
states will be given in Chapter 8.

7.1 The Aharonov-Bohm effect and fractional statistics

7.1.1 The Aharonov-Bohm effect—deflect a particle without touching

• The local phase for contractible loops and the global phase for non-
contractible loops.

• The nonzero local phase represents a force, while a nonzero global phase does
not correspond to any classical force.
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FIG. 7.1. A plane with the r = 0 point removed and a flux tube at r = 0. The loop A is

non-contractible and has a winding number nw = 1. The loop B is contractible.

To prepare for later discussions on the quantum interference in the quantum
Hall (QH) state, let us first give a brief discussion of the Aharonov-Bohm (A-
B) effects. First, we would like to introduce two concepts, namely local phase
and global phase. The local phase is associated with contractible loops. Moving a
charged particle slowly around a contractible loop will generate a local phase as
follows:

local phase 

The magnetic field B = 0 if and only if the local phases for all contractible loops
vanish. Thus, a charged particle that feels no magnetic force has no local phases.

The global phase is related to non-contractible loops. To understand the global
phase in a simple setting, let us consider a charged particle moving on a two-
dimensional plane. We remove the r = 0 point, which changes the topology of the
space. We then place an infinite thin flux tube of flux $ at r = 0 (see Fig. 7.1). As
the particle goes around r = 0, a phase ele$ is generated. Such a phase is called
the global phase. More generally,

global phase

nw = winding number.

Clearly, despite the nonzero global phase, the particle feels no magnetic force
because there is no magnetic field away from r = 0. We see that a free particle
(i.e. a particle that feels no force) can have a nonzero global phase.

Global phase exists only when non-contractible loops exist (i.e. when the space
is not simply connected). Another example of a non-simply-connected space is a
torus (see Fig. 7.2). A free particle on a torus can also have global phases.

The above free particle (with the flux tube at r — 0) can be described by the
following Hamiltonian:
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FIG. 7.2. A torus with two non-contractible loops A and B.

FIG. 7.3. A beam of particles passes through a grid of tubes, with a flux through each tube.

The field strength vanishes, i.e.

For a loop around x = 0, we have

global phase ^ 0 .

A non-vanishing local phase will affect the classical equation of motion. The
Berry phase for the spin is an example of local phase (see Section 2.3). In contrast,
a global phase will not affect the classical equation of motion. However, a global
phase will affect the quantum properties of the particle.

Problem 7.1.1.
Deflecting without touching Although a global phase does not produce any classical
force, it can still deflect a moving particle. Consider the set-up in Fig. 7.3, where a beam
of particles with charge e and momentum k passes through a grid of impenetrable tubes.
Calculate the deflecting angle 0 if there is a flux $ through each tube.

local phase = 0



2 7 8 T m - l O R Y OF Q U A N T U M H A L L S T A T E S

F I G . 7.4. The V . space, with the r = 0 point removed, and the points r and — r identified as the

same point.

7.1.2 Particles with a hard-core condition and fractional statistics

• The configuration space for particles with a hard-core condition is not simply
connected. The non-trivial topology of the configuration space allows non-
trivial statistics,

• Fractional statistics exist and only exist in two spatial dimensions.

One realization of the A-B effect is the fractional statistics in two dimen-
sions (Leinaas and Myrheim, 1977; Wilczek, 1982). Consider two free hard-core
identical particles in two dimensions.42 The configuration space is given by

configuration space

where
{r_! r_^o,r_~-r } (see Fig. 7.4). Here V+ is the usual two-dimensional plane
while V- is only half of the two-dimensional plane because r _ and --r are
regarded as the same point. Also, the r_ = 0 point is removed from V_.

As pointed out in the last section, 'free' means that the local phase is zero.
As the two-particle configuration space is not simply connected (V_ is not simply
connected), there exist global phases and we have the freedom to choose the global
phases. Note that the non-contractible loops in V_ are characterized by winding
numbers nw (Fig. 7.5). Thus, we can assign the following global phases for non-
contractible loops:

global phases = e l(Jn"'

Now it is clear that, in quantum mechanics, there are different kinds of free
identical particles, labeled by a parameter 9.

42 Here, by free partieles, we mean particles (hat do not experience any force when separated.
However, the particles may he subject to a hard-core condition.

and
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F I G . 7.5. Two loops with winding numbers

• The parameter 0 describes the flux (the global phase) in many-particle
configuration space.

• The parameter 9 determines the statistics.

Note that the loop with nw = 1 connects r to r_, or (i"i, ra) to (r^, T"I), which
corresponds to exchanging the two particles. Thus, the statistics of the particles are
as follows:

The Hamiltonian for the above two free identical particles (i.e. for two anyons
with statistics 0) is given by

When 8 = 0 and a = 0, H obviously describes two bosons. For 9 = TT, we can
make a gauge transformation

Boundary Conditions :

in the V- space.

arctan
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FIG. 7.6. The energy levels E and the degeneracies D (for the relative motion) of two anyons in a

two-dimensional harmonic potential well.

As V/(r) = 4r(-y,x), we find that e~if(dr_ - ia)2eif = (<9rJ2 and the
Hamiltonian becomes

or

which describes two free fermions. In general, we can consistently gauge away
a, even for N fermions, and describe the Fermi statistics through the 'boundary
condition', i.e. the anti-symmetric condition. However, for an iV-anyon system, we
cannot gauge away a and represent the fractional statistics through the 'boundary
condition'.

One can solve the system of two anyons in a two-dimensional harmonic poten-
tial well, and find the spectrum shown in Fig. 7.6. One can clearly see how the
spectrum changes continuously from the bosonic one to the fermionic one.

An interesting question is do we have an anyon in three dimensions? Two iden-
tical free particles in three dimensions have a configuration space
with

Here V_ is not simply connected, and a global phase exists. However, the non-

contractible loop in V_ is characterized by Z^. This is because an exchange in
one direction (described by the loop G\) and the exchange in the opposite direction
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FIG. 7.7. The two exchange loops d and C-\ can be continuously changed into each other in
three dimensions, by rotating about the axis connecting the two particles.

FIG. 7.8. The phase induced by moving a flux-charge bound state around another flux-charge

bound state.

(described by the loop C-i) belong to the same class, as the two loops C±i can
be continuously changed into each other (see Fig. 7.7). If we assign a global phase
e l6* to the loop C\, then the loop C-i will have a global phase e~lS. As the two
loops C±i differ only by a contractible loop which has a vanishing local phase, we
also have e i e = e~ld. Therefore, 0 can only take two possible values as follows:

The above discussion demonstrates the anyon as a mathematical possibility in
quantum mechanics. The next question is how an anyon may appear in some phys-
ical models which originally contained no anyons. In fact, an anyon can appear as
excitations in boson/fermion systems. In the following, we will consider a model
in which an anyon appears as a bound state of charge and flux. Consider a system
of charge one boson fi. Assume that bosons form a g-boson bound state &q — (<j))q,
and $g undergoes a boson condensation. The effective Lagrangian is

where aM is the £/(!) gauge field that couples to the charge boson. In the condensed
state, the vortex carries a flux — (see Problem 7.1.2). Consider a bound state of

the vortex — and the original boson (f>. Moving one bound state half-way around
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the other, we obtain a phase

The first term is from the charge going around the flux tube, and the second term
is from the flux tube going around the charge (see Fig. 7.8). We see that the bound
state is a boson if q — 1, a fermion if q = 2, and an anyon if q > 2.

For BCS superconductors, q — 2. However, 0 is a fermion, and hence the
bound state is a boson. The only known condensed matter system that supports
anyon excitations is the FQH system.

Problem 7.1.2.
In polar coordinates (r, </>), a vortex in eqn (7.1.2) is described by

where /(oo) = {*,).
(a) Show that, if a,, = 0, then the energy of the vortex diverges as ln(L), where L is the
size of the system.
(b) Find a(r, rp) that makes the vortex have a finite energy.
(c) Show that the total flux of the above a(r, <£>) is

7.2 The quantum Hall effect

7.2.1 The integral quantum Hall effects

• Integral quantum Hall (IQH) states are described by filled Landau levels.

• The many-body wave function of the v — 1 IQH state.

• The density profile of IQH wave functions.

Let us first discuss classical Hall effects. Consider a 2D gas of charge qe = -e
electrons moving under the influence of an electric field in the plane and a magnetic
field normal to the plane. To maintain a static current, the force from the electric
field must balance the Lorentz force from the magnetic field, i.e.

In this chapter, we will choose a unit such that the speed of light is c = 1. As the
current j is given by vn, where n is the density, E and j are related through

where
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FIG. 7.9. The Hall resistance pxy as a function of B.

is the filling fraction. The Hall resistance pxy = ( A j £ can be measured directly
in experiments. According to the above classical theory, pxy oc B if n is fixed.

Experimentally, one indeed finds that, for a two-dimensional electron gas,
pxy oc B at weak fields (see Fig. 7.9). In the early 1980s physicists put a two-
dimensional electron gas under strong magnetic fields (~ lOTesla) and cooled
it to very low temperatures (~ IK°). They found that, for strong B, pxy devel-
ops plateau structures, as shown in Fig. 7.9 (von Klitzing et al, 1980; Tsui et al,
1982). Such a phenomenon is called the QH effect. Physicists soon discovered
many amazing properties of QH states. What is most striking is that the plateaus
appear exactly at those pxy corresponding to

The value of pxy is so accurate and stable that it has become the standard for
resistance.

The physics of the plateaus is a little complicated because it involves impu-
rities. In short, we can understand the plateaus at these filling fractions, if the
two-dimensional electron gas forms an incompressible liquid43 at these z/s. As we
will see below, electrons do form an incompressible state at v = 1,2,3, • • • , due
to the Landau level structure. This allows us to understand the plateaus at integer
v and IQH effects.

Let us ignore the Coulomb interaction and consider a two-dimensional free
electron gas in a strong magnetic field B. We will ignore the electron spins
or assume that the electron spins are polarized. A single electron in a uniform

That is, all charged excitations have a finite energy gap.
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magnetic field is described by

The above Hamiltonian has an interesting symmetry property. It is not invariant
under the direct translation Ta = e~a'9o>, i.e. TaHTa ^ H, despite the uniform
magnetic field. However, it is invariant under the translation Ta followed by the
gauge transformation

or, more precisely,

The combined transformation GaTa is a symmetry of H and is called the magnetic
translation. The magnetic translations in different directions do not commute:

(symmetric gauge)

Thus, the eigenstates of H cannot be labeled by the momentum vector (kx,ky),
despite the Hamiltonian having magnetic translation symmetries in both the x and
y directions. Note that the phase qeB(axby — aybx) is just the phase obtained by
moving the charge qe around the parallelogram Pab spanned by a and b, namely

To find the energy levels of eqn (7.2.1), we introduce the complex coordinate
z = x + iy, so that

In terms of z and z, we have

where

The Hamiltonian H can be simplified through a non-unitary transformation
e+|z| /4J| ^ where Is is the magnetic length defined by
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(Note that 1-Kl\B = — = $o gives us a unit flux quantum.) We find that

where

Here we have assumed that qeB > 0. We see that the non-unitary transformation
e+\z\2/4i2B can be regardeci as a 'gauge transformation' that makes As — 0. We can
further simplify H as follows:

where uc = qeB/mc is the cyclotron frequency.
Now we can easily write down the eigenstates of an electron in a uniform

magnetic field as follows:

which gives us the Landau level structure.
In the above, we have assumed that qeB > 0. The electron wave function in the

zeroth Landau level is an analytic function f ( z ) times e~'z 2/4^. If qeB < 0, then
the non-unitary transformation e+^' /4^ will transform Az to zero. The electron
wave function in the zeroth Landau level will be an anti-analytic function f(z*)
times e~ *2/4*s.

The wave functions \&0  m me zeroth Landau level can be expanded by the basis
states

We find that the ring of the mth state has an area of vrr^ = 27r^m, which encloses
m flux quanta (see Fig. 7.10). Therefore, there is one state for every flux quantum,

which carry angular momentum m. The wave function il>m has a ring shape. The
position of the maximum of \i/jm = em ln z ~ z /4'B is at
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FIG. 7.10. The circular orbits in the zcroth Landau level.

FIG. 7.11. The density profile of the v = 1 droplet, where the first m levels (represented by the
thick lines) are filled.

and the number of states in the zeroth Landau level is equal to the number of
flux quanta. So, when v = 1, every state in the zeroth Landau level is filled by
an electron. This gives us a finite gap A = fu^c for excitations, and explains
the v — 1 plateau observed in experiments. Incompressibility is due to the Pauli
exclusion principle (Fermi statistics).

The many-body wave function of the v — 1 state has the form

where A. is the anti-symmetrization operator. The above wave function describes a
circular droplet with uniform density (Fig. 7.11), because every electron occupies
the same area vrrfri+1 — vrr^ = 1-nl\. This property is important. A generic wave
function of N variables may not have a uniform density in the N —>• oo limit. In
this case, the wave function does not have a sensible thermodynamical limit.
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F 1C. 7.1 2. The density profile of the v = 1/3 droplel.

Problem 7.2.1.
Find the energy levels of an electron in a potential V = ^mui'^r'2 and a uniform magnetic
field B.

Problem 7.2.2.
(a) Show that the magnetic translation GaTa is a symmetry of the Hamiltonian in the
uniform magnetic field (7.2.1) if the gauge transformation Ga is given by eqn (7.2.2).
(b) Show that the magnetic translations satisfy the algebra (7.2.3).

7.2.2 Fractional quantum Hall effect

• The Laughlin wave functions of FQH states.

• The plasma analogue and the density profile of Laughlin states.

When 0 < v < 1, the zeroth Landau level is only partially filled. This gives

us a huge ground-state degeneracy ~ wcv^-JV)! ^or ^ree electrons (where N^ is
the number of states in the zeroth Landau level, which is also the number of flux
quanta, and N is the number of electrons). Therefore, the experimentally observed
v = 1/3 state must be due to the interaction. Two questions arise. Firstly, how
can the interaction produce a gap (incompressibility)? Secondly, why is v = 1/3
special?

Laughlin answered the above two questions with the trial wave function

The wave function ̂  is good due to the following reasons.

a) *3 has a third-order zero (z, — Zj Y for any pair of electrons. This is good for
repulsive interactions.

b) ^3 describes a circular droplet of uniform density (Fig. 7.12), with v — 1/3.
c) *3 is an incompressible state.

Due to the rotational invariance of \^3\, it is clear that ^3 describes a circular
droplet. If we assume that the droplet also has a uniform density, then it is easy to
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understand why it has a filling fraction v = 1/3. This is because the highest power
of Zi (with i fixed) is 3(JV — 1). The orbit at angular momentum 3(N — 1) has a
radius of rmax = -y/2 x 3(Ar — I)IB- Here rmax is also the radius of the droplet,
which is \/3 times the radius                                   v = 1 droplet. Thus,
fo

To understand why ̂ 3 has a uniform density, let us consider the following joint
probability distribution of electron positions:

where we have generalized the ^3 state to the state, given by

We see that m must be an odd integer for to be totally anti-symmetric.
Choosing                in eqn (7.2.4), we can view

as the potential for a two-dimensional plasma of 'charge' m particles and
P(ZI • • • ZN) as the probability distribution of the plasma. The potential between
two particles with 'charges' TOI and m? is — m\m^ m(r), and the force is m^m^/r.
Thus, to understand the density distribution of we just need to calculate the
'charge' distribution of the plasma.

In V , we see that each particle in the plasma sees a potential m | z /4^ , which
can be viewed as the potential produced by a background 'charge' distribution. In
fact, such a potential is produced by a uniform background 'charge' with 'charge'
density                  which is just the density of the flux quanta. To see this, we
note that the force of such a background 'charge' acting on a 'charge' m at radius r
is a force between 'charge' m and the total 'charge' within a radius r. Such a force
is given by                                     This gives us a potential          which
is just the above potential. Due to the complete screening property of plasma, the
plasma wants to be 'charge' neutral. The plasma 'charge' density is equal to the
background 'charge' density where      is the electron density. We fin
the filling fraction to be

Why is an incompressible state? Note that the total angular momentum
of  (the total power of Z Here     js me state w{
the minimum total angular momentum, which has mill-order zeros between every
pair of electrons. Compressing the droplet reduces the total angular momentum
and creates lower-order zeros, which costs energy. We expect that the energy gap
is of the order of the Coulomb energy e2/Z#. There is no mathematical proof of
the above statement, but we have plenty of numerical evidence.

Thus,
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We would like to mention that, although ^3 is only an approximate ground
state For electrons with a Coulomb interaction, there exists an ideal Hamiltonian
for which is the exact ground state. The ideal Hamiltonian has the Form

One can show that, for any state 0, we have ($> \H\ (/>} ^ ^Nhwc, and for ^3
we have Thus,      is indeed the exact ground state of
H. Numerical calculations also indicate that ^3 is incompressible for the ideal
Hamiltonian.

Problem 7.2.3.
Show that for the ideal Hamiltonian (7.2.5). Find an ideal
Hamiltonian for the v = l/rn Laughlin state #,„.

Problem 7.2.4.
A double-layer FQH state is described by the wave function

where z.t are the coordinates of the electrons in the first layer and Wi in the second layer.
Such a state is called the (Imn) state. Let i\\ and A^ be the numbers of electrons in the
two layers. Find the ratio NI/NZ such that the sizes of the electron droplets in the tw
layers are equal. Find the total filling fraction of the electrons in the two layers. (Hint: You
may first assume that n — 0 to simplify the problem.)

7.2.3 Quasiparticles with fractional charge and fractional statistics

• Fractional charge and fractional statistics from the plasma analogue.

A quasihole excitation above the incompressible ground state is described
by the many-body wave function

where £ is the position of the quasihole and C(£,£*) is the normalization coeffi-
cient. The simplest way to calculate the charge of the quasihole is to first remove
an electron from the ^fm state and obtain the wave function \\_l(^ — Zi)m^m, whic
has a charge e hole at £. However, Hi(£ ~ 2j)m*m

 can also be viewed as the wave
function with m quasiholes at £. Thus, the quasihole charge is e/rn.
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FIG. 7.13. The charge from the electrons and the test charge must neutralize the background charge.

A more direct calculation of the quasihole charge is through the plasma
analogue. The electron position distribution in the quasihole state W/j is given by

Therefore, the electrons see an addition background potential                      This
potential is produced by a unit test charge. The background charge contains an
extra unit test charge at £. There must be       less electrons near £ to maintain the
charge neutrality (see Fig. 7.13). Thus, die quasihole carries a charge e/m.

To understand the fractional statistics of the quasiholes (Arovas et al., 1984),
let us start with the following effective Lagrangian for several quasiparticles:

The effective gauge potential a determines the statistics. Just like the spin systems
discussed in Section 2.3,   is determined from the Berry phase of the coherent
state

Let us first consider only a single quasiparticle. For an adiabatic motion of the
quasiparticle £(t), the phase change of              gives us the Berry phase.
For a small At, the Berry phase is

Thus, a is given by

As       depends on t only through         we have
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Thus, if we write                                                       then44
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Here
function of £. The key point of the above result is that the normalization of \£ (an
analytic function of £) gives us the Berry phase:

The normalization            can be calculated from the plasma analogue. We
note that, after including a term                   representing the interaction between
the test 'charge' and the background 'charge',45

gives the total energy of the plasma with a test 'charge' at £. Again, due to
the complete screening of the plasma, the total force acting on the inserted
test 'charge' vanishes; hence the energy of plasma does not depend on £, i.e.

 constant. We see that

This gives us

44We have used

a

'charge'. An electron corresponds to abound state of m test 'charges'.

and which is an analytic

Note that corresponds to the interaction between an electron and the background
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The above vector potential a is proportional to the vector potential of the magnetic
field:

Around a loop, the quasihole picks up an A-B phase
a phase for a charge —qe/m = e/m particle.

For two quasiholes, the total energy V of the plasma with two test 'charges' is
given by

where the extra term                           represents the direct
interaction between the two test 'chargeis', each carries 'charge' 1. Again,

is independent o . Thus,

Setting ^ = £1 and ^2 = 0, we find that

which gives us As we move the quasihole £1 around
the quasihole obtains a phase given by                                    The first term is due to

the uniform magnetic field. The additional term ̂  comes from                        Such
a term gives the quasiholes fractional statistics with a statistical angle           (see

Problem 7.2.5.
Consider the double-layer (Imn) state eqn (7.2.6). A quasihole in the first layer is described
by the wave function

and a quasihole in the second layer by

Find the fractional charge and the fractional statistics of the quasiholes in the first and sec-
ond layers. Find the mutual statistics between a quasihole in the first layer and a quasihole

and

are

eqn (7.1.1)
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FIG. 7.14. The hierarchical v — 2/7 and v = 2/5 states.

in the second layer. The mutual statistics between two non-identical particles are defined
by the Berry phase generated by moving one particle all the way around the other.

7.2.4 Hierarchical fractional quantum Hall states — generalization of Laughlin the-
ory

• Hierarchical FQH states are equivalent to Laughlin states for quasiparticles.

To construct more general FQH states at rilling fractions other than l/m, we
may start with a v = l/m Laughlin state. We add quasiholes or quasiparticles
to change the average electron density. When its density reaches a certain value,
the gas of quasiholes/quasiparticles can also form a Laughlin state by itself. The
resulting state is a hierarchical FQH state (see Fig. 7. 14).

When the charge e/3 quasiholes on top of the v = 1/3 state condense into a
Laughlin state, we obtain the v — 2/7 FQH state. The wave function has the form

When the charge e/3 quasiparticles on top of the ;/ = 1/3 state condense into
a Laughlin state, we get the v = 2/5 FQH state. The wave function is given by

We can calculate the properties of the above two states using the plasma ana-
logue. However, the calculation is complicated. In the next section, we are going
to derive the effective field theory for FQH states. We will use the effective theory
to calculate the properties of the above hierarchical FQH states. The effective field
theory greatly simplifies the calculation. We can easily obtain the filling fractions
of the FQH states and the quantum numbers of the quasiparticles.



7.3 Effective theory of fractional quantum Hall liquids

• Low-energy effective theories of FQH states are U( 1) Chern-Simons theories,
which capture the universal properties of the FQH states.

We have already seen several different FQH states. On one hand, these QH
states have different fractional charges and different fractional statistics. This sug-
gests that the different FQH states belong to different quantum phases. On the
other hand, these FQH states all have the same symmetry. We cannot use bro-
ken symmetry to distinguish them. In fact, FQH states contain a new kind of
order—topological order (see Chapter 8). We need to use new tools to characterize
topological orders.

One way to systematically study topological orders is to construct a low-energy
effective theory for FQH liquids. The effective theory can capture the universal
properties of FQH liquids and provide hints on how to characterize and label dif-
ferent topological orders in FQH liquids. In the following, we will introduce a way
to construct effective theories that is closely related to the hierarchical constructio
proposed by Haldane and Halperin (Haldane, 1983; Halperin, 1984).

The first attempt to characterize the internal structures of FQH liquids was proposed
by Girvin and MacDonald (1987), where it was shown that a Laughlin state contains an
off-diagonal long-range order in a non-local operator. Such an observation leads to a
description of FQH liquids in terms of Ginzburg-Landau-Chern-Simons effective theory
(Read, 1989; Zhang et a/., 1989). These developments have led to many interesting and
important results, and a deeper understanding of FQH liquids. However, here I will try to
describe the internal structures of FQH liquids from a more general point of view. It appears
that some internal structures of FQH liquids (especially those in the so-called non-abelian
FQH liquids) cannot be described by the Ginzburg-Landau-Chern-Simons effective theory
and the associated off-diagonal long-range orders. Thus, we need to develop more gen-
eral concepts and formulations, such as topological orders and topological field theory, to
describe the internal structures in FQH liquids (see Chapter 8). The concept of off-diagonal
long-range order, in my opinion, does not capture the essence of the internal structure in
FQH liquids. Here we will develop an effective theory without using off-diagonal long-range
order (Blok and Wen, 1990a,b). The resulting effective theory contains only pure Chern-
Simons terms. The pure Chern-Simons form is more compact and more clearly reveals the
internal structure of the hierarchical FQH states.

7.3.1 Effective theory of the Laughlin states

• The hydrodynamics of FQH liquids and effective Chern-Simons theory.

In this section, we will consider only single-layer spin-polarized QH systems.
To construct the effective theory for the hierarchical states, we will first try to
obtain the effective theory of the Laughlin state. Then we will use the hierarchical
construction to obtain the effective theory for the hierarchical states in the next
section.
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are the current and the density of the electrons, respectively, and         are the
position and the velocity of the zth electron. The kinetic/potential energy is given
by                                                se precise form is not important to us. W
have also assumed that the charge of each electron is — e and the speed of light is
c=l.

In a hydrodynamical approach, we assume that the low-energy collective
modes can be described by the density and the current J^, and the low-energy
effective theory has the form                                                                                                                                                                                                                  From our discussion
in Sections 5.1.3 and 5.3.3, we see that sometimes a state may have too many low-
lying excitations to be described by single density mode. As the gapped FQH states
have even fewer low-energy excitations than a superfluid, it is reasonable to assume
that a single density mode is enough to describe the low-energy fluctuations in the
FQH states.

At a filling fraction of v = l/m, where m is an even integer for a bosonic
electron and an odd integer for a fermionic electron, the ground state of the electron
system is given by the Laughlin wave function (Laughlin, 1983)

(Here we have assumed that B < 0, so that (—e)B > 0.) To construct the effective
theory, we note that the state (7.3.3) is an incompressible fluid, so that its density
is tied to the the magnetic field, i.e.                            When combined with the
finite Hall conductance xwe find that the electron number
current J^ has the following response to a change of electromagnetic field:

We choose the effective Lagrangian in such a way that it produces the
equation of motion (7.3.4). It is convenient to introduce a U(l) gauge field a^ to
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Consider an electron system in a magnetic field. To include more general situ-
ations, we will assume that the electrons can have bosonic or fermionic statistics.
The Lagrangian of the system has the following form (the first quantized version):

where
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describe the electron number current:

The current defined in this way automatically satisfies the conservation law. Then
the effective Lagrangian that produces eqn (7.3.4) takes the following form:

Equation (7.3.5) describes only the linear response of the ground state to the
external electromagnetic fields. To have a more complete description of the topo-
logical fluid, such as the FQH liquid, we need to introduce the electron excitations
into our effective theory. In particular, we want to make sure that the effec-
tive theory contains an excitation that carries the same quantum numbers as the
electron.

7.3.2 Electron and quasiparticle excitations in the effective theory

• Effective Chern-Simons theory alone is not a complete description of the
FQH state. We need to specify the electron operator to have a complete
effective theory.

• The required trivial mutual statistics between the electrons and the quasi-
particle/quasihole determine the quantum numbers of the quasiparticles and
quasiholes.

Let us introduce a particle that carries an atl charge of / . In the effective theory
(7.3.5), such a particle corresponds to the following source term:

The source term will create an excitation of charge

This can be seen from the equation of motion 6£/6a,Q — 0, with

The first term on the right-hand side indicates that the filling fraction
is indeed v = 1/m, and the second term corresponds to the increase in the electron
density associated with the excitation.

We also see that the excitation created by the source term (7.3.6) is associated
with l/m units of the a^ flux. Thus, if we have two excitations carryin  charges
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of li and lz, then moving one excitation around the other will induce a phase
2-7T x (number of a^-flux quanta) x (aM charge),46 namely

I f l i = l2 = l, then the two excitations will be identical. Interchanging them will
induce half of the phase in eqn (7.3.8), namely

Here 9 is simply the statistical angle of the excitation that carries I units of the aM

charge.
Our electrons carry a charge of —e. From the above discussion, we see that

a charge — e excitation corresponds to a particle that carries m units of the aM

charge. Such an excitation has a statistical angle 9 — irm (see eqn (7.3.9)); thus,
it is a boson if m is even and a fermion if m is odd. Therefore, for the case of a
bosonic electron with even m and the case of a fermionic electron with odd m,
we can identify the excitations of m units of the a^ charge as the electrons that
form the FQH liquid. The existence of the excitations with the electric charge and
the statistics of the electron support the correctness of our Chern-Simons effective
theory.

We would like to stress that the identification of the fundamental electrons in
the effective theory is very important. It is this identification, together with the
effective Lagrangian, that provides a complete description of the topological prop-
erties of the FQH liquid. We will see below that this identification allows us to
determine the fractional charge and the fractional statistics of the quasiparticle
excitations.

A quasihole excitation at a position described by a complex number £ = x + iy
is created by multiplying                    w^ me ground-state wave function (7.3.3).
Note that the phase of the wave function changes by 2?r as an electron goes around
the quasihole. The 2?r phase implies that the electron and the quasihole have trivial
mutual statistics. In general, the electron and an allowed excitation must have
trivial mutual statistics in order for the excitation to have a single-valued electron
wave function.

Now let us try to create an excitation by inserting a source term of I units of the
a/j, charge. Moving an electron around such an excitation will induce a phase 1^1

46 The careful reader may note that the two excitations carry both an a^ charge and an aM flux. So
the phase induced by moving one excitation around the other should receive two contributions, one
from moving the charge around the flux and the other from moving the flux around the charge, as
described in Fig. 7.8. This will lead to a phase                                                                  which is twice as large
as the one in eqn (7.3.8). However, a more careful calculation indicates that the picture of Fig. 7.8
docs not apply to the charge-flux bound state induced by the Chern-Simons term. The naive result
in eqn (7.3.8) happens to be the correct one (sec Problem 7.3.1).
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(see eqn (7.3.8)). The single-value property of the electron wave function requires
such a phase to be a multiple of 27r. So the a^ charges must be quantized as
integers, and only those charges correspond to allowed excitations.

From the charge of the excitations given in eqn (7.3.7), we find that I = —I
corresponds to the fundamental quasihole excitation, while 1 = 1 corresponds to
the fundamental quasiparticle excitation. The quasiparticle excitation carries an
electric charge —e/m and the quasihole carries an electric charge e/m. Both of
them have statistics 9 = v/m, as one can see from eqn (7.3.9). We see that the
effective theory reproduces the well-known results for quasiparticles in Laughlin
states (Arovas et at, 1984). The full effective theory with quasiparticle excitations
is given by

where j^ is the current of the quasiparticles, which has the form given in
eqn (7.3.2). Equation (7.3.10), together with the quantization condition on I, is
a complete low-energy effective theory which captures the topological properties
of the 1/m Laughlin state.

Problem 7.3.1.
Prove eqn (7.3.8). (Hint: You may start with the following effective theory with two
excitations:

Here j^ is the total current of the two excitations and xi^(t) are the locations of the two
excitations. You can then integrate out aa and obtain

The cross-term can be written as

where /^ satisfies

You can find /,; by assuming that

where and
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Problem 7.3.2.
We have been concentrating on the topological properties of the Laughlin states. To have
some understanding of the dynamical properties of the Laughlin states, we need to includ
the Maxwell term in the effective Chern-Simons theory as follows:

where e and b are the electric field and the magnetic field, respectively, of aM, and e, =
Find the equation of motion for the collective fluctuations

described by e and b. Find the energy gap of the collective excitations. Assume that the
energy gap in the 1/m Laughlin state is of order  and the size of the quasihole i
of order 1B. Estimate the values of gi and f/2-

7.3.3 Effective theory of the hierarchical fractional quantum Hall states

• Different hierarchical FQH states can be characterized by an integer Ji'-matrix
and a charge vector q.

• The topological properties of the FQH state, such as filling fractions and
quasiparticle quantum numbers, can be calculated easily from the K-matrix
and the charge vector.

• The equivalence relations between different pairs of ^-matrix and charge
vector.

To obtain an effective theory of the hierarchical FQH states, let us start with
a 1/m Laughlin state formed by fermionic electrons. Let us increase the filling
fraction by creating the fundamental quasiparticles, which are labeled by / = 1.
Equation (7.3.10) with I = 1 describes the 1/m state in the presence of these
quasiparticles. Now, two equivalent pictures emerge.
(a) In a mean-field theory approach, we may view the gauge field OM in eqn (7.3.10)
as a fixed background and we do not allow aM to respond to the inserted source term
j'1'. In this case, the quasiparticle gas behaves like bosons in the 'magnetic' field
b ~ dia.j£ij, as one can see from the second term in eqn (7.3.10). These bosons
do not carry any electric charge because the quasiparticle number current j'1 does
not directly couple with the electromagnetic gauge potential A^. When the boson
density satisfies

where ^2 is even, the bosons have a filling fraction —. The ground state of the
bosons can again be described by a Laughlin state. The final electronic state that
we obtained is just the second-level hierarchical FQH state constructed by Haldane
(1983).
(b) If we let a p. respond to the insertion of,?7', then quasiparticles will be dressed
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and



300 THEORY OF QUANTUM HALL STATES

by the a^ flux. The dressed quasiparticles carry an electric charge of —e/rn and
statistics of 9 = vr/m. When the quasiparticles have the density

where p2 is even, the quasiparticle will have a filling fraction              In this case,

the quasiparticle system can form a Laughlin state described by the wave function

The final electronic state obtained this way is again a second-level hierarchical
FQH state. This construction was first proposed by Halperin (1984). The two
constructions in (a) and (b) lead to the same hierarchical state and are equivalent.

In the following, we will follow Haldane's hierarchical construction to derive
the Chern-Simons effective theory of hierarchical FQH states (Blok and Wen,
1990a,b;Read, 1990;FrohlichandKerler, 1991; Wen and Zee, 1992a). Notice that,
under the assumption (a), the boson Lagrangian (the second term in eqn (7.3.10)
with I = 1) is just eqn (7.3.1) with an external electromagnetic field eA^ replaced
by a/j,. Thus, we can follow the same steps as from eqn (7.3.3) to eqn (7.3.10) to
construct the effective theory of the boson Laughlin state. Introducing a new [7(1)
gauge field a^ to describe the boson current, we find that the boson effective theory
takes the form

In eqn (7.3.12), the new gauge field a/j, describes the density j° and the current
of the bosons, and is given by

This reduces the coupling between a^ and the boson current, a^j^, to a Chern-
Simons term between a^ and a^ (which becomes the second term in eqn (7.3.1 2)).
The total effective theory (including the original electron condensate) has the form

where p\ = m is an odd integer. Equation (7.3.13) is the effective theory of a
second-level hierarchical FQH state.
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The effective theory can be used to determine the physical properties of the
hierarchical FQH state. The total filling fraction is determined from the equation
of motion                                           with

where K is the integer matrix

and q is the integer vector     = (qi,qi) = (1)0). Here q will be called the
charge vector. The filling fraction (7.3.14) can be rewritten as
When (pi,f>2) = (3,2), the hierarchical state corresponds to the v = 2/5 FQH
state observed in experiments.

The second-level hierarchical FQH state contains two kinds of quasiparticle.
One is the quasihole (or vortex) in the original electron condensate, and the other is
the quasihole (or vortex) in the new boson condensate. The two kinds of quasiholes
are created by inserting the source terms
j^ and JP have a similar form to eqn (7.3.2). The first kind of quasihole is created
by multiplying                                             *m me electron wave function, while the second kind
is created by multiplying H^7? ~ £») wrtn tne boson Laughlin wave function (here
£i are the complex coordinates of the bosons and r/ is the position of the quasihole).

A generic quasiparticle consists of a number li of quasiparticles of the first
kind and a number l^ of quasiparticles of the second kind, and is labeled by two
integers. Such a quasiparticle carries l\ units of the charge and 1% units of the
02/j charge, and is described by

After integrating out the gauge fields, we find that such a quasiparticle carries
^ j Kjjlj units of the a/^ flux. Hence the statistics of such a quasiparticle are

We find that

Equation (7.3.13) can be written in the following more compact form by introduc-
ing

AND REPECTIVELY,WHERE
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given by

and the electric charge of the quasiparticle is

For the v = 2/5 state (i.e. (pi,p^) = (3,2)), the quasiparticle with minimal
electric charge is labeled by (7i, £2) = (0,1). The minimal electric charge is —e/5.
Such a quasiparticle has statistics

We can also construct more general FQH states. The effective theory for these
FQH states still has the form given in eqn (7.3.15), but now / runs from 1 to an
integer n (n will be called the level of the FQH state). To obtain the form of the
matrix K, let us assume that at the level n — 1 the effective theory is given by
eqn (7.3.15) with                            and                              The quasiparticles
carry integer charges of the a/^ gauge fields. Now consider an nth-level hierar-
chical state which is obtained by the 'condensation' of quasiparticles with the
charge // i=i,..in-i- The effective theory of this rath-level hierarchical state will be
given by eqn (7.3.15) with n gauge fields. The nth gauge field anM conies from the
new condensate. The matrix K is given by

with pn = even. The charge vector q is still given by (1, 0,0,...). By iteration, we
see that the generalized hierarchical states are always described by integer sym-
metric matrices, with KJJ = even, except for K\\ = odd. The new condensate
gives rise to a new kind of quasiparticle, which again carries an integer charge
of the new gauge field an/u. Hence, a generic quasiparticle always carries integral
charges of the a/^ field.

Let us summarize the above results in more general terms. We know that a
hierarchical (or generalized hierarchical) FQH state contains many different con-
densates. The different condensates are not independent. The particles in one
condensate behave like a flux tube to the particles in other condensates. To describe
such a coupling, it is convenient to use U(l) gauge fields to describe the density
and the current Jin of the Ith condensate

In this case, the couplings between different condensates are described by the
Chern-Simons term of the gauge fields as follows:
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When K is taken to be a general integral n x n matrix with .K//|/=i = odd,
Kj[\i>i = even, and qT = (1,0, ...,0). Equation (7.3.18) describes the most
general (abelian) FQH states (Wen and Zee, 1992a). The rilling fraction is given
by

The quasiparticle excitations can be viewed as vortices in different condensates.
A generic quasiparticle is labeled by n integers lj \ / = 1..., n, and can be generated
by the following source term:

Such a quasiparticle will be denoted by      The        in eqn (7.3.20) has the form

which creates a quasiparticle at XQ.
As we create a quasiparticle       it will induce a change in the densities of all

of the condensates, namely        From the equation of motion of eqn (7.3.18) and
eqn (7.3.20), we find that       satisfies

The charge and the statistics of the quasiparticle     are given by

The result of quasiparticle statistics is obtained by noting that            is the flux of
the ai^ and the quasiparticle carries Z/ units of charge.

A generic electron excitation can be viewed as a special kind of (generic)
quasiparticle, where the integer vector le is given by

We can show that these electron excitations satisfy the following properties: they
carry a unit charge (see eqn (7.3.23)); they have fermionic statistics; moving
an electron excitation around any quasiparticle excitations 'ipi always
induces a phase of a multiple of 2-Tr; and the excitations defined in eqn (7.3.24) are
all of the excitations satisfying the above three conditions.

From the generic effective theory in eqn (7.3.15), we find that the general-
ized hierarchical states can be labeled by an integer-valued K-matrix and a charge
vector q. Now we would like to ask the following question: do different (K, q)s
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describe different FQH states? Notice that, through a redefinition of the gauge
fields a j p , one can always diagonalize the A'-matrix into one with ±1 as the diag-
onal elements. Thus, it seems that all /^-matrices with the same signature describe
the same FQH states, because they lead to the same effective theory after a proper
redefinition of the gauge fields. Certainly this conclusion is incorrect. We would
like to stress that the effective Lagrangian (7.3.15) alone does not provide a proper
description of the internal orders (or topological orders) in the hierarchical states. It
is the effective Lagrangian (7.3.15) together with the quantization condition of the
ai/i charges that characterize the topological order. A C/(l) gauge theory equipped
with a quantization condition on the allowed f/(l) charges is called a compact
[/(!) theory. Our effective theory (7.3.15) is actually a compact (7(1) theory with
all f /( l) charges quantized as integers. Thus, the allowed C/(l) charges form an
n-dimensional cubic lattice, which will be called the charge lattice. Therefore,
when one considers the equivalence of two different /^-matrices, one can only use
the field redefinitions that keep the charge quantization condition unchanged (i.e.
keep the charge lattice unchanged). The transformations that map the charge lat-
tice onto itself belong to the group SL(n, Z) (a group of integer matrices with unit
determinant):

From the above discussion, we see that the two FQH states described by (K-\, q ^ )
and (K-2, q-2) are equivalent (i.e. they belong to the same universality class) if there
exists a W € SL(n. Z) such that

This is because, under the transformation (7.3.25), an effective theory described
by (Ki, qi) simply changes into another effective theory described by (A'2, g2).

We would like to remark that in the above discussion we have ignored another
topological quantum number—the spin vector. Because of this, the equivalence
condition in eqn (7.3.26) does not apply to rotationally-invariant systems. How-
ever, eqn (7.3.26) does apply to disordered FQH systems because the angular
momentum is not conserved in disordered systems and the spin vector is not well
defined. A discussion of the spin vectors can be found in Wen and Zee (1992c,tf).
Table 7.1 lists the /^-matrix, the charge vector q, and the spin vector s for some
common single-layer spin-polarized FQH states.

Problem 7.3.3.
Prove the four properties listed below eqn (7.3.24).

Effective theory of simple multi-layer fractional quantum Hall states

• The A'-matrix and multi-layer FQH wave functions.

7.3.4
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TABLE 7.1. Expressions for (K, q, s) for some simple single-layer spin-polarized FQH states.

So far, we only considered the so called single-layer FQH states where the
2D electron gas lives on an interface of two different semiconductors. We can also
make samples with multiple layers of interfaces. The 2D electron gases on different
layers can form a multi-layer FQH state when placed under a strong magnetic field.

The same approach used to construct the effective theory of the hierarchical
states can also be used to construct the effective theory for the multi-layer FQH
states. The connection between the FQH wave function and the K -matrix becomes
very transparent for the multi-layer FQH states. In this section, we will concentrate
on double-layer FQH states. However, the generalization to the n-layer FQH states
is straightforward.

We would like to construct an effective theory for the following simple double-
layer FQH state:

where is the gauge field that describes the electron density and current in the
first layer.

where ZH is the complex coordinate of the ith electron in the Ith layer. Here I and
m are odd integers, so that the wave function is consistent with the Fermi statistics
of the electrons, while n can be any non-negative integer. The above wave function
was first suggested by Halperin as a generalization of the Laughlin wave function
(Halperin, 1983). It appears that these wave functions can explain some of the
dominant FQH filling fractions observed in double-layer FQH systems.

We start with a single-layer FQH state in the first layer, namely Hio'C^ii ~~
which is a l/l Laughlin state and is described by the effective

theory

V Q K S



306 THEORY OF Q U A N T U M HALL STATES

Examining the wave function in eqn (7.3.27), we see that an electron in the
second layer is bounded to a quasihole excitation in the first layer. Such a quasihole
excitation is formed by n fundamental quasihole excitations and carries an ai/j,
charge of — n. A gas of the quasiholes is described by the following effective
theory:

where j'M has the form given in eqn (7.3.2). As we mentioned before, in the mean-
field theory, if we ignore the response of the ai/j, field, then eqn (7.3.29) simply
describes a gas of bosons in a magnetic field nb\, where bi = —Sijdiaij. Now
we would like to attach an electron (in the second layer) to each quasihole in
eqn (7.3.29). Such an operation has the following two effects: the bound state of
the quasiholes and the electrons can directly couple with the electromagnetic field
AH because the electron carries the charge —e; and the bound state behaves like a
fermion. The effective theory for the bound states has the following form:

which now describes a gas of fermions (in mean-field theory). These fermions see
an effective magnetic field — eB + rib\.

When the electrons (i.e. the fermions in eqn (7.3.30)) in the second layer have
a density of                           (i.e. they have an effective filling fraction 1/m),
they can form a 1/m Laughlin state, which corresponds to the
part of the wave function. (Note that here eB < 0.) Introducing a new gauge field

to describe the fermion current        in eqn (7.3.30), the effective
theory of the 1/m state in the second layer has the form

Putting eqns (7.3.28), (7.3.30), and (7.3.31) together, we obtain the total effective
theory of the double-layer state, which has the form given in eqn (7.3.15) with the
K-mairix and the charge vector q given by

We see that the elements of the K -matrix are simply the exponents in the wave
function. The filling fraction of the FQH state is still given by eqn (7.3.19).

There are two kinds of (fundamental) quasihole excitation in the double-layer
state. The first kind is created by multiplying
wave function and the second kind is created by As the vortices in the
two electron condensates in the first and the second layers, a first kind of quasi-
hole is created by the source term — a^j'*, and the second kind of quasihole is
created by          Thus, a generic quasiparticle in the double-layer state is a

WITH THE GROUND-STATE
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TABLE 7.2. Expressions for (K, q, s) for some double-layer FQH states.

V q K s

bound state of several quasiholes of the first and the second kind, and is described
by eqn (7.3.16). The quantum numbers of such quasiparticles are still given by
eqn (7.3.23).

In general, a multi-layer FQH state of the type (7.3.27) is described by a K-
matrix whose elements are integers and whose diagonal elements are odd integers.
The charge vector has the form gT = (1,1,...,!). People usually label the double
layer FQH state (7.3.27) by (I, m, n). In Table 7.2, we list the K-matrix, the charge
vector q, and the spin vector s for some simple double-layer states.

From the above, we see that the (332) double-layer state has the filling fraction 2/5—a
filling fraction that also appears in single-layer hierarchical states. Now the following ques-
tion arises: do the double-layer 2/5 state and the single-layer 2/5 state belong to the same
universality class? This question has experimental consequences. We can imagine the fol-
lowing experiment. We start with a (332) double-layer state in a system with very weak
inter-layer tunneling. As we make the inter-layer tunneling stronger and stronger, while
keeping the filling fraction fixed, the double-layer state will eventually become a single-
layer 2/5 state. The question is whether the transition between the double-layer (332) state
and the single-layer 2/5 state is a smooth crossover or a phase transition. If we ignore the
spin vector, then we see that the Jf-matrices and the charge vectors of the two 2/5 states
are equivalent because they are related by an SL(2, Z) transformation. Therefore, in the
absence of rotational symmetry (in which case the spin vector is not well defined), the two
2/5 states can change into each other smoothly. When we include the spin vector, the two
2/5 states are not equivalent and, for rotationally-invariant systems, they are separated by
a first-order phase transition.

From Table 7.2, we also see that there are two different 2/3 double-layer states. When
the intra-layer interaction is much stronger than the inter-layer interaction (a situation found
in real samples), the ground-state wave function prefers to have higher-order zeros between
electrons in the same layers. Thus, the (330) state should have lower energy than the (112)
state. The /^-matrix and the charge vector of the single-layer 2/3 state are equivalent to
those of the (112) state, and are not equivalent to those of the (330) state. Thus, to change
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a double-layer 2/3 state (i.e. the (330) state) into the single-layer 2/3 state, one must go
through a phase transition, regardless of the rotational symmetry.

The double-layer (mmm) state is an interesting state because dot A' -- 0. Fertig (1989),
Brey (1990), and MacDonald etal. (1990) studied the (111) state and discovered a gapless
collective mode. Wen and Zee (1992b) studied the more general (mmm) state and pointed
out that the (mmm) state (in the absence of inter-layer tunneling) spontaneously breaks
a t/(l) symmetry and is a neutral superfluid. More detailed discussions (including their
experimental implications) can be found in Wen and Zee (1993), Murphy etal. (1994), and
Yang ef at. (1994).

Problem 7.3.4.
Let us first ignore the spin vector s. Show (hat (A', q) for the single-layer 2/5 state in
Table 7.1 and the double-layer 2/5 state in Table 7.2 arc equivalent. Show thai, however,
(K, q, s) for the two states are not equivalent. (In the presence of the spin vector s, the
equivalence relation becomes 3-2 = Wsi, q2 — Wq\, and K'i — WK\W ' .}

Problem 7.3.5.
Consider the double-layer (him) state (7.2.6). Use the effective theory (7.3.15) and eqn
(7.3.32) to find the filling fraction. Also find the fractional charge and the fractional statis-
tics of the quasiholes in the first and the second layers. (You may compare the results with
those of Problem 7.2.5.)

Problem 7.3.6.
Assume that the effective theory for a double-layer (mmm) stale has the form

where e/ and bj are the 'electric' field and the 'magnetic' field, respcclively, of «/,,..

1. Show that the (mmm) state, just like a superfluid, has gapless excitations. Find the
velocity of the gapless excitations.

2. Also like the superfluid, ihe (mmm) state contains vortex excitations with energy
7ml/, where L is the linear size of the system. Find the value of 7 for the vortex
with minimal energy. (Hint: The a/^ charges of // are still quantized as integers in
the (mmm) state.)

3. If we do regard the (mmm) state as a superfluid, can you identify the broken
symmetry and the order parameter?

7.4 Edge excitations in fractional quantum Hall liquids

• FQH states always have gapless edge excitations.

• Edge excitations of an FQH state form a chiral Luttinger liquid.

• The structure of edge excitations is determined by bulk topological orders.
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Due to the repulsive interaction and strong correlation between the electrons, a
QH liquid is an incompressible state, despite the fact that the first Landau level is
only partially filled. All of the bulk excitations in QH states have finite energy gaps.
QH states and insulators are very similar in the sense that both states have finite
energy gaps and short-ranged electron propagators. Due to this similarity, people
were puzzled by the fact that QH systems apparently have very different trans-
port properties to ordinary insulators. Halperin first pointed out that the IQH states
contain gapless edge excitations (Halperin, 1982). The non-trivial transport prop-
erties of the IQH states come from the gapless edge excitations (Halperin, 1982;
Trugman, 1983; MacDonald and Streda, 1984; Streda el at., 1987; Buttiker, 1988;
Jain and Kivelson, 1988a,b). For example, a two-probe measurement of an IQH
sample can result in a finite resistance only when the source and the drain are con-
nected by the edges. If the source and the drain are not connected by any edge, then
the two-probe measurement will yield an infinite resistance at zero temperature, a
result very similar to the insulators. Halperin also studied the dynamical properties
of the edge excitations of the IQH states and found that the edge excitations are
described by a chiral one-dimensional Fermi liquid theory.

Due to the similar transport properties of the FQH and IQH states, it is natural
to conjecture that the transport in the FQH states is also governed by the edge exci-
tations (Beenakker, 1990; MacDonald, 1990). However, because the FQH states
are intrinsically many-body states, the edge excitations in the FQH states cannot
be constructed by filling single-particle energy levels. In other words, the edge
excitations of the FQH states should not be described by a Fermi liquid. Thus,
we need a completely new approach to understand the dynamical properties of the
edge states of FQH liquids (Wen, 1992, 1995).

[n the next section, we will use Fermi liquid theory to study the edge excitations
of the // — 1 IQH state. Then we will use the current algebra (or bosonization, see
Tomonaga, 1950; Luttinger, 1963; Coleman, 1975) to develop a theory for edge
excitations of the FQH states.

7.4.1 Fermi liquid theory of integral quantum Hall edge states

• The ground states of IQH liquids are obtained by filling single-particle energy
levels. As a result, the low-energy edge excitations can be obtained by filling
these single-particle levels in slightly different ways.

Consider a non-interacting electron gas in a uniform magnetic field B. In the
symmetric gauge, the angular momentum is a good quantum number. The com-
mon eigenstales of energy and momentum form a ring-like shape (see Fig. 7.10).
Therefore, in the presence of a smooth circular potential V(r), the single-particle
energy levels are as illustrated in Fig. 7.15. The ground state is obtained by filling
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FIG. 7.15. Energy levels in the first three Landau levels in the presence of a smooth potential V(r).

Here in is the angular momentum of the levels. The levels below the chemical potential /j, are filled

by one electron, which gives rise to an IQH state. Modifying the occupation numbers near the edge

produces gapless edge excitations of the IQH states.

N lowest energy levels. Such a state correspond to a circular droplet of uniform
density (see Fig. 7.11).

In the zeroth Landau level, the energy of the angular momentum m state is
given by

where is the radius of the m, state. From Fig. 7.15, we see that
bulk excitations have a finite energy gap tiwc. An edge excitation can be created by
moving an electron from the m state to the m+ 1 state near the edge (see Fig. 7.15)
As in the thermodynamical limit                 the edge excitations
are gapless.

As the TTI state has radius rm, we can also view the angular momentum m as
the momentum along the edge This allows us to regard       as an
energy-momentum relation

In term of E(k), our electron system can be described by a non-interacting
Hamiltonian

The above Hamiltonian describes a one-dimensional chiral Fermi liquid. We call
it a chiral Fermi liquid because it has only one Fermi point and all of the low-
energy excitations propagate in the same direction.47 We conclude that the edge

47 In contrast, the usual one-dimensional Fermi liquid has two Fermi points and contains both left
and right movers.
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7.16. (a) The energy-angular momentum relation E can be regarded as an

energy-momentum relation E(k). The edge excitations can be regarded as excitations of a

one-dimensional chiral Fermi liquid, which contains only right movers, (h) The dispersion relation

of a usual one-dimensional Fermi liquid contains both right and left movers.

excitations of the v = 1 IQH state are described by the one-dimensional chiral
Fermi liquid (7.4.1).

Problem 7.4.1.
Show that the velocity of the IQH edge excitations                     is given by cE/B,
where c is (he speed of light and                                                           is the electric field on the edge produced
by the confining potential V(r). Find the Fermi momentum kp for the chiral Fermi liquid,
assuming that the v = 1 IQH droplet contains N electrons.

Problem 7.4.2.
A v — 1 IQH state is confined by a circular smooth potential V(r) and contains N
electrons. Find the total ground-state angular momentum Find the number of low-
energy particle-hole excitations with total angular momentum  for m ~ - 1 and
•ni — 1, 2, 3,4, 5. Show that the excitations with the same total angular momentum have
the same energy in the thermodynamical limit.

Problem 7.4.3.
Consider a one-dimensional non-interacting fermion system described by

turbation. Show that, when the system has both right and left movers (i.e. viv? < 0), the
relevant mixing term opens up a finite energy gap and drastically changes the low-energy
properties of the system. However, for a chiral Fermi liquid with all excitations moving in
one direction (i.e.  the relevant mixing term does not induce any energy gap. In
fact, we believe that no perturbations can induce an energy gap for one-dimensional chiral
Fermi liquids. The gapless excitations in a one-dimensional chiral Fermi liquid are robust
against all perturbations and are topologically stable.

7.4.2 The hydrodynamical approach—the I/TO Laughlin state

• Edge excitations from the current algebra (the Kac-Moody algebra).

fig>

tHE MIXING TERM IS A RELEVANT PER-
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• There is no way to construct FQH edge excitations by filling single-particle
energy levels.

As the 1/m Laughlin FQH state cannot be obtained by filling single-particle
energy levels, we cannot use the picture in the last section to construct edge excita-
tions of the 1/m Laughlin state. Not knowing how to derive the FQH edge theory
from the Hamiltonian of interacting electrons, in the following we instead try to
guess a low-energy effective theory.

The simplest way to guess the dynamical theory of edge excitations is to use
the hydrodynamical approach. In this approach, one uses the fact that FQH states
are incompressible, irrotational liquids that contain no low-energy bulk excita-
tions. Therefore, the only low-lying excitations (below the bulk energy gap) are
surface waves from the deformations of the FQH droplet. These surface waves are
identified as edge excitations of the FQH state.

In the hydrodynamical approach (Wen, 1992), we first study the classical theory
of the surface wave on the FQH droplet. Then we quantize the classical theory
to obtain the quantum description of the edge excitations. It is amazing that the
simple quantum description obtained from the classical theory provides a complete
description of the edge excitations at low energies and allows us to calculate the
electron and the quasiparticle propagators along the edges.

Consider an FQH droplet with a filling fraction v confined by a potential well.
Due to the nonzero conductance, the electric field of the potential well generates a
persistent current flowing along the edge, given by

This implies that the electrons near the edge drift along the edge with a velocity

where c is the velocity of light. Thus, the edge wave (the deformation of the edge)
also propagates with velocity v. Let us use the one-dimensional density p(x) —
nh(x) to describe the edge wave, where h(x) is the displacement of the edge, x
is the coordinate along the edge, and                     is the two-dimensional electron
density in the bulk. (Here               is the magnetic length.) We see that the
propagation of the edge waves is described by the following wave equation:

Notice that the edge waves always propagate in one direction; there are no waves
that propagate in the opposite direction.
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The Hamiltonian (i.e. the energy) of the edge waves is given by

where we have used                       In momentum space, eqns (7.4.2) and
(7.4.3) can be rewritten as

where                                       nd L is the length of the edge. We find that, if we
identify pk\k>o as the 'coordinates' and TT^ = il-np-k/vk as the corresponding
canonical 'momenta', then the standard Hamiltonian equation

will reproduce the equation of motion p^ — ivkpf-. This allows us to identify the
canonical 'coordinates' and 'momenta'. It is interesting to see that the displace-
ment h(x) contains both the 'coordinates' and the 'momenta'. This is due to the
chiral property of the edge wave.

Knowing the canonical coordinates and momenta, it is easy to quantize the
classical theory. We simply view pk and TT& as operators that satisfy
iSkk1- Thus, after quantization we have

The above algebra is called the (£/(!)) Kac-Moody (K-M) algebra (Kac, 1983;
Goddard and Olive, 1985, 1986). A similar algebra has also appeared in the
Tomonaga model (Tomonaga, 1950; Luttinger, 1963; Coleman, 1975). Notice that
eqn (7.4.5) simply describes a collection of decoupled harmonic oscillators (gen-
erated by (pfc,/9_fc)). Thus, eqn (7.4.5) is a one-dimensional free phonon theory
(with only a single branch). For                             creates a phonon with momen-
tum k and energy vk, while pj, annihilates a phonon. Equation (7.4.5) provides a
complete description of the low-lying edge excitations of the Laughlin state.

The edge excitations considered here do not change the total charge of the sys-
tem and hence are neutral. In the following, we will discuss the charged excitations
and calculate the electron propagator from the K-M algebra (7.4.5).

The low-lying charge excitations obviously correspond to adding (removing)
electrons to (from) the edge. These charged excitations carry integer charges and



314 T H E O R Y OF Q U A N T U M HALL STATES

are created by the electron operators \E^. The above theory of edge excitations is
formulated in terms of a one-dimensional density operator p(x). So the central
objective is to write the electron operator in terms of the density operator. The
electron operator on the edge creates a localized charge and should satisfy

As p satisfies the K-M algebra (7.4.5), one can show that

or

where    is given by We see that p(x) can be regarded as a functional
derivative of    i.e.                    Using this relation, one can show that the
operators that satisfy eqn (7.4.6) are given by (Wen, 1992)

Equation (7.4.6) only implies that the operator \t carries the charge e. In order
to identify \P as an electron operator, we need to show that ^ is a fermionic
operator. Using the K-M algebra (7.4.5), we find that (see Problem 7.4.8)

We see that the electron operator * in eqn (7.4.7) is fermionic only when 1/z/ = m
is an odd integer, in which case the FQH state is a Laughlin state.

In the above discussion, we have made an assumption that is not generally true.
We have assumed that the incompressible FQH liquid contains only one compo-
nent of incompressible fluid, which leads to one branch of edge excitations. The
above result implies that, when v ^ 1/m, the edge theory with only one branch
does not contain the electron operators and is not self-consistent. Our one-branch
edge theory only applies to the v = 1/m Laughlin state.

Now let us calculate the electron propagator along the edge of the v = 1/m
Laughlin state. As   is a free phonon field with a propagator

the electron propagator can be easily calculated as

The first thing we see is that the electron propagator on the edge of an FQH state
acquires a non-trivial exponent rn = \jv that is not equal to one. This implies that
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the electrons on the edge of the FQH state are strongly correlated and cannot be
described by Fermi liquid theory. We will call this type of electron state a chiral
Luttinger liquid.

We would like to emphasize that the exponent m is quantized. The quantization
of the exponent is directly related to the fact that the exponent is linked to the
statistics of the electrons (see eqn (7.4.8)). Thus, the exponent is a topological
number that is independent of electron interactions, edge potential, etc. Despite the
exponent being a property of the edge states, the only way to change the exponent
is through a phase transition in the bulk state. Therefore, the exponent can be
regarded as a quantum number that characterizes the topological orders in the bulk
FQH states.

In momentum space, the electron propagator has the form

The anomalous exponent m can be measured in tunneling experiments. From
ImG, we find that the tunneling density of states of electrons is given by

This implies that the differential conductance has the form            for a
metal-insulator-FQH junction.

Problem 7.4.4.
Prove eqn (7.4.8). (Hint: First show that

Problem 7.4.5.
Bosonization and fermionization When m — 1 the discussion in this section implies that
the v = 1IQH edge state can be described by the free phonon theory

In Section 7.4.1, we found that the v = I IQH edge state can be described by the free
chiral fermion model

The normal order is defined as  if fc > 0 and :              if
k < 0. In this problem, we are going to study the direct relationship between the two
descriptions. Switching from the fermion description to the boson description is called
bosonization, and switching from the boson description to the fermion description is called
fermionization.

1. Find the energies of the first five energy levels and their degeneracy for the bosonic
model. Compare your result with that from Problem 7.4.2.
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2. L                 
summation Y^'q is limited to the range for which both the momenta of      and
are within the range [-A, +A]. The normal ordered p / ( x ) has a zero average in the
ground state, which agrees with p in boson theory. Show that pf:k satisfies the same
K-M algebra as pk (see eqn (7.4.5) with v = 1). (Hint: We hav               for large
positive A; and cj_Cfc = 0 for large negative k.)

3. Show

7.4.3 A microscopic theory for the edge excitations

« Relationship between the K-M algebra and the Laughlin wave functions.

• Electron equal-time correlation from the plasma analogue.

In this section, we will present a microscopic theory for the edge excitations
in the Laughlin states. To be specific, let us consider an electron gas in the first
Landau level. We assume that the electrons are described by the ideal Hamiltonian
(7.2.5). The v = 1/3 Laughlin wave function

has zero energy48 and is an exact ground state of the ideal Hamiltonian. In this
section, we will assume that the magnetic length 1B = I. In eqn (7.4.10), Z is
the normalization factor. However, the Laughlin state (7.4.10) is not the only state
with zero energy. One can easily check that the following type of states all have
zero energy:

where P(zi) is a symmetric polynomial of Zj. In fact, the reverse is also true; all
of the zero-energy states are of the form (7.4.1 1). This is because, in order for
a fermion state to have zero energy, * must vanish at least as fast as
when any two electrons i and j are brought together (the possibilit
is excluded by fermion statistics). Because the Laughlin wave function is zero
only when Zi = Zj, then P = "f/^g is a finite function. As * and ^3 are both
anti -symmetric functions in the first Landau level, P i s a symmetric holomorphic
function that can only be a symmetric polynomial.

Among all of the states in eqn (7.4.1 1), the Laughlin state describes a circular
droplet with the smallest radius. All of the other states are a deformation and/or
an inflation of the droplet of the Laughlin state. Thus, the states generated by P
correspond to the edge excitations of the Laughlin state.

48 Here, for convenience, we shift the zero of energy to the zcroth Landau level.

iN K SPACE,WE HAVE WHERE THE
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First, let us consider the zero-energy space (i.e. the space of symmetric poly-
nomials). We know that the space of symmetric polynomials is generated by
the polynomials (through multiplication and addition). Let MQ =

 be ^ total angmar momentum of the Laughlin state (7.4.10). Then the
state * will have an angular momentum M = AM + MO, where AM is the orde
of the symmetric polynomial P. As we have only one order-zero and one order-
one symmetric polynomial, namely          and respectively, the
zero-energy states for AM = 0.1 are non-degenerate. However, when AM = 2,
we have two zero-energy states generated by P = §2 and P — s\. For general
AM, the degeneracy of the zero-energy states is given by

Here we would like to point out that the degeneracy in eqn (7.4.12) is exactly
what we expected from the macroscopic theory. We know that, for a circular
droplet, the angular momentum AM can be regarded as the momentum along
the edge k = 1-n AM/L, where L is the perimeter of the FQH droplet. Accord-
ing to the macroscopic theory, the (neutral) edge excitations are generated by the
density operators pj~. One can easily check that the edge states generated by the
density operators have the same degeneracies as those in eqn (7.4.12) for every
AM. For example, the two states at AM = 2 are generated by and 
where KQ — 2-jr/L. Therefore, the space generated by the K-M algebra (7.4.5) and
the space of symmetric polynomials are identical.

Now let us ask the following physical question: do the symmetric polynomials
generate all of the low-energy states? If this is true, then from the above discussion
we see that all of the low-energy excitations of the HQ droplet are generated by
the K-M algebra, and we can say that eqn (7.4.5) is a complete theory of the low-
lying excitations. Unfortunately, up to now we do not have an analytic proof of the
above statement. This is because, although states which are orthogonal to the states
generated by the symmetric polynomials have nonzero energies, it is not clear that
these energies remain finite in the thermodynamical limit. It is possible that the
energy gap approaches zero in the thermodynamical limit. To resolve this problem,
we currently have to rely on numerical calculations. In Fig. 7.17 we present the
energy spectrum of a system of six electrons in the first twenty-two orbits for
the Hamiltonian introduced at the beginning of this section. The degeneracies of
the zero-energy states at M = 45, ...,51 (or AM = 0,...,6) are found to be
1,1,2,3, 5, 7,11, respectively, which agrees with eqn (7.4.12). More importantly,
we clearly see that a finite energy gap separate all of the other states from the
zero-energy states. Thus, the numerical results imply that all of the low-lying edge
excitations of the Laughlin state are generated by the symmetric polynomials or
the K-M algebra (7.4.5).
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FIG. 7.17. The energy spectrum of a system of six electrons in the first twenty-two orbits for the

Hamiltonian Hy- The degeneracies of the zero-energy states at M = 45,..., 51 are found to be

1,1,2, 3, 5, 7,11, respectively.

In the following, we are going to calculate the equal-time correlation of the
quasiparticle/electron from the Laughlin wave function First, we calculate
the norm of as follows:

where /3 = 2/m. Notice that Z is the partition function of a plasma formed by
N 'charge' m particles, and Z\ is the partition function of the plasma interacting
with a particle of 'charge' n at £. We may write

where E and E\ are the total energies of the plasma. The change in energy E\ —
E is given by the interaction between the added 'charge' n particle at £ and N
'charge' m particles at Zi. When |£| is large, the N 'charge' m particles form a
circular droplet and we may treat them as a point 'charge' mN at z = 0. We
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obtain E\ — E — —nmNlia |£|. For smaller |£|, the 'charge' n changes the shape
of the droplet and

where R — \/mNls is the radius of the droplet. The first term in eqn (7.4. 14) is the
interaction between the 'charge' n and the undeformed droplet. The second term
is the correction due to the deformation of the droplet. Since the plasma behaves
like a metal, this correction can be represented by the interaction of the 'charge' n
with its mirror images at \z\ = R2/\£,\ and z = 0.

In the above discussion, we ignore the discreteness of the charges and treat the
plasma as a continuous medium. We expect this approximation to give rise to the
correct ratio Z\jZ if £ is not too close to the droplet, i.e. |£| — R » IB.

From eqn (7.4.14), we find the norm of |^!>n(£)} to be

is proportional to the electron propagator Ge along the edge of an Ne = N + I
electron system at equal time. Choosing                 and       we obtain

which reduces to eqn (7.4.9) when x is much less than L = 2iR. Here a is a length
scale of order IB- Equation (7.4.16) can be expanded as follows:

Notice that, when n = m,

As the inner product (f |£) is a holomorphic function of £ and an anti-holomorphic
function of £, eqn (7.4.15) implies that



3 2 0 T H E O R Y oi; Q U A N T U M H A L L S T A T E S

From this expansion, we obtain the electron occupation number HM at the angular
momentum M state as follows:

We see that the exact position of the Fermi edge is at the last partially occu-
pied single-particle orbit, i.e. at the angular momentum m(NK — 1) (or &/,• =

 Note that, when                         we have
 In terms of momentum along the edge, we have n-k rc

We find that, unlike a Fermi liquid, the occupation number nk does
not have a jump at the Fermi momentum.

We would like to remark that eqn (7.4,16) is correct only when x is much
larger than the magnetic length 1B, Therefore, eqn (7.4.18) is valid only when

If the dispersion of the edge excitations is linear, then GK can only depend on
x - vt, at low energies. We immediately see that the dynamical electron Green's
function is

When m = 1, the above becomes theelectron Green's function of one-dimensional
free fermions (for A: near a Fermi point).

7.4.4 The hydrodynamical approach—the 2/5 and 2/3 states

• The edge states of hierarchical FQH liquids.

• The structure of electron and quasiparticle operators.

• The edge interaction can modify the exponents of electron/quasiparticle
propagators if and only if the edge excitations can propagate in opposite
directions.

• When v\ = —t/2 = 1» the discussion here describes the one-dimensional
Tomonaga-Luttinger liquid.

In this section, we will use the hydrodynamical approach to study the edge
structures of second-level hierarchical states. We will concentrate on the 2/5 and
2/3 states as examples. In particular, we will study the structures of the electron
and the quasiparticle operators on the edges of the hierarchical states. We will
also see that the 2/3 state contains two edge modes that propagate in opposite
directions, which is quite counter-intuitive.

First, let us consider the v = | FQH state. According to the hierarchica
the v = | FQH state is generated by the condensation of quasiparticles on top
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the          FQH state. Thus, the 2/5 state contains two components of incompress-
ible fluids. To be definite, let us consider a special edge potential such that the FQH
state consists of two droplets (see Fig. 7.14); one is the electron condensate with a
filling fraction       | and radius TI, and the other is the quasiparticle con

(on top of the 1/3 state) with a filling fra            = -^ (no                 
radius r% < r\.

When ri — r% ^> IB, the two edges are independent. Generalizing the hydro-
dynamical approach in Section 7.4.2, we can show that there are two branches of
the edge excitations whose low-energy dynamics are described by

where 1 = 1,2 labels the two branches and vj are the velocities of the edge exci
tations. In eqn (7.4.19), pi are the one-dimensional electron densities. In order for
the Hamiltonian to be bounded from below, we require that z/j-u/ > 0. We find that
the stability of the v = | FQH state requires both of the v/ to be positive.

Generalizing the discussion in Section 7.4.2, the electron operators on the two
edges are found to be

with The electron propagators have the form

According to the hierarchical picture, t         | FQH state is also
by two condensates, an electron condensate with a filling fraction 1 and a hole
condensate with a filling fraction — |. Thus, the above discussion can also be
applied to the v — | FQH state by choosing (t>i, v?) = (1, — |). Again, th
are two branches of the edge excitations, but now with opposite velocities if the
Hamiltonian is positive definite.

As we bring the two edges together                      the interaction between
the two branches of the edge excitations can no longer be ignored. In this case, the
Hamiltonian has the form

where

AND
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The Hamiltonian (7.4.21) can be diagonalized. For z/ii/2 > 0, we may choose

One can check that the ps satisfy

where the new velocities u/ of the edge excitations are given by

We see that there are still two branches of the edge excitations. However, in this
case, the edge excitations with a definite velocity are mixtures of those on the
inner edge and the outer edge. One can also show that, as long as the Hamiltonian
(7.4.21) is bounded from below, the velocities vj of the two branches are always
positive.

After rewriting the electron operator */ in eqn (7.4.20) in terms of pi by
inverting eqn (7.4.22), we can calculate their propagators using eqn (7.4.24) as
follows:

However, when the two edges are close to each other within the magnetic
length, the \1// are no longer the most general electron operators on the edge. The
generic electron operator may contain charge transfers between the two edges. For

where
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the v — 2/5 FQH state, the inner edge and the outer edge are separated by the
v — \ Laughlin state. Thus, the elementary charge transfer operator is given by

which transfers a v\e = e/3 charge from the outer edge to the inner edge. The
generic electron operator then takes the form

To understand this result, we notice that each operator always creates a unit
localized charge and is a fermionic operator, regardless of the value of the integer
n. Therefore, each is a candidate for the electron operator on the edge. For
a generic interacting system, the electron operator on the edge is expected to be
a superposition of different ts, as represented in eqn (7.4.25). Note that
V'-i/i'! - The propagator of can be calculated in a similar way to that outlined
above, and is given by

where the

From eqns (7.4.25) and (7.4.4), we see that the electron propagator has singu-
larities at the discrete momenta k = k\ + nv\[k<i — k\). They are analogous
to the fcjF,3A;£V" singularities of the electron propagator in the interacting
one-dimensional electron systems.

For the v = | FQH state, we have 1/11/2 < 0. In this case, we need to 

are
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to diagonalize the Hamiltonian. One can check that pi also satisfies the K-M
algebra (7.4.23), but now

Again, as long as the Hamiltonian H is positive definite, the velocities vj of
the edge excitations always have opposite signs. The electron operator still has
the form (7.4.25), with The propagator of     is still given by
eqn (7.4.4), with

At equal space, the long-time correlation of the electron operator is
controlled by the total exponent       as follows:

The equal-space electron correlation determines the I—V curve in the edge tun-
neling experiments (see Sections 3.7.4 and 4.2.2). The minimum value of the
exponents controls the scaling properties of the tunneling of elec-
trons between two edges. For example, the tunneling conductance scales at finite
temperatures as

Here ge = 3 for the v — 2/5 state. For the v = 2/3 state, ge depends on the
interactions between the two edges.

Problem 7.4.6.
Bosonization of a one-dimensional interacting fermion system Consider a free one-
dimensional fermion model

The normal order is defined as
Here

1. Let  where the summation           is limited to the range
for which both the momenta of and   are within the range 

and if
when

if
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Let p > where the su      
and(?,j are within the rang                          Here                    We note that/)], i-

creates right-moving excitations near kp, while p-i.k creates left-moving ones near
-&/,'. Show thai pi.k satisfies the K M algebra (7.4.19), with i/t = 1 and /^ = -1.
Show lhat                                                      So the one-dimensional free
fermion system can be bosonized.

2. We can write the electron operator as
ffc is the electron operator nea

the electron operator near — &F- Express c;(a:) in terms of 0/, where 27r~L93.cJ/(.r) —

p,^)-

3. To verify that a one-dimensional interacting fermion system can also be bosonized,
show that an interacting term when lim-
ited neai' to the two Fermi points, becomes                  + constant. Find

4. Calculate ihc electron Green's function              for the interacting model //<) +
Hy.

7.4.5 Bulk effective theory and the edge states

• The structure of the edge states can be directly determined from the bulk
topological order characterized by the /sT-matrix.

In this section, we will directly derive the macroscopic theory of the edge exci-
tations from the Chern-Simons effective theory of the bulk FQH states. In this
approach, we do not rely on a specific construction of the FQH states. The rela-
tionship between the bulk topological orders and edge states becomes quite clear. I
have to warn the reader that the calculations presented in this section are very for-
mal. The correctness of the results is not guaranteed by the formal calculation, bu
by the comparison with other independent calculations, such as the one in Section
7.4.3.

To understand the relationship between the effective theory and the edge states,
let us first consider the simplest FQH state of the filling fraction i/ — l/m and try
to rederive the results of Section 7.4.2 from the bulk effective theory. Such an FQH
state is described by the C/(l) Chern-Simons theory with the action

Suppose that our sample has a boundary. For simplicity, we shall assume that the
boundary is the x axis and that the sample covers the lower half-plane.

There is one problem with the effective action (7.4.30) for FQH liquids with
boundaries. It is not invariant under gauge transformations                    due to
the presence of the boundary, i.e. To solve

vij

IS SUCH THAT

WHERE

IS
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this problem, we will restrict the gauge transformations to be zero on the boundary
f(x,y — 0, t) = 0. Due to this restriction, some degrees of freedom of a^ on the
boundary become dynamical.

We know that the effective theory (7.4.30) is derived only for a bulk FQH state
without a boundary. Here we will take eqn (7.4.30) with the restricted gauge trans-
formation as the definition of the effective theory for an FQH state with a boundary.
Such a definition is definitely self-consistent. In the following, we will show that
such a definition reproduces the results obtained in Section 7.4.2.

One way to study the dynamics of gauge theory is to choose the gauge condition
OQ = 0 and regard the equation of motion for OQ as a constraint. For the Chern-
Simons theory, such a constraint becomes fa = 0. Under this constraint, we may
write Oj as a« = 5$. Substituting this into eqn (7.4.30), one obtains an effective
one-dimensional theory on the edge with the action (Elitzur et al., 1989)

This approach, however, has a problem. It is easy to see that a Hamiltonian asso-
ciated with the action (7.4.31) is zero and the boundary excitations described by
eqn (7.4.31) have zero velocity. Therefore, this action cannot be used to describe
any physical edge excitations in real FQH samples. The edge excitations in FQH
states always have finite velocities.

The appearance of finite velocities for edge excitations is a boundary effect.
The bulk effective theory defined by eqn (7.3.18) does not contain the information
about the velocities of the edge excitations. To determine the dynamics of the edge
excitations from the effective theory, we must find a way to input the information
about the edge velocity. The edge velocities must be treated as the external param-
eters that are not contained in the bulk effective theory. The problem is how to put
these parameters into the theory.

Let us now note that the condition OQ = 0 is not the only choice for the gauge-
fixing condition. A more general gauge-fixing condition has the form

Here ax is the component of the vector potential parallel to the boundary of the
sample and v is a parameter that has the dimension of velocity.

It is convenient to choose new coordinates that satisfy

Note that the gauge potential a^ transforms as djdx^ under the coordinate trans-
formation. We find that in the new coordinates the components of the gauge field
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are given by

The gauge-fixing condition becomes the one discussed before in the new coordi-
nates. It is easy to see that the form of the Chern-Simons action is preserved under
the transformation given in eqns (7.4.33) and (7.4.34):

Repeating the previous derivation, we find that the edge action is given by

In terms of the original physical coordinates, the above action acquires the form

which is a chiral boson theory (Gross et al., 1985; Floreanini and Jackiw, 1988).
From the equation of motion we can see that the edge excita-
tions described by eqn (7.4.35) have a nonzero velocity v and move only in one
direction.

To obtain the quantum theory for eqn (7.4.35), we need to quantize the chiral
boson theory. The quantization can be done in the momentum space:

One can show that, if we regard     with k > 0 as 'coordinates', then       will
be proportional to the corresponding momentum TT^ = dS/dfa- After identifying
the 'coordinates' and the 'momentum', we can obtain the Hamiltonian and the
commutation relation                            which completely define the quantum
system. If we introduce then we find that the quantum system is
described by

The velocity v of the edge excitations enters our theory through the gauge-
fixing condition. Notice that, under the restricted gauge transformations, the
gauge-fixing conditions (7.4.32) with different v cannot be transformed into each
other. They are physically inequivalent. This agrees with our assumption that v in



Therefore, V must be a positive-definite matrix. Using this result, one can show
that a positive eigenvalue of K corresponds to a left-moving branch and a negative
eigenvalue corresponds to a right-moving one.

The effective theory of the v = 2/5 FQH state is given by                   I . As

K has two positive eigenvalues, the edge excitations of the v = 2/5 FQH state
have two branches moving in the same direction. The v — 1 — ̂  FQH state is

described by the effective theory with                   1. The two eigenvalues of K

now have opposite signs; hence, the two branches of the edge excitations move in
opposite directions.

Problem 7.4.7.
Show that, after quantization, the system (7.4.35) is described by eqn (7.4.36).

7.4.6 Charged excitations and the electron propagator

• Generic electron/quasiparticle operators on a generic FQH edge.

We have studied the dynamics of edge excitations in a few simple FQH liquids.
We found that the low-lying edge excitations are described by a free phonon theory.
In this section, we will concentrate on the generic charge excitations. In particular,
we will calculate the propagators of the electrons and the quasiparticles for the
most general (abelian) FQH states. The key point again is to write the electron or
the quasiparticle operators in terms of the phonon operator pi. Once we have done
so, the propagators can be easily calculated because the phonons are free (at low
energies and long wavelength).

The Hamiltonian is given by
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the gauge-fixing condition is physical and actually determines the velocity of the
edge excitations.

The Hamiltonian (7.4.36) is bounded from below only when vm < 0. The
consistency of our theory requires v and m to have opposite signs. Therefore, the
sign of the velocity (the chirality) of the edge excitations is determined by the sign
of the coefficient in front of the Chern-Simons terms.

The above results can be easily generalized to the generic FQH states described
by eqn (7.3.18) because the matrix K can be diagonalized. The resulting effective
edge theory has the form
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We know that, for the FQH state described by eqn (7.3.18), the edge states are
described by the action (7.4.37). The Hilbert space of the edge excitations forms a
representation of the K-M algebra

where                        s the edge density of the Ith condensate in the FQH state,
I, J = !,...,«, and K is the dimension of K. The electron density on the edge is
given by

The dynamics of the edge excitations are described by the Hamiltonian

where Vjj is a positive-definite matrix.
Let us first try to write down the quasiparticle operator \I>j on the edge which

creates a quasiparticle labeled by lj. We know that inserting the quasiparticle on
the edge will cause a change      in the edge density of the Ith condensate (see
eqn (7.3.22)). Here Spi satisfies

Because       is a local operator that only causes a local change in the density, we
have

Using the Kac-Moody algebra (7.4.38), one can show that the quasiparticle
operators that satisfy eqn (7.4.40) are given by

The charge of the quasiparticle \&j is determined from the commutator
and is found to be

From eqns (7.3.24) and (7.4.41), we see that the electron operator can be
written as
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The above operators carry a unit charge, as one can see from eqn (7.4.42). The
commutation of can be calculated as follows:

In the hierarchical basis,           odd, J                                  ven, gT = (1,0, ...,0),
and LI = 1. Using these conditions, we can show that                     , The electron
operators defined in eqn (7.4.43) are indeed fermion operators.

As all of the operators       f°r different choices of L/ carry a unit charge and
are fermionic, each ^e,L can be a candidate for the electron operators. In general,
the true electron operator is the following superposition of the ^fe.LS-

Here, when we say that there are many different electron operators on the edge,
we really mean that the true physical electron operator is a superposition of these
operators.

Using the K-M algebra (7.4.38) and the Hamiltonian (7.4.39), we can calculate
the propagators of a generic quasiparticle operator

(which includes the electron operators for suitable choices of I). First, we note that
the transformation

changes (V, K) to                                          . By choosing a suitable U, K and
V can be simultaneously diagonalized;49 in terms o f p i , eqns (7.4.38) and (7.4.39)
become

where 07 = ±1 is the sign of the eigenvalues of K. The velocity of the edge
excitations created by /?/ is given by

49 As V is a positive-definite symmetric matrix, we can find Ui which transforms V —> Vi =
U\~VUi = I and                                  Note that K\ is a symmetric matrix whose eigenvalues
have the same sign as the eigenvalues of K (although their absolute values may differ). Then we
make an orthogonal transformation to diagonalize K\, namely (Ki)u —> (K^)u = ai vi\~l5ij.
Under the orthogonal transformation, Vi —> ¥2 = 1 is not changed and remains diagonal. Finally,
we use a diagonal matrix to scale K2 to                      This changes                       The
new (V3,Ka) lead to eqn (7.4.45).
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In terms of />/ , the operator ^j has the form

From eqns (7.4.45) and (7.4.46), we see that the propagator of *j has the following
general form:

where v/ = (TI\VI are the velocities of the edge excitations. The total exponent
From the right movers minus the total exponent from the left movers satisfies the
sum rule50

We see that the difference A; is independent of the edge interaction V and is a
topological quantum number. From eqns (7.4.44) and (7.4.48), we see that the
difference is directly related to the statistics of *j. If */ represents the electron
operator (or other fermionic operators), then Aj will be an odd integer. From
eqn (7.4,47), we also see that the operator <3>( creates an excitation with momentum
near to

Problem 7.4.8.
Prove that *; in eqn (7.4.41) satisfies eqn (7.4.40).

7.4.7 Phenomenological consequences of chiral Luttinger liquids

• Three classes of edge states.

• The effects of long-range interactions and impurity scattering.

In the last four sections, we have shown that the electrons at the edges of an
FQH liquid form a chiral Luttinger liquid. As one of the characteristic properties
of chiral Luttinger liquids, the electron and the quasiparticle propagators obtain
anomalous exponents as follows:

These anomalous exponents can be directly measured by tunneling experiments
between the FQH edges.

"" We have used
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FIG. 7.18. (a) Quasiparticle tunneling between two edges of the same FQH state, (b) Electron

tunneling between two edges of the different FQH states.

The following two situations need to be considered separately: (i) two edges
of FQH liquids are separated by an insulator; and (ii) two edges are separated by
an FQH liquid. In case (i), only an electron can tunnel between the edges (see
Fig. 7.18(b)); in case (ii), the quasiparticles supported by the FQH liquid that
separates the two edges can tunnel (see Fig. 7.1 8(a)). The tunneling operator A is
given by A oc \&ei\p|2 ^or case W> wnere *ei and ty£2 are the electron operators
on the two edges. The tunneling operator A has the form A oc ^gi^L f°r case
(ii), where tyqi and ^>q2 are the quasiparticle operators on the two edges. The
physical properties of the tunneling can be calculated from the correlation of the
tunneling operator, which in turn can be expressed as a product of the electron or
quasiparticle propagators on the two edges.

Let g = ge for case (i) and g = gq for case (ii). Then, at zero tempera-
ture, the anomalous exponents of the electron and quasiparticle operators lead
to (A(t)A(Q)) oc |£|~2s, which results in a nonlinear tunneling I—V curve (see
Section 3.7.4)

The noise spectrum of the tunneling current also contains a singularity at the
frequency / = QV/h, i.e.

where V is the voltage difference between the two edges and Q is the elec-
tric charge of the tunneling electron or the tunneling quasiparticle. At a finite
temperature T, the zero-bias conductance also has the following power law
dependence:

We see that the anomalous exponents can be easily measured by the tunneling
experiments. The noise spectrum further reveals the charges of the tunneling
particles.
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The exponents ge and gq are calculated in Section 7.4.6. To summarize the
results in a simple way, it is convenient to divide the FQH edges into the fol-
lowing two classes: (A) all edge excitations move in one direction; and (B) edge
excitations propagate in both directions.

For the class A edges, the exponents ge and gq are directly related to the statis-
tics of the electrons and quasiparticles. In this case, ge and gq are universal and
independent of the details of the electron interactions and the edge potentials.
Table 7.3 lists some FQH states which support the class A edge states, as well
as the corresponding values of the exponents getq and the electric charge of the
associated particles (note that only the minimum values of ge and gq are listed).

TABLE 7.3. (ge, gq, Qq] for some FQH states with the class A edge states.

FQH states v = l/m v = 2/5 v= p/(pq + 1) (331)y=1/2 (332),.=2/5
ge m 3 9 + 1 3 3

Let us discuss how we obtain the above results for the hierarchical states
with the rilling fractions                    even). These states include the
v = 2/5,3/7,2/9,... FQH states. The hierarchical states with           are

described by the p x p matrices K = 1 + qC in the basis where gT = (1,1,...,!).
Here C is the pseudo-identity matrix, namely Cjj = 1, I,J = l,...,p, and

Because all of the edge excitations move in the same direction,
we have

where A/ is given by eqn (7.4.48). The fundamental quasiparticle is given by
(1,0,..., 0) and carries the charge        The exponent in its propagator is

 Tne quasiparticle with the smallest exponent is given b
and carries the charge
(note that we have q ^ 2 and p > 1). Such a quasiparticle (with the charge
dominates the tunneling between two edges of the same FQH fluid at low energies
(see Section 7.4.7).

The electron operators are given by , with I satisfying Y^j h —
pq + 1. The exponent in the propagator is given by                                     The
electron operator with a minimum exponent in its propagator is given by
(q, ..., q, q + 1). The value of the minimum exponent is                Such an
electron operator dominates the tunneling between edges of two different FQH
fluids at low energies.

TABLE 7

FQH states
9e

9q

Charge Qq/e

.3. (ge, gq, Qq) for some FQH states with the class A edge states.

v = l/m
m

l/m
l/m

v = 2/5
3

2/5
2/5

v = p/(pq + 1)
9 + 1

P/(P<?+1)
P/(P9 + 1)

(331)I/=1/2

3
3/8
1/4

(332),=2/B

3
2/5
2/5

tHE WEPONENT IS IS which is lss than
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For the class B edges, ge and gq are not universal. Their values depend on the
electron interactions and the edge potentials.

Problem 7.4.9.
Derive eqn (7.4.49) using the correlation of the tunneling operator (A(t)A(0)) at a finite
voltage V.
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TOPOLOGICAL AND QUANTUM ORDER—BEYOND
LANDAU'S THEORIES

In Chapters 3, 4, and 5, we discussed several interacting boson/fermion sys-
tems in detail. These simple models illustrate Landau's symmetry-breaking theory
(plus RG theory) and Landau's Fermi liquid theory (plus perturbation theory).
The two Landau theories explain the behavior of many condensed matter sys-
tems and form the foundation of traditional many-body theory. The discussions
in the three chapters only scratch the surface of Landau's theories and their rich
applications. Readers who want to learn more about Landau's theories (and RG
theory and perturbation theory) may find the books by Abrikosov et al. (1975),
Ma (1976), Mahan (1990), Negele and Orland (1998), and Chaikin and Lubensky
(2000) useful.

Landau's theories are very successful and for a long time people could not find
any condensed matter systems that could not be described by Landau's theories.
For fifty years, Landau's theories dominated many-body physics and essentially
denned the paradigm of many-body physics. After so many years, it has become a
common belief that we have figured out all of the important concepts and under-
stood the essential properties of all forms of matter. Many-body theory has reached
its end and is a more or less complete theory. The only thing to be done is to apply
Landau's theories (plus the renormalization group picture) to all different kinds of
systems.

From this perspective, we can understand the importance of the fractional quan-
tum Hall (FQH) effect discovered by Tsui et al. (1982). The FQH effect opene
up a new chapter in condensed matter physics. As we have seen in the last chap-
ter, FQH liquids cannot be described by Fermi liquid theory. Different FQH states
have the same symmetry and cannot be described by Landau's symmetry-breaking
theory. Thus, FQH states are completely beyond the two Landau theories. The
existence of FQH liquids indicates that there is a new world beyond the paradigm
of Landau's theories. Recent studies suggest that the new paradigm is much richer
than the paradigm of Landau's theories. Chapters 7 to 10 of this book are devoted
to the new paradigm beyond Landau's theories.

To take a glimpse at the new paradigm of condensed matter physics, we are
going to study quantum rotor systems, hard-core boson systems, and quantum spin
systems, in addition to the FQH states. These systems are all strongly-correlated
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many-body systems. Usually, the strong correlation in these systems wil l lead to
long-range orders and symmetry breaking. However, we have already discussed
long range order and symmetry breaking, using a boson superfluid and a fermion
SOW state as examples. So, to study the world beyond Landau's theories, we con-
centrate on quantum liquid states (such as the FQH states) that cannot be described
by long-range order and symmetry breaking.

These quantum liquid states represent new states of matter that contain a com-
pletely new kind of order—topological/quantum order. I will show that the new
order may have a deep impact on our understanding of the quantum phase and the
quantum phase transition, as well as gapless excitations in the quantum phase.
In particular, topological/quantum order might provide an origin for light and
electrons (as well as other gauge bosons and fermions) in nature.

In this chapter, we will give a general discussion of topological/quantum order
to paint a larger picture. We will use FQH states and Fermi liquid states as exam-
ples to discuss some basic issues in topological/quantum order. The problems and
issues in topological/quantum order are very different from those in traditional
many-body physics. It is very important to understand what the problems are
before going into any detailed calculations.

8.1 States of matter and the concept of order

• Matter can have many different states (or different phases). The concept of
order is introduced to characterize different internal structures in different
states of matter.

• We used to believe that different orders are characterized by their different
symmetries.

At sufficiently high temperatures, all matter is in the form of a gas. Gas is one of
the simplest states. The motion of an atom in a gas hardly depends on the positions
and motion of other molecules. Thus, gases are weakly-correlated systems which
contain no internal structure. However, as the temperature is lowered the motion of
the atoms becomes more and more correlated. Eventually, the atoms form a very
regular pattern and a crystal order is developed. In a crystal, an individual atom can
hardly move by itself. Excitations in a crystal always correspond to the collective
motion of many atoms (which are called phonons). A crystal is an example of a
strongly-correlated state.

With the development of low-temperature technology in around 1900, physi-
cists discovered many new states of matter (such as superconductors and super-
fluids). These different states have different internal structures, which are called
different kinds of orders. The precise definition of order involves phase transition.
Two states of a many-body system have the same order if we can smoothly change



FIG. 8.1. The phase diagram of water.

one state into the other (by smoothly changing the Hamiltonian) without encoun-
tering a phase transition (i.e. without encountering a singularity in the free energy).
If there is no way to change one state into the other without a phase transition, then
the two states will have different orders. We note that our definition of order is a
definition of an equivalent class. Two states that can be connected without a phase
transition are defined to be equivalent. The equivalent class defined in this way is
called the universality class. Two states with different orders can also be said to be
two states belonging to different universality classes. According to our definition,
water and ice have different orders, while water and vapor have the same order
(see Fig. 8.1).

After discovering so many different kinds of order, a general theory is needed
to gain a deeper understanding of the states of matter. In particular, we like to
understand what makes two orders really different, so that we cannot change one
order into the other without encountering a phase transition. The key step in devel-
oping the general theory for order and the associated phase and phase transition
is the realization that orders are associated with symmetries (or rather, the break-
ing of symmetries). We find that, when two states have different symmetries, then
we cannot change one into the other without encountering a singularity in the
free energy (i.e. without encountering a phase transition). Based on the relation-
ship between orders and symmetries, Landau developed a general theory of orders
and transitions between different orders (Ginzburg and Landau, 1950; Landau and
Lifschitz, 1958). Landau's theory is very successful. Using Landau's theory and
the related group theory for symmetries, we can classify all of the 230 different
kinds of crystals that can exist in three dimensions. By determining how symmetry
changes across a continuous phase transition, we can obtain the critical properties
of the phase transition. The symmetry breaking also provides the origin of many
gapless excitations, such as phonons, spin waves, etc., which determine the low-
energy properties of many systems (Nambu, 1960; Goldstone, 1961). Many of
the properties of those excitations, including their gaplessness, are directly deter-
mined by the symmetry. Introducing order parameters associated with symmetries,
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Ginzburg and Landau developed Ginzburg-Landau theory, which became the stan-
dard theory for phase and phase transition. As Landau's symmetry-breaking theory
has such a broad and fundamental impact on our understanding of matter, it
became a corner-stone of condensed matter theory. The picture painted by Lan-
dau's theory is so satisfactory that one starts to have a feeling that we understand,
at least in principle, all kinds of orders that matter can have.

8.2 Topological order in fractional quantum Hall states

• The FQH state opened up a new chapter in condensed matter physics, because
it was the second state to be discovered by experimentalists that could not be
characterized by symmetry breaking and (local) order parameters.

• The FQH states contain a new kind of order—topological order.

However, nature never ceases to surprise us. With advances in semiconduc-
tor technology, physicists learnt how to confine electrons on an interface between
two different semiconductors, and hence made a two-dimensional electron gas
(2DEG). In 1982, Tsui et al. (1982) put a 2DEG under strong magnetic fields
and discovered a new state of matter—the FQH liquid (Laughlin, 1983). As the
temperatures are low and the interaction between the electrons is strong, the FQH
state is a strongly-correlated state. However, such a strongly-correlated state is not
a crystal, as people had originally expected. It turns out that the strong quantum
fluctuations of electrons, due to their very small mass, prevent the formation of
a crystal. Thus, the FQH state is a quantum liquid. (A crystal can melt in two
ways, namely by thermal fluctuations as we raise temperatures, which leads to an
ordinary liquid, or by quantum fluctuations as we reduce the mass of the particles,
which leads to a quantum liquid.)

As we have seen in the last chapter, quantum Hall liquids have many amazing
properties. A quantum Hall liquid is more 'rigid' than a solid (a crystal), in the
sense that a quantum Hall liquid cannot be compressed. Thus, a quantum Hall
liquid has a fixed and well-defined density. When we measure the electron density
in terms of the filling fraction, defined by

we find that all of the discovered quantum Hall states have densities such that
the filling fractions are given exactly by some rational numbers, such as if =
1,1/3, 2/3,2/5,.... Knowing that FQH liquids exist only at certain magical f i l l ing
fractions, one cannot help but guess that FQH liquids should have some internal
orders or 'patterns'. Different magical filling fractions should be due to these dif-
ferent internal 'patterns'. However, the hypothesis of internal 'patterns' appears
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FIG. 8.2. A particle wave on a circle has a quantized wavelength.

to have one difficulty—the FQH states are liquids, and how can liquids have any
internal 'patterns'?

To gain some intuitive understanding of the internal order in FQH states, let
us try to visualize the quantum motion of electrons in an FQH state. We know
that a particle also behaves like a wave, according to quantum physics. Let us
first consider a particle moving on a circle with momentum p. Such a particle
corresponds to a wave with wavelength A = h/p, where h is the Planck constant.
Only waves that can fit into the circle are allowed (i.e. the circle must contain
an integer number of wavelengths) (see Fig. 8.2). Thus, due to quantum physics,
the motion of a particle on a circle is highly restricted (or quantized), and only
certain discrete values of momentum are allowed. Such a quantization condition
can be viewed in a more pictorial way. We may say that the particle dances around
the circle in steps, with a step length given by the wavelength. The quantization
condition requires that the particle always takes an integer number of steps to go
around the circle.

Now let us consider a single electron in a magnetic field. Under the influence
of the magnetic field, the electron always moves along circles (which are called
cyclotron motions). In quantum physics, only certain discrete cyclotron motions
are allowed due to the wave property of the particle. The quantization condition
is such that the circular orbit of an allowed cyclotron motion contains an integer
number of wavelengths. We may say that an electron always takes an integer num-
ber of steps to go around the circle. If the electron takes re steps around the circle,
then we say that the electron is in the nth Landau level. The electrons in the first
Landau level have the lowest energy, and the electron will stay in the first Landau
level at low temperatures.

When we have many electrons to form a 2DEG, electrons not only do their
own cyclotron motion in the first Landau level, but they also go around each other
and exchange places. These additional motions are also subject to the quantization
condition. For example, an electron must take integer steps to go around another
electron. As electrons are fermions, exchanging two electrons introduces a minus
sign into the wave function. Also, exchanging two electrons is equivalent to mov-
ing one electron half-way around the other electron. Thus, an electron must take
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half-integer steps to go half-way around another electron. (The half-integer steps
introduce a minus sign into the electron wave function.) In other words, an elec-
tron must take an odd number of steps to go around another electron. Electrons in
an FQH state not only move in a way that satisfies the quantization condition, but
they also try to stay away from each other as much as possible, due to the strong
Coulomb repulsion and the Fermi statistics between electrons. This means that an
electron tries to take more steps to go around another electron, if possible.

Now we see that, despite the absence of crystal order, the quantum motions
of electrons in an FQH state are highly organized. All of the electrons in an FQH
state dance collectively, following strict dancing rules.

1. All of the electrons do their own cyclotron motion in the first Landau level,
i.e. they take one step to go around the circle.

2. An electron always takes an odd number of steps to go around another
electron.

3. Electrons try to stay away from each other, i.e. they try to take as many steps
as possible to go around another electron.

If every electron follows these strict dancing rules, then only one unique global
dancing pattern is allowed. Such a dancing pattern describes the internal quantum
motion in the FQH state. It is this global dancing pattern that corresponds to the
internal order in the FQH state. Different FQH states are distinguished by their
different dancing patterns.

A more precise mathematical description of the quantum motion of electrons
outlined above is given by the famous Laughlin wave function (Laughlin, 1983)

where m is an odd integer and Zj = Xj + iyj is the coordinate of the j'th electron.
Such a wave function describes a filling fraction v = 1/m FQH state. We see that
the wave function vanishes as Zi —>• Zj, so that the electrons do not like to stay
close to each other. Also, the wave function changes its phase by 2vrm as we move
one electron around another. Thus, an electron always takes m steps to go around
another electron in the Laughlin state.

We would like to stress that the internal orders (i.e. the dancing patterns) of
FQH liquids are very different from the internal orders in other correlated systems,
such as crystals, superfluids, etc. The internal orders in the latter systems can be
described by order parameters associated with broken symmetries. As a result,
the ordered states can be described by the Ginzburg-Landau effective theory. The
internal order in FQH liquids is a new kind of ordering which cannot be described



T O P O I . O G I C A I , O R D E R I N I ' R A C T I O N A L Q U A N T U M H A U L S T A T H S 341

by long-range orders associated with broken symmetries.''1 In 1989, the concept
of 'topological order' was introduced to describe this new kind of ordering in FQH
liquids (Wen, 1990, 1995).

We would like to point out that topological orders are general properties of any states at
zero temperature with a finite energy gap. Non-trivial topological orders not only appear in
FQH liquids, but they also appear in spin liquids at zero temperature. In fact, the concept of
topological order was first introduced (Wen, 1990) in a study of chiral spin liquids {Kalmeyer
and Laughlin, 1987; Khveshchenko and Wiegmann, 1989; Wen etal., 1989). In addition to
chiral spin liquids, non-trivial topological orders were also found in anyon superfluids (Chen
etal., 1989; Fetter ef a/., 1989; Wen and Zee, 1991) and short-ranged resonating valence
bound states for spin systems (Kivelson ef a/., 1987; Rokhsar and Kivelson, 1988; Read
and Chakraborty, 1989; Read and Sachdev, 1991; Wen, 1991 a). The FQH liquid is not
even the first experimentally observed state with non-trivial topological orders. That honor
goes to the superconducting state discovered in 1911 (Onnes, 1911; Bardeen ef a/., 1957).
In contrast to a common point of view, a superconducting state, with dynamical electromag-
netic interactions, cannot be characterized by broken symmetries. It has neither long-range
orders nor local order parameters. A superconducting state contains non-trivial topological
orders. It is fundamentally different from a superfluid state (Coleman and Weinberg, 1973;
Halperin etal., 1974; Fradkin and Shenker, 1979).

It is instructive to compare FQH liquids with crystals. FQH liquids are simi-
lar to crystals in the sense that they both contain rich internal patterns (or internal
orders). The main difference is that the patterns in the crystals are static, related
to the positions of atoms, while the patterns in QH liquids are 'dynamic', asso-
ciated with the ways that electrons 'dance' around each other. However, many of
the same questions for crystal orders can also be asked and should be addressed
for topological orders. We know that crystal orders can be characterized and clas-
sified by symmetries. Thus, one important question is how do we characterize and
classify the topological orders? We also know that crystal orders can be measured
by X-ray diffraction. The second important question is how do we experimentally
measure the topological orders?

In the following, we are going to discuss topological orders in FQH states in
more detail. It turns out that FQH states are quite typical topologically-ordered
states. Many other topologically-ordered states share many similar properties with
FQH states.

8.2.1 Characterization of topological orders

• Any new concepts in physics must be introduced (or defined) via quantities
that can be measured by experiments. To define a physical quantity or concept
is to design an experiment.

51 Although it was suggested that the internal structures of Laughlin stales can be characterised hy
an 'off-diagonal long-range order' (Girvin and MacDonald, 1987), the operator that has long-range
order itself is not a local operator. For local operators, there is no long-range order and there are no
symmetry-breaking Laughlin states.
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• The concept of topological order is (partially) defined by ground-state degen-
eracy, which is robust against any perturbations that can break all of the
symmetries,

In the above, the concept of topological order (the dancing pattern) is intro-
duced through the ground-state wave function. This is not quite correct because
the ground-state wave function is not universal. To establish a new concept, such
as topological order, one needs to find physical characterizations or measurements
of topological orders. In other words, one needs to find universal quantum numbers
that are robust against any perturbation, such as changes in interactions, effective
mass, etc., but which can take different values for different classes of FQH liq
uids. The existence of such quantum numbers implies the existence of topological
orders.

One way to show the existence of topological orders in FQH liquids is to
study their ground-state degeneracies (in the thennodynamical limit). FQH liq-
uids have a very special property. Their ground-state degeneracy depends on the
topology of space (Haldane, 1983; Haldane and Rezayi, 1985). For example, the
v = - Laughlin state has q*1 degenerate ground states on a Riemann surface of
genus g. The ground-state degeneracy in FQH liquids is not a consequence of
the symmetry of the Hamiltonian, The ground-state degeneracy is robust against
arbitrary perturbations (even impurities that break all of the symmetries in the
Hamiltonian) (Wen and Niu, 1990). The robustness of the ground-state degener-
acy indicates that the internal structures that give rise to ground-state degeneracy
are universal and robust, hence demonstrating the existence of universal internal
structures—topological orders.

To understand the topological degeneracy of FQH ground states, we consider
a v = 1/m Laughlin state on a torus. We will use two methods to calculate
the ground-state degeneracy. In the first method, we consider the following tun-
neling process. We first create a quasiparticle-quasihole pair. Then we bring the
quasiparticle all the way around the torus. Finally, we annihilate the quasiparticle-
quasihole pair and go back to the ground state. Such a tunneling process produces
an operator that maps ground states to ground slates. Such an operator is denoted
by Ux if the quasiparticle goes around the torus in the x direction, and Uy if it goes
around the torus in the y direction (see Fig. 8.3(a,b)). Then, the four tunnelings in
the x, y, —x, and — y directions generate UylU~'lUyUx (see Fig. 8.3(c)). We note
that the path of the above four tunnelings can be deformed into two linked loops
(see Fig. 8.3(d)). The two linked loops correspond to moving one quasiparticle
around the other. It gives rise to a phase e2 '^ , where 9 is the statistical angle of the
quasiparticle. For the 1/rn Laughlin state, we have 0 — ir/rn. Therefore, we have



FIG. 8.3. (a) Tunneling in the x direction generates Ux- (b) Tunneling in the y direction generates

Uy. (c) The four tunnelings in the x, y, —x, and — y directions generate U^1U^lUyUx. (d) The

above four tunnelings can be deformed into two linked loops.

As Ux>y acts within the ground states, the ground states form the representation
of the above algebra. The algebra has only one m-dimensional irreducible repre-
sentation. Thus, the 1/m Laughlin state has m x integer number of degenerate
ground states. This approach allows us to see the direct connection between the
quasiparticle statistics and the ground-state degeneracy.

The second way to calculate the ground-state degeneracy is to use the effective
theory (7.3.11). The degenerate ground states arise from the following collective
fluctuations:

where L is the size of the torus in the x and y directions. All of the other fluctu-
ations generate a nonzero 'magnetic' field b = fxy and have a finite energy gap
as one can see from the classical equation of motion. The following Lagrangian
describing the dynamics of the collective excitations in eqn (8.2.1) can be obtained
by substituting eqn (8.2.1) into eqn (7.3.11):

Since the charge of aM is quantized as an integer, the gauge transformation
U(x, y) that acts on the quasiparticle field, tjjq —> Ui^>q, must be a periodic func-
tion on the torus. Thus, the gauge transformation must have the form U(x, y) =
exp (27ri(^ + ^)), where n and m are integers. As the a^ charge of tpq is 1,
such a gauge transformation changes the gauge field a; to a^ = a, — \U~ldiU as
follows:

Equation (8.2.3) implies that (9X, 6y) and (0X + 2-Trn, 9y + 2vrm) are gauge equiv-
alent and should be identified. The gauge-inequivalent configurations are given by
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a point on a torus 0 < Oi < 2vr. As a result, the Lagrangian (8.2.2) describes a
particle with unit charge moving on a torus parametrized by (9X, 6y}.

The first term in eqn (8.2.2) indicates that there is a uniform 'magnetic' field
B = m/27r on the torus. The total flux passing through the torus is equal to 2vr x T
The Hamiltonian of eqn (8.2.2) is given by

The energy eigenstates of eqn (8.2.4) form Landau levels. The gap between the
Landau levels is of order gi, which is independent of the size of the system. The
number of states in the first Landau level is equal to the number of flux quanta pass-
ing through the torus, which is TO in our case. Thus, the ground-state degeneracy
of the 1/m Laughlin state is TO.

To understand the robustness of the ground-state degeneracy, let us add an arbi-
trary perturbation to the electron Hamiltonian. Such a perturbation will cause a
change in the effective Lagrangian, &C(aM). The key here is that 6£.(a/Jl} only
depends on aM through its field strength. In other words, 8C, is a function of e and
b. As the collective fluctuation in eqn (8.2.1) is a pure gauge locally, e and b, and
hence 5C,, do not depend on Oi. The <5£(aM) cannot generate any potential terms
V(0i) in the effective theory of 6*j. It can only generate terms that only depend on
Oi. Such a correction renormalizes the value of g\. It cannot lift the degeneracy.

More general FQH states are described by eqn (7.3.18). When K is diagonal,
the above result implies that the ground-state degeneracy is det(K). It turns out
that, for a generic K, the ground-state degeneracy is also given by det(K). On a
Riemann surface of genus g, the ground-state degeneracy becomes (dei,(K))9.

We see that in a compact space the low-energy physics of FQH liquids are
very unique. There are only a finite number of low-energy excitations (i.e. the
degenerate ground states), yet the low-energy dynamics are non-trivial because the
ground-state degeneracy depends on the topology of the space. Such special low-
energy dynamics, which depend only on the topology of the space, are described
by the so-called topological field theory, which was studied intensively in the
high-energy physics community (Witten, 1989; Elitzur et al., 1989; Frohlich an
King, 1989). Topological theories are effective theories for FQH liquids, just as the
Ginzburg-Landau theory is for superfluids (or other symmetry-broken phases).

The dependence of the ground-state degeneracy on the topology of the space
indicates the existence of some kind of long-range order (the global dancing
pattern mentioned above) in FQH liquids, despite the absence of long-range cor-
relations for all local physical operators. In some sense, we may say that FQH
liquids contain hidden long-range orders.
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8.2.2 Classification of topological orders

• It is important to understand the mathematical framework behind topological
order. (Just like it is important to understand group theory—the mathematical
framework behind the symmetry-breaking order.)

• The understanding of the mathematical framework will allow us to classify all
of the possible topological orders.

A long-standing problem has been how to label and classify the rich topological
orders in FQH liquids. We are able to classify all crystal orders because we know
that the crystal orders are described by a symmetry group. However, our under-
standing of topological orders in FQH liquids is very poor, and the mathematical
structure behind topological orders is unclear.

Nevertheless, we have been able to find a simple and unified treatment for
a class of FQH liquids—abelian FQH liquids (Blok and Wen, 1990a,b; Read,
1990; Frohlich and Kerler, 1991; Frohlich and Studer, 1993). Laughlin states
represent the simplest abelian FQH states that contain only one component of
incompressible fluid. More general abelian FQH states with a filling fraction such
as v = 2/5,3/7,... contain several components of incompressible fluids, and have
more complicated topological orders. The topological orders (or the dancing pat-
terns) in the abelian FQH state can also be described by the dancing steps. The
dancing patterns can be characterized by an integer symmetric matrix K and an
integer charge vector q. An entry of q, q,,, is the charge (in units of e) carried by the
particles in the ith component of the incompressible fluid. An entry of K, AY,, is
the number of steps taken by a particle in the zth component to go around a particle
in the jth component. In the (K,q) characterization of FQH states, the v — l/m
Laughlin state is described by K — 'in, and q = 1, while the // = 2/5 abelian state

is described by K 

All of the physical properties associated with the topological orders can be
determined in terms of K and q. For example, the filling fraction is simply given
by v = q1 K~lq and the ground-state degeneracy on the genus g Riemann surface
is det(K)9. All of the quasiparticle excitations in this class of FQH liquids have
abelian statistics, which leads to the name abelian FQH liquids.

The above classification of FQH liquids is not complete. Not every FQH state
is described by A"-matrices. In 1991, a new class of FQH states—non-abelian
FQH states—was proposed (Moore and Read, 1991; Wen, 199lb). A non-abelian
FQH state contains quasiparticles with non-abelian statistics. The observed filling
fraction v = 5/2 FQH state (Willett etai, 1987) is very likely to be one such state
(Haldane and Rezayi, 1988a,b; Greiter etai, 1991; Read and Green, 2000). Many
studies (Moore and Read, 1991; Blok and Wen, 1992; Iso et aL, 1992; Cappelli
etal., 1993; Wen et at., 1994) have revealed a connection between the topological

and
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orders in FQH states and conformal field theories. However, we are still quite far
from a complete classification of all possible topological orders in non-abe!ian
states.

8.2.3 Edge excitations—a practical way to measure topological orders

• The edge excitations for FQH states play a similar role to X-rays for crystals.
We can use edge excitations to experimentally probe the topological orders
in FQH states. In other words, compared to ground-state degeneracy, edge
excitations provide a more complete definition of topological orders.

Topological degeneracy of the ground states only provides a partial characteri-
zation of topological orders. Different topological orders can sometimes lead to the
same ground-state degeneracy. The issue here is whether we have a more complete
characterization/measurement of topological orders. Realizing that the topological
orders cannot be characterized by local order parameters and long-range corre-
lations of local operators, it seems difficult to find any methods to characterize
topological order. Amazingly, FQH states find a way out in an unexpected fashion.
The bulk topological orders in FQH states can be characterized/measured by edge
excitations (Wen, 1992). This phenomenon of two-dimensional topological orders
being encoded in one-dimensional edge states shares some similarities with the
holomorphic principle in superstring theory and quantum gravity ('t Hooft, 1993;
Susskind, 1995).

FQH liquids as incompressible liquids have a finite energy gap for all of
their bulk excitations. However, FQH liquids of finite size always contain one-
dimensional gapless edge excitations, which is another unique property of FQH
fluids. The structures of edge excitations are extremely rich, which reflects the rich
bulk topological orders. Different bulk topological orders lead to different struc-
tures of edge excitations. Thus, we can study and measure the bulk topological
orders by studying the structures of edge excitations.

As we have seen in the last chapter that, due to the non-trivial bulk topological
order, the electrons at the edges of (abelian) FQH liquids form a new kind of corre-
lated state—chiral Luttinger liquids (Wen, 1992). The electron propagator in chiral
Luttinger liquids develops an anomalous exponent: (c^(t,,x)c(())) oc (x — vt)~!l,
(} / 1. (For Fermi liquids, we have g — 1.) The exponent g, in many cases, is
a topological quantum number which does not depend on detailed properties of
the edges. Thus, g is a new quantum number that can be used to characterize the
topological orders in FQH liquids. Many experimental groups have successfully
measured the exponent g through the temperature dependence of tunneling con-
ductance between two edges (Milliken etal., 1995; Change/ al, 1996), which was
predicted to have the form a ot T29' 2 (Wen, 1992). This experiment demonstrates
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F I G . 8.4. A onc-dimcnsional crystal passing an impurily will generate narrow-band noise in the

voltage drop.

F ( G . 8.5. An FQH fluid passing through a constriction wil l generate narrow-hand noises due to the

hack-scattering of the quasi particles.

the existence of new chiral Luttinger 1 iquids and opens the door to the experimental
study of the rich internal and edge structures of FQH liquids.

The edge states of non-abelian FQH liquids form more exotic one-dimensional
correlated systems which have not yet been named. These edge states were found
to be closely related to conformal field theories in 1 + 1 dimensions (Wen et al.,
1994).

We know that crystal orders can be measured by X-ray diffraction experiments.
In the following, we would like to suggest that the topological orders in FQH
liquids can be measured (in principle) through a noise spectrum in an edge trans-
port experiment. Let us first consider a one-dimensional crystal driven through
an impurity (see Fig. 8.4(a)). Due to the crystal order, the voltage across the
impurity has a narrow-band noise at a frequency of / = I/e if each unit cell
has only one charged particle. More precisely, the noise spectrum has a singu-
larity, i.e. 5(/) ~ A8(f — '). If each uni t cell contains two charged particles
(see Fig. 8.4(b)), then we will see an additional narrow-band noise at f = I/2e,
so that 5(/} ~ B5(f - ^) + A6(f - £). In this example, we see that the
noise spectrum allows us to measure crystal orders in one-dimension. A similar
experiment can also be used to measure topological orders in FQH liquids. Let us
consider an FQH sample with a narrow constriction (see Fig. 8.5). The constric-
tion induces a back-scattering through quasiparticle tunneling between the two
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edges. The back-scattering causes a noise in the voltage across the constriction. In
the weak-back-scattering limit, the noise spectrum contains singularities at certain
frequencies, which allows us to measure the topological orders in the FQH liq-
uids.52 To be more specific, the singularities in the noise spectrum have the form
(see eqn (7.4.49))

The frequencies and the exponents of the singularities (/„, 70) are determined by
the topological orders. For the abelian state characterized by the matrix K and the
charge vector q, the allowed values of the pair (/„, 7^) are given by

where /T = ( / j , ^, • • • ) is an arbitrary integer vector and v = </TA'"1 q is the fillin
fraction. The singularities in the noise spectrum are caused by quasiparticle tun-
neling between the two edges. The frequency of the singularity fa is determined
by the electric charge of the tunneling quasiparticle Qq, i.e. /„ = |^-. The expo-
nent 7a is determined by the statistics of the tunneling quasiparticle 9q, namely

\0 17 = 2^ — 1. Thus, the noise spectrum measures the charge and the statistics of
the allowed quasiparticles, which in turn determines the topological orders in FQH
states.

8.3 Quantum orders

• Quantum states generally contain a new kind of order—quantum order. Quan-
tum orders cannot be completely characterized by broken symmetries and the
associated order parameters.

• Quantum order describes the pattern of quantum entanglements in many-body
ground states.

• The fluctuations of quantum order can give rise to gap less gauge bosons and
gapless fermions. Quantum order protects the gaplessness of these excitations,
just like symmetry protects gapless Nambu-Goldstone bosons in symmetry-
breaking states.

• Topological order is a special kind of quantum order in which all excitations
have finite energy gaps.

52 The discussion presented here applies only to the FQH slates whose edge excitations all propa-
gate in the same direction. This requires, for abelian states, all of the eigenvalues of K to have the
same sian.
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The topological order, by definition, only describes the internal order of gapped
quantum states. Here we make a leap of faith. We will assume that the gap
is not important and that gapless quantum states can also contain orders that
cannot be described by symmetry and long-range correlations. We will call the
non-symmetry-breaking order in quantum ground states the quantum order.

If you believe in this line of thinking, then the only things that need to be done
are to show that quantum orders do exist, and to find mathematical descriptions
(or symbols) that characterize the quantum orders. We will show that quantum
orders do exist in Section 8.3.2 and in Chapter 10. As quantum orders cannot be
characterized by broken symmetries and order parameters, we need to develop a
new theory to describe quantum orders. At present, we do not have a complete
theory that can describe all possible quantum orders. However, in Chapter 9 we
manage to find a mathematical object—the projective symmetry group (PSG)—
that can describe a large class of quantum orders.

One may ask, why do we need to introduce the new concept of quantum order?
What use can it have? To answer such a question, we would like to ask, why do
we need the concept of symmetry breaking? Is the symmetry-breaking description
useful? Symmetry breaking is useful because it leads to a classification of crystal
orders (such as the 230 different crystals in three dimensions), and it determines
the structure of low-energy excitations without the need to know the details of a
system (such as three branches of phonons from three broken translational symme-
tries in a solid) (Nambu, 1960; Goldstone, 1961). The quantum order and its PSG
description are useful in the same sense; a PSG can classify different quantum
states that have the same symmetry (Wen, 2002c), and quantum orders deter-
mine the structure of low-energy excitations without the need to know the details
of a system (Wen, 2002a,c; Wen and Zee, 2002). The main difference between
symmetry-breaking orders and quantum orders is that symmetry-breaking orders
generate and protect gapless Nambu-Goldstone modes (Nambu, 1960; Goldstone,
1961), which are scalar bosonic excitations, while quantum orders can generate
and protect gapless gauge bosons and gapless fermions. Fermion excitations can
even emerge in pure local bosonic models, as long as the boson ground state has a
proper quantum order.

One way to visualize quantum order is to view quantum order as a description
of the pattern of the quantum entanglement in a many-body ground state. Different
patterns of entanglement give rise to different quantum orders. The fluctuations of
entanglement correspond to collective excitations above a quantum-ordered state.
We will see that these collective excitations can be gauge bosons and fermions.

The concept of topological/quantum order is also useful in the field of quantum
computation. People have been designing different kinds of quantum-entangled
states to perform different computing tasks. When the number of qubits becomes
larger and larger, it is more and more difficult to understand the pattern of quantum
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entanglements. One needs a theory to characterize different quantum entangle-
ments in many-qubit systems. The theory of topological/quantum order (Wen,
1995, 2002c) is just such a theory. Also, the robust topological degeneracy in
topo logic ally-ordered states discovered by Wen and Niu (1990) can be used in
fault-tolerant quantum computation (Kitaev, 2003).

In the following, we will discuss the connection between quantum phase tran-
sitions and quantum orders. Then we will use the quantum phase transitions in free
fermion systems to study the quantum orders there.

8.3.1 Quantum phase transitions and quantum orders

• Quantum phase transitions are defined by the singularities of the ground-state
energy as a function of the parameters in the Hamiltonian.

Classical orders can be studied through classical phase transitions. Classical
phase transitions are marked by singularities in the free-energy density /. The
free-energy density can be calculated through the partition function as follows:

where h(<j>) is the energy density of the classical system and Vsp&ce is the volume
of space.

Similarly, to study quantum orders we need to study quantum phase transitions
at zero temperature T — 0. Here the energy density of the ground state plays the
role of the free-energy density. A singularity in the ground-state-energy density
marks a quantum transition. The similarity between the ground-state-energy den-
sity and the free-energy density can be clearly seen in the following expression for
the energy density of the ground state:

where £(</>) is the Lagrangian density of the quantum system and Vspace-fime is the
volume of space-time. Comparing eqns (8.3.1) and (8.3.2), we see that a classical
system is described by a path integral of a positive functional, while a quantum
system is described by a path integral of a complex functional. In general, a quan-
tum phase transition, marked by a singularity of the path integral of a complex
functional, can be more general than classical phase transitions that are marked by
a singularity of the path integral of a positive functional.



Fro. 8.6. The two sets of oriented Fermi surfaces in (a) and (h) represent two different quantum

orders. The two possible transition points between the (wo quantum orders in (a) and (b) arc described

by the Fermi surfaces in (c) and (d).

8.3.2 Quantum orders and quantum transitions in free fermion systems

• Free fermion systems contain quantum phase transitions that do not change
any symmetry, indicating that free fermion systems contain non-trivial
quantum order.

• Different quantum orders in free fermion systems are classified by the
topologies of a Fermi surface.

Let us consider a free fermion system with only the translational symmetry and
the f/(l) symmetry from the fermion number conservation. The Hamiltonian has
the form

with tl • = iji. The ground state is obtained by filling every negative energy state
with one fermion. In general, the system contains several pieces of Fermi surfaces.

To understand the quantum order in the free fermion ground state, we note
that the topology of the Fermi surfaces can change in two ways as we continu-
ously change tij\ a Fermi surface can shrink to zero (Fig. 8.6(d)); and two Ferm
surfaces can join (Fig, 8.6(c)). When a Fermi surface is about to disappear in a
(/-dimensional system, the ground-state-energy density has the form

where '...' represents the non-singular contribution and the symmetric matrix M
is positive (or negative) definite. We find that the ground-state-energy density has
a singularity at fi = 0, i.e. PK = c^'2+d^2&(/i) + .... where B(x > 0) = 1
and 6(x < 0) = 0. When two Fermi surfaces are about to join, the singularity is
still determined by the above equation, but now M has both negative and positive
eigenvalues. The ground-state-energy density has a singularity of the form p£ =
c(j,('2+cf>/26(fi) +... when d is odd and p^ — cp^+d^'2 log \p,\ + ... when d is even.
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The singularity of the ground-state-energy density at fj, = 0 indicates a quan-
tum phase transition. This kind of transition was first studied by Lifshitz (1960).
Clearly, there is no change of symmetry across the transition and there is no local
order parameters to characterize the phases on the two sides of the transition. This
suggests that the two states can only be distinguished by their quantum orders.
As the fi, = 0 point is exactly the place where the topology of the Fermi surface
changes, we find that the topology of the Fermi surface is a 'quantum number' that
characterizes the quantum order in a free fermion system (see Fig. 8.6). A change
in the topology signals a continuous quantum phase transition that changes the
quantum order.

Problem 8.3.1.
Consider a two-dimensional spin-1/2 free electron system. As we change the chemical
potential /*, the system undergoes a quantum phase transition, as illustrated in Fig. 8.6(d).
Find the singular behavior of the spin susceptibility near the transition point /ic.

8.4 A new classification of orders

• Quantum orders have many classes. FQH states and free fermion systems
represent only two of the many classes of quantum orders.

The concept of topological/quantum order allows us to have a new classi-
fication of orders, as illustrated in Fig. 8.7. According to this classification, a
quantum order is simply a non-symmetry-breaking order in a quantum system,
and a topological order is simply a quantum order with a finite energy gap.

F1 c. 8.7. A new classification of orders. The phases in the shaded boxes can he described Landau's

theories. Other phases are beyond Landau's theories.
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From the FQH states and the Fermi liquid states discussed above, we see that
quantum order can be divided into several different classes. The FQH states and
the free fermion systems only provide two examples of quantum orders. In the
next few chapters, we will study quantum orders in some strongly-correlated sys-
tems. We will show that these quantum orders belong to a different class, which is
closely related to a condensation of nets of strings in the correlated ground state.
Chapter 9 studies and classifies this class of quantum order using a projective con-
struction (i.e. the slave-boson approach). Chapter 10 relates the quantum-ordered
state studied in Chapter 9 to string-net-condensed states.
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MEAN-FIELD THEORY OF SPIN LIQUIDS AND
QUANTUM ORDER

• The mean-field theory of the spin-liquid state using the slave-boson approach
(or projective construction).

• The importance of the gauge interaction and how to apply the mean-field the-
ory (with the gauge interaction) to study the physical properties of the spin
liquids.

• The characterization of the spin liquids and the concept of topological order
and quantum order.

In this chapter, we are going to develop a mean-field theory for the spin-liquid
state. Here by 'spin-liquid state' we mean an insulator with spin-rotation symme-
try and with an odd number of electrons per unit cell. Usually, a state with an odd
number of electrons per unit cell has a half-filled band and is a conductor. Thus, the
spin liquids, if they exist, are very unusual states. The spin liquids are so strange
that many people do not believe that they can ever exist. Indeed, even now, we
do not know of any spin Hamiltonian that can be shown to reliably give rise to a
spin-liquid ground state.

For those who believe in the existence of spin liquids, they have to accept
or believe the following strange (or fascinating) properties of spin liquids, (i)
The excitations in spin liquids always carry fractional quantum numbers, such
as neutral spin-1/2, which are impossible to obtain from any collection of elec-
trons. Sometimes excitations can even carry fractional statistics, (ii) Different spin
liquids cannot be distinguished by their symmetry properties. Spin liquids are
examples of quantum-ordered states, (iii) The ground states of gapped spin liquids
always have topological degeneracy, which cannot be related to any symmetry, (iv)
Spin liquids always contain certain kinds of gauge fluctuations.

In this chapter, we will assume that spin liquids do exist and develop a mean-
field theory for spin liquids. The mean-field theory allows us to understand some
physical properties of spin liquids. After including important mean-field fluc-
tuations, we show that some of the mean-field states are stable against these
fluctuations and represent real spin-liquid states. As spin liquids are typical states
with non-trivial topological/quantum orders, we will use the spin liquids to develop
a theory of quantum orders.
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9.1 Projective construction of quantum spin-liquid states

In this section, we are going to use the slave-boson approach (or the projective
construction) (Baskaran et ai, 1987; Affleck et al, 1988; Baskaran and Anderson
1988; Dagotto et al, 1988; Wen and Lee, 1996; Senthil and Fisher, 2000) to con
struct two-dimensional spin liquids. The gauge structure discovered by Baskaran
and Anderson (1988) in the slave-boson approach plays a crucial role in our
understanding of strongly-correlated spin liquids. In addition to the slave-boson
approach, one can also use another type of projective construction—the slave-
fermion or Schwinger boson approach—to construct spin-liquid states (Arovas and
Auerbach, 1988; Read and Sachdev, 1991; Sachdev and Park, 2002). As the slave-
fermion approach can only lead to spin liquids with finite energy gaps, here we
will concentrate on the slave-boson approach.

9.1.1 Mean-field theory of spin-liquid states

• A mean-field theory of spin liquids can be obtained from a projective
construction.

• Mean-field theory and the mean-field ansatz of the 7r-flux phase.

• Gauge fluctuations of OQ(*) impose the constraint.

Let us consider a Hubbard model (5.5.1) on a two-dimensional square lattice.
At half-rilling, the Hubbard model reduces to the Heisenberg model as follows:

We would like to point out that the above spin-1/2 model can also be viewed as a
hard-core boson model, where | j) corresponds to an empty site and 1} corre-
sponds to a site occupied by one boson. The above Hamiltonian is hard to solve.
So we use a mean-field approximation to understand its physical properties. In the
mean-field approximation, we replace one of the Si by its quantum average (Si)
and obtain the following mean-field Hamiltonian:

The mean-field Hamiltonian Hmc.m is easy to solve and we can obtain the ground
state of Hmi.tm, namely |<&mean}- The only thing we need to do is to choose the
values of {S^} carefully, so that they satisfy the so-called self-consistency equation

This is the standard mean-field approach for spin systems.
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The problem with the above standard mean-field approach is that it can only
be used to study the ordered spin states, because we assume that at the begin-
ning (Si} ^ 0. For a long time, it seemed impossible to have a mean-field
theory for spin liquids. In 1987, we finally found a strange trick — the slave-boson
approach53 — to do so (Baskaran et al, 1987). To obtain the mean-field ground
state of spin liquids, we introduce the spinon operators fia, a = 1,2, which are
spin- 1/2 charge-neutral operators. The spin operator Si is represented by

In terms of the spinon operators, the Hamiltonian (9.1.1) can be rewritten as

Here we have used cra/g • craipi = 2fiap>5Q'p — 5ap$a'f)' and rii is the number of
fermions at site i. The second term in eqn (9.1.3) is a constant and will be dropped
in the following discussions. Notice that the Hilbert space of eqn (9.1.3) with four
states per site is larger than that of eqn (9.1.1), which has two states per site. The
equivalence between eqn (9.1.1) and eqn (9.1.3) is valid only in the subspace where
there is exactly one fermion per site. Therefore, to use eqn (9.1.3) to describe the
spin state, we need to impose the constraint (Baskaran et al, 1987; Baskaran and
Anderson, 1988)

The second constraint is actually a consequence of the first one.
A mean-field ground state at zeroth-order is obtained by making the following

approximations. First we replace the constraint (9.1.4) by its ground-state average

Such a constraint can be enforced by including a site-dependent and time-
independent Lagrangian multiplier oo(*)(/jQ;/ia — 1) in the Hamiltonian. Second,
we replace the operator fiafja by its ground-state expectation value Xij> again
ignoring their fluctuations. In this way, we obtain the zeroth-order mean-field

53 The slave-boson and the slave-fermion are two very strange and confusing terms. The slave-
boson approach has no bosons and the slave-fcrmion approach has no fermions. This is why I prefer
to use projective construction to describe the two approaches.
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Hamiltonian

The Xij in eqn (9.1.6) must satisfy the self-consistency condition

and the site-dependent chemical potential ao(») is chosen such that eqn (9.1.5)
is satisfied by the mean-field ground state. For convenience, we will call Xij th£

'ansatz' of the spin-liquid state.
Let Xij be a solution of eqn (9.1.7) and let a(i) be a solution of eqn (9.1.5).

Such an ansatz corresponds to the mean-field ground state. As Xij and OQ do
not change under the spin-rotation transformation, the mean-field ground state
is invariant under the spin-rotation transformation. If we ignore the fluctuations of
Xij and a(i). then the excitations around the mean-field state are described by

We see that the excitations in the zeroth-order mean-field theory are free spinons
described by /ja. The spinons are spin- 1/2 neutral fermions. It is amazing to see
that fermionic excitations can emerge from a purely bosonic model eqn (9.1.1).

Now the question is whether we should trust the mean-field result. Should we
believe in the existence of spin liquids with spin- 1/2 neutral fermionic excitations?
One way to check this is to include the fluctuations around the mean-field ansatz,
and to see if the fluctuations alter the mean-field result. So, in the following, we
will consider the effects of fluctuations.

First, we would like to point out that, if we had included the fluctuations (i.e.
the time dependence) of the OQ, then the constraint (9. 1.5) would have become the
original constraint (9.1 .4). To see this, let us consider the path integral formulation

We see that the integration of a time-dependent OQ(*, t) produces a constraint

which is enforced at every site i and at every time t. We also note that the integra-
tion of Xij(t) will reproduce the original Hamiltonian (9.1.3). Thus, eqn (9.1.8) is

of H Mean:
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an exact representation of the spin model (9.1.3). The fluctuations in Xij and »o(*)
describe the collective excitations above the mean-field ground state.

Here Xij has two kinds of fluctuation, the amplitude fluctuations and the phase
fluctuations. The amplitude fluctuations have a finite energy gap and are not essen-
tial in our discussion. So here we will only consider the phase fluctuations a^-
around the mean-field ansatz Xij as follows:

Including these phase fluctuations and fluctuations of ao, the mean-field Hamilto-
nian becomes

We would like to call eqn (9.1.10) the first-order mean-field Hamiltonian. From
eqn (9.1.10), we see that the fluctuations described by ao and a^ are simply a
[/(!) lattice gauge field (see eqn (6.4.9)) (Baskaran and Anderson, 1988; Lee and
Nagaosa, 1992). The Hamiltonian is invariant under the gauge transformation

So, in first-order mean-field theory, the excitations are described by spinons cou
pled to the £7(1) gauge field (instead of free spinons in the zeroth-order mean-field
theory).

In the usual mean-field theory, we make an approximation to the interacting
Hamiltonian to simplify the problem. The Hilbert space is not changed by the
mean-field approximation. The projective construction (or slave-boson approach)
is very different in this aspect. Not only is the Hamiltonian changed, but the
Hilbert space is also changed. This makes the mean-field results from the projec-
tive construction not only quantitatively incorrect, but also qualitatively incorrect.
For example, the mean-field ground state |*mean) (the ground state of Hmean in
eqn (9.1.6)) is not even a valid spin wave function because some sites can have
zero or two fermions. However, do not give up. In the usual mean-field theory, we
can improve the approximation quantitatively by including fluctuations around the
mean-field state. In the above, we see that, in the projective construction, we can
improve the approximation qualitatively and recover the original Hilbert space by
including gauge fluctuations (ao, a^-) around the mean-field state. Thus, to obtain
even qualitative results from the projective construction, it is important to include,
at least, the gauge fluctuations around the mean-field state. In other words, we cut
a spin into two halves in the projective construction of spin liquids. It is important
to glue them back together to obtain the correct physical results.

According to zeroth-order mean-field theory, the low-energy excitations in the
spin liquids are free spinons. From the above discussion, we see that such a result
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is incorrect. According to first-order mean-field theory, spinons interact via gauge
fluctuations. The gauge interaction may drastically change the properties of the
spinons. We wi l l return to this problem later.

Problem 9.1.1.
Prove eqn (9.1.3).

9.1.2 To believe or not to believe

• The deconfined phase of first-order mean-field theory leads to new states of
matter—quantum-ordered states.

• The projection to the physical spin wave function and the meaning of the E/(l)
gauge structure.

• Emergent gauge bosons and fermions as fluctuations of entanglements.

According to first-order mean-field theory, the fluctuations around the mean-
field ground state are described by gauge fields and fermion fields. Remember
that our original model is just an interacting spin model which is a purely bosonic
model. How can a purely bosonic model have an effective theory described by
gauge fields and fermion fields? This is incredible. Let us examine how we get
here. We first split the bosonic spin operator into a product of two fermionic oper-
ators (the spinon operators). We then introduce a gauge field to glue the spinons
back into a bosonic spin. From this point of view, it looks like the first-order mean-
field theory is just a fake theory. It appears that the gauge bosons and the fermions
are fake. In the end, all we have are the bosonic spin fluctuations.

However, we should not discard first-order mean-field theory too quickly. It can
actually reproduce the above picture of bosonic spin fluctuations if the gauge field
is in a confining phase (see Section 6.4.3). In the confining phase, the spinons inter-
act with each other through a linear potential and can never appear as quasiparticles
at low energies. The gauge bosons have a large energy gap in the confining phase,
and are absent from the low-energy spectrum. The only low energy excitations are
the spinon pairs which correspond to the bosonic spin fluctuations. So first-order
mean-field theory may be useless, but it is not wrong. It is capable of producing
pictures that agree with common sense (although through a long detour).

On the other hand, first-order mean-field theory is also capable of producing
pictures that defy common sense when the gauge field is in a deconfined phase. In
this case, the spinons and gauge bosons will appear as well-defined quasiparticles
The question is do we believe the picture of deconfined phase? Do we believe the
possibility of emergent gauge bosons and fermions from a purely bosonic model?
Clearly, the projective construction outlined above is far too formal to convince
most people to believe such drastic results.
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I have to say that this business of cutting spins into two halves and gluing them
back together turns off a lot of people. It is hard to see that any new physical
insights and results can possibly be obtained by such a formal manipulation. If any
new results do appear from this approach, then many people will attribute them
to artifacts of this strange construction rather than true physical properties of the
spin liquids. Indeed, the projective construction is very formal, but it is also a gift
beyond its time. We now know that what the projective construction really does
is to produce a string-net-condensed state. String-net condensation gives rise to a
new type of correlated state that has non-trivial quantum orders (see Chapter 10).
So, believe me that the striking results from the projective construction can be
trusted, once we properly include the effects of gauge fluctuations.

Here let us try to understand the physical picture behind the projective con-
struction, without using the picture of string-net condensation. First, we need to
understand how a mean-field ansatz Xij is connected to a physical spin wave func-
tion which has exactly one fermion per site. We know that the mean-field wave
state l^mean) (the ground state of Hmeail) is not a valid wave function for the
spin system, because it may not have one fermion per site. To connect this to a
physical spin wave function, we need to include fluctuations of OQ to enforce the
one-fermion-per-site constraint. With this understanding, we may obtain a valid
wave function of the spin system, *Spin({«»}). by projecting the mean-field state
to the subspace of one fermion per site:

where |0/) is the state with no /-fermions, i.e. /ia|0/} = 0. Equation (9.1.12)
connects the mean-field ansatz (including its fluctuations) to the physical spin wave
function. It allows us to understand the physical meaning of the mean-field ansatz
and mean-field fluctuations.

For example, the projection (9.1.12) gives the gauge transformation (9.1.11)
a physical meaning. The two mean-field ansatz Xij and Xij> related by a gauge
transformation

give rise to the same projected spin state

For different choices of Xij, me ground states of the H mefm in eqn (9.1.6) corre-
spond to different mean-field wave functions l^mean)- After projection, they lead
to different physical spin wave functions ̂ ^ ({«»})• Thus, we can regard Xij
as labels that label different physical spin states. Equation (9.1.14) tells us that the
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label is not a one-to-one label, but a many-to-one label. This property is impor-
tant for us to understand the unusual dynamical properties of the Xij fluctuations.
Using many labels to label the same physical state also makes our theory a gauge
theory according to the definition in Section 6.1.1.

Let us consider how the many-to-one property or the gauge structure of Xij
affect its dynamical properties. If Xij was a one-to-one label of physical states,
then Xij would be like the condensed boson amplitude (<^(x, i)} in a boson super-
fluid or the condensed spin moment (Si(t~)) in an SDW state. The fluctuations of
Xij would correspond to a bosonic mode similar to a spin wave mode.54 However,
Xij does not behave like local order parameters, such as (0(a;,t)} and (Si(t)},
which label physical states without redundancy. As a many-to-one label, some
fluctuations of Xij do not change the physical state and are unphysical. These fluc-
tuations are called pure gauge fluctuations. For a generic fluctuation 5xij, part of
it is physical and the other part is unphysical. The effective theory for Xij must be
gauge invariant. This drastically changes the dynamical properties of the fluctua-
tions. It is this property that makes fluctuations of Xij behave like gauge bosons,
which are very different from the sound mode and the spin wave mode.

We have argued that the phase fluctuations of Xij correspond to gauge fluctu-
ations. The projective construction (9.1.12) allows us to obtain the physical spin
wave function that corresponds to a gauge fluctuation a^-:

Similarly, the projective construction also allows us to obtain the physical spin
wave function that corresponds to a pair of spinon excitations. We start with the
mean-field ground state with a pair of particle-hole excitations. After the projec-
tion (9.1.12), we obtain the physical spin wave functions that contain a pair of
spinons:

If you are not satisfied with the physical picture presented and still do not
believe that the projective construction can produce emergent gauge bosons and
fermions, then you may go directly to Chapter 10. In Chapter 10, we construct
several spin models which can be solved exactly (or quasi-exactly) by the pro-
jective construction. These models have emergent Z2/U(1) gauge structure and
fermions. The exactly soluble models reveal the string-net origin of the emergent
gauge bosons and fermions. In the rest of this chapter we assume that the projective
construction makes sense and study its consequences.

54 More precisely, the spin wave mode corresponds to scalar bosons. The fluctuations of the local
order parameters always give rise to scalar bosons.
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9.1.3 The dimer state

• The first-order mean-field theory for the dimer state has a confining (7(1)
gauge interaction. Only spinon-pair bound states appear as physical excita-
tions.

Let us first discuss a specific mean-field ground state, the dimer state (Majum-
dar and Ghosh, 1969; Affleck et at,, 1987; Read and Sachdev, 1989) in the
Heisenberg model with nearest-neighbor coupling:

The dimer state is described by the following ansatz:

and ao(i) = 0. One can check that the self-consistency equation (9.1.7) and
the constraint (9.1.5) are satisfied by the mean-field ground states of //,nean in
eqn (9.1.6). The spinon spectrum has no dispersion in the mean-field dimer state:

The valence band with E^ = —\J\ is completely filled by the spinons. The spin
excitations have a finite energy gap in the dimer state. It is also clear that the dimer
state breaks the translational symmetry in the x direction.

In zeroth-order mean-field theory, the excitations above the dimer ground state
are spin-1/2 spinons. Such a result is obviously wrong because, physically, the
dimer state is formed by spin-singlet dimers filling the lattice (see Fig. 9.1). The
elementary excitations correspond to spin-triplet dimers, which are bosonic spin-1

F I G . 9 .1. A dimer state is formed by spin-singlet pairs. Changing a dimer into a triple! state creates

a spin-1 excitation. Two separated spin-1/2 excitations are connected by a siring of displaced dimers.



P R O J H C T I V L C O N S T R U C T I O N O F Q U A N T U M S P I N - L I Q U I D S T A T U S 3 6 3

F I G . 9.2. (a) The mean-field ansatz of the 7r-ilux state. Here xij = i \ i 'n the direction of the
arrow, (b) The t'ermion dispersion in the ir-flux state. The valence band is filled. The low-energy
excitations exist near ihe four Fermi points, where the valence band and the conduction band touch.

excitations. In first-order mean-field theory, the spinons are coupled to the U(\)
gauge field. In 2 + 1 dimensions, f/(l) gauge theory is confining. Thus, individ-
ual spinons are not observable. Only bosonic bound states (which carry integral
spin) can appear in the physical spectrum. If we do create two separated spin-1/2
excitations, then, from Fig. 9.1, we see that they are connected by a string of dis-
placed dimers. The string leads to a linear confining interaction between the two
spin-1/2 excitations, which agrees with the picture obtained from first-order mean-
field theory. We see that first-order mean-field theory gives us qualitatively correct
results.

9.1.4 The 7r-flux state

• After projection, the mean-field 7r-flux phase gives rise to a translation, a
rotation, and a parity-symmetric spin-liquid wave function.

• The low-energy effective theory (the first-order mean-field theory) of the TT-
flux phase contains gapless Dirac fermions coupled to a t/(l) gauge field. The
Dirac fermions carry spin-1/2 and are electrically neutral,

• The concepts of stable, marginal, and unstable mean-field states.

• First-order mean-field theory is reliable only for stable mean-field states or
marginal mean-field states with weak fluctuations. The 7r-flux phase is not
one of these mean-field states.

The second mean-field state that we are going to study is the 7r-flux state
(Affleck and Marston, 1988; Kotliar, 1988) for the nearest-neighbor Heisenberg
model. The Tr-flux state is given by the ansatz (see Fig. 9.2)
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The mean-field Hamiltonian (9.1.6) is equivalent to an electron hopping problem
with TT flux per plaquette, because around a plaquette Hx*? ^ el7r- The spinon
spectrum in the vr-flux phase is given by (see Fig. 9.2)

where 
minimizing the mean-field energy

We find that

In addition to the vr-flux phase, there are many other different mean-field ansatz
which locally minimize the mean-field energy. However, for the Heisenberg model
with only nearest-neighbor coupling J\, the vr-flux phase has the lowest mean-field
energy among translationally-invariant spin liquids.

Let us discuss some physical properties of the vr-flux phase. First, let us con-
sider the symmetry of the mean-field state. We know that mean-field theory is
designed to describe a spin state whose wave function is given by *Spin({a^}),
where a.^ — ±1/2 are the values of Sz at the site i. When we say 'the symmetry
of the mean-field state', we really mean 'the symmetry of the corresponding spin
wave function ^spind^})'- The corresponding spin wave function is obtained
by projecting the mean-field state to the subspace of one fermion per site (see
eqn(9.1.12)).

As the mean-field ansatz Xij does not depend on the spin orientation, in the
mean-field ground state every negative energy level is occupied by a spin-up and a
spin-down fermion. Thus, the mean-field state I'J/me'an) is spin-rotation invariant.
As a result, the physical spin wave function obtained by the projection is also
spin-rotation invariant.

However, the mean-field ansatz is not invariant under translation in the x
direction by one lattice spacing. Therefore, the mean-field state l^nSim) breaks
the translational symmetry. This seems to suggest that the physical spin wave
function also breaks the translational symmetry. In fact, the physical spin wave
function does not break the translational symmetry. This is because the trans-
lated ansatz (Xi,i+x,Xi,i+y) = (-iXi(-)Zx, i%l) is related to the original ansatz
(Xi,i+x,Xi,i+y) = (iXi(-)S i*i) by the gauge transformation (9.1.11) with
ei6>,; __ (_)*«. Therefore, the two ansatz give rise to the same physical spin
wave function. The projected spin wave function is invariant under translation.
The 7r-flux phase is a translationally-symmetric spin liquid.

and The valyue of can be obtained by
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Second, we consider the properties of low-energy excitations. The Fermi sur-
faces at half-filling (i.e. one fermion per site on average) are points at (kx, ky) =
(0,0) and (0, TT). At the mean-field level, the Tr-flux state contains gapless spin
excitations which correspond to the particle-hole excitations across the Fermi
points. In addition to these gapless spin excitations, the mean-field flux state also
contains U(l} gauge fluctuations (0^,00). In first-order mean-field theory, the
low-energy excitations are described by gapless spinons coupled to the U(l) gauge
field.

If we ignore the interaction between the spinons fi and the gauge fluctua-
tions (a^-, ao), then the vr-nux phase will have gapless neutral spin-1/2 excitations
described by fermionic quasiparticles. However, one should not believe this strik-
ing result unless it is shown that this result remains valid after the inclusion of the
gauge interaction.

Now let us consider the interactions between the spin excitations and the gauge
fluctuations. For convenience, let us add the Maxwell term — /QJ) to the
Hamiltonian (9.1.10), where g is a coupling constant and f^v is the field strength
of dp. The original theory corresponds to the g —> oo limit. The Maxwell term
is generated in the process of integrating out the fermions. Let 3(A) be the cou-
pling constant obtained by integrating out the fermions between the energy scales
A and AQ, where AQ is the energy cut-off in the original theory. Using a dimen-
sional analysis, we find that dg~2(A) ~ dA/A2 (note that d<p2(A) oc dA). Thus
.^(M-A^-An1.

Due to the coupling with the gauge field, a spinon creates an 'electric' field
/oi of the gauge field (a0, ay) (notice that a spinon carries a unit charge of the
gauge field). The potential energy between a particle-hole pair in a particle-hole
excitation is

We find that the particle and the hole interact at long distances. To estimate the
strength and effect of the interaction, let us compare the kinetic energy EK ~
l/|ri — ra and the potential energy V(TI — r2) of the particle-hole pair. As
g1 ~ v/\r\ — TZ\ (assuming that A ~ v/\r\ — 7-2]), we see that V/Ex ~ 1. This
implies that the interaction is marginal and we cannot ignore the interaction at low
energies. This result suggests that the quantum fluctuations (e.g. the gauge fluctu-
ations) in the 7r-flux state are important and will drastically change the low-energy
properties of the zeroth-order mean-field theory. In this case, zeroth-order mean-
field theory (with free spinon excitations) does not provide a reliable picture of the
low-energy properties of spin liquids. To obtain reliable low-energy properties of
the vr-flux state, one has to deal with the coupled system of gapless fermions and
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the gauge field. The striking properties obtained by ignoring the gauge interaction
may not be valid.55

We see that the unbelievers of the projective construction are right. The results
from zeroth-order mean-field theory are misleading and cannot be trusted. How-
ever, the believers are also right. First-order mean-field theory does tell us that
the results from zeroth-order mean-field theory are incorrect. So far, the projec-
tive construction has not misled us and can be trusted, once we include the proper
fluctuations. It is the results from first-order mean-field theory (not zeroth-order
mean-field theory) that correspond to the physical properties of spin liquids.

To characterize the importance of the fluctuations around the mean-field state,
here we would like to introduce the three concepts of stable, marginal, and unstable
mean-field states. In a stable mean-field state, the fluctuations are weak. The inter-
action induced by the fluctuations vanishes at low energies (i.e. the interactions are
irrelevant perturbations). In a marginal mean-field state, the ratios of the interac-
tions and the energy approach finite constants in the low-energy limit. In this case,
the interactions are marginal perturbations. In an unstable mean-field state, the
ratios of the interactions and the energy diverge in the low-energy limit. Then the
interactions are relevant perturbations. The properties of zeroth-order mean-field
theories can survive the fluctuations only for stable mean-field states. For unsta-
ble mean-field states, the fluctuations will drive a phase transition at low energies
and we cannot deduce any physical properties of spin liquids from zeroth-order
mean-field theory. In this case, first-order mean-field theory is not useful because
it does not help us to deduce the physical properties of the spin system. The TT-
flux state discussed above is a marginal mean-field state. For marginal mean-field
states, first-order mean-field theory can be useful if the ratios of the interaction
and the energy are small. In this case, the physical properties of the corresponding
spin state can be calculated perturbatively. For the yr-flux state, the ratios of the
interaction and the energy are of order 1. Thus, it is hard to obtain the low-energy
physical properties of the 7r-flux state from first-order mean-field theory.

From the above discussion, we see that first-order mean-field theory is use-
ful only for stable mean-field states and for marginal mean-field states with weak
fluctuations. The key to using mean-field theory to study spin liquids is to find sta-
ble mean-field states (see Sections 9.1.6, 9.2.4 and 9.2.6), or marginal mean-field
states with weak fluctuations (see Section 9.8).

Problem 9.1.2.
The rotational symmetry of the 7r-flux state

1. Prove eqn (9.1.14).

2. Show that the 7r-flux state does not break the 90°-rotational symmetry.

53 When mean-field fluctuations are weak, a marginal mean-field state can lead to an algebraic spin
liquid — an spin liquid with no free quasiparticlcs at low energies. See Sections 9.9.5 and 9.10.
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Problem 9.1.3.
Let l^/mean) t>e the mean-field ground state for the 7r-flux ansatz. Calculate
{^meanl^i^i+j/l^'mean}- Use this result to find the variational mean-field energy
(*mean|-H"|*mean)> where H is the Heisenbcrg model with nearest-neighbor interactions
(see eqn (9.1.15)). Compare the mean-field energy of the 7r-flux state to the energy of the
dimer state.

Problem 9.1.4.
Dirac fermions

1 . Show that, in the continuum limit, the low-energy spinons in the TT-DUX state are
described by

where A£ Q = (TT, TT), and r£ = T^ = 1. Find v and T^. In
real space, H can be rewritten as H = J d2x vX^a(— iTxdx — iTydy)\a.

1. The corresponding Lagrangian £ = iA^<9tAa — vA^(— ir,^ - iTydy)Xa can be
rewritten as

where AQ = A^0, 7o = 1, and (Tx,Ty) = (-yy,-7°7»). Find -y0'*-". The
fermion described by £ is called the massless Dirac fermion.

3. Show that (7°, 7*, 7V) satisfies the following Dirac algebra in 1 + 2 dimensions:

where ifv is a diagonal matrix with 77°° — 1 and rfx = r\m — — 1,

4. A massive Dirac fermion is described by the Lagrangian

Find the solutions of the corresponding equation of motion

vjydy + m)\a — 0. Show that the fermion has dispersion w^ =

5. Coupling to the 17(1) gauge field
Use the procedure described in Section 3.7.1 to find the Lagrangian of the Dirac
fermion that is minimally coupled to a 17(1) gauge field. Make sure that the resulting
Lagrangian has a f/(l) gauge invariance.

9.1.5 How to kill gapless U(l) gauge bosons

• How to obtain a stable mean-field state: give gauge fluctuations a finite energy
gap via the Chern-Simons term and/or the Anderson-Higgs mechanism.

• The stable spin liquids always contain electrically-neutral spin- 1/2 spinons
with only short-ranged interactions between them.
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We have seen that the gapless f/(l) gauge bosons interact with gapless
fermions strongly in the 7r-flux state, even down to zero energy. It is hard to obtain
the properties of the first-order mean-field theory (i.e. the fermion-gauge coupled
system) for the vr-flux phase. Although the first-order mean-field theory does not
mislead us, it seems too complicated to be useful. Now the question is whether
it is possible to construct a stable mean-field state in which mean-field fluctua-
tions interact weakly at low energies. In this case, the properties of the first-order
mean-field theory can be obtained easily.

As the first-order mean-field theory must contain, at least, the gauge fluctu-
ations to enforce the one-fermion-per-site constraint, one way to have a stable
mean-field state is to give gauge bosons an energy gap. The gapped gauge boson
can only mediate a short-range interaction between the fermions. We know how
to handle fermions with a short-range interaction, based on our experience with
Landau Fermi liquid theory.

First let us clarify what we mean by 'give gauge bosons an energy gap'. We
know that gauge bosons are simply fluctuations of the mean-field ansatz xij- The
dynamics of these fluctuations depends on the mean-field ansatz. So, by 'give
gauge bosons an energy gap' we mean to find the mean-field ansatz such that the
collective mode fluctuations of the ansatz are gapped.

To motivate our search for a stable mean-field ansatz, let us first consider in
what ways a £7(1) gauge boson can gain an energy gap. In fact, in Sections 3.7.5
and 4.4, we have already encountered two ways in which a U(l) gauge boson
can be gapped. The first way is the Anderson-Higgs mechanism, where the gauge
bosons couple to condensed charge bosons. The dynamics of the coupled system
is described by

in 2 + 1 dimensions and in the continuum limit (see eqn (3.7.17)), where c\ and
C2 come from the condensed charge bosons. The second way is via the Chern-
Simons term. If the mean-field ansatz is such that the filled band has a nonzero
Hall conductance, then the dynamics of t/(l) gauge bosons will be described by

In Problem 9. 1 .5 we will find that the Chern-Simons term gives the gauge boson
a nonzero energy gap. The key to finding a stable mean-field state is to find a
mean-field ansatz that realizes one of the above two mechanisms.

In both cases, the gauge field can only mediate short-range interactions. As
a consequence, the spinons are not confined. The quasiparticles above the spin
liquid are described by free spinons which carry spin-1/2 and zero electric charge.
In the presence of the Chern-Simons term, the spinons can even have fractional
statistics.
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FI ci. 9.3. The mean-field ansatz of a chiral spin state. Here \ij is i \ in the direction of the arrow.

Problem 9.1.5.
Show that the fluctuations described by eqn (9.1.21) have a finite energy gap. (You may do
so by calculating the classical equation of motion.)

9.1.6 Chiral spin state

• The mean-field chiral spin ansatz gives rise to a translationally- and
rotationally-symmetric spin-liquid state. However, the time-reversal and
parity symmetries are broken.

• The mean-field chiral spin state is stable. The chiral spin liquid obtained
from the mean-field theory does represent a stable quantum phase of real spin
systems.

• The chiral spin liquid contains fractionalized excitations—spinons. The
spinons carry spin-1/2 and no electric charge, and have fractional statistics.

In this section, we will discuss a mean-field state which realizes the second
mechanism discussed above. The mean-field state is described by an ansatz Xij<
where Xij is complex and generates flux. The spinons described by eqn (9.1.6)
behave as if they are moving in a magnetic field. When the flux has a correct corn-
mensuration with the spinon density (which is one fermion per site), an integral
number of Landau levels (or, more precisely, Landau bands, due to the lattice)
are completely filled. In this case, the effective lattice gauge theory contains a
Chern-Simons term due to the finite Hall conductance of the filled Landau level.
We will call such a stable mean-field state & chiral spin state (Wen et al., 1989;
Khveshchenko and Wiegmann, 1989).

The simplest chiral spin state is given by the following ansatz (see Fig. 9.3):
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The above Xij induce TT flux for each square and ^TT flux for each triangle. The TT-
flux phase discussed in the last section is somewhat special. As TT flux is equivalent
to —TT flux, the yr-flux phase respects time-reversal symmetry (T) and parity (P).
However, the ^vr-flux phase described by eqn (9.1.22) is not equivalent to the
— T^Tr-flux phase. Under T or P, the ^vr flux changes into — \-n flux, and X2 in
eqn (9.1.22) changes into —xi- Therefore, the chiral spin state with nonzero %2
breaks T and P spontaneously. Using the identity

we find that (£123) ~ Im(%i2X23X3i) is nonzero in the chiral spin state. Notice
that Ei23 is odd under T or P; thus, £123 can be regarded as the T- and P-breaking
order parameter.

After specifying the chiral spin state, we would like to know which spin Hamil-
tonian supports the chiral spin state. Let us consider the following frustrated spin
Hamiltonian:

We would like to know when the mean-field Hamiltonian (9.1.6) supports the
mean-field chiral spin state. In the mean-field Hamiltonian (9.1.6), Jy is equal
to «/i for the nearest neighbor and J% for the second-nearest neighbor.

When X2 = 0, the spinon spectrum determined by the mean-field Hamiltonian
is given by eqn (9.1 .19). The conduction band and the valence band touch at the
points (kx, ky) = (0, 0) and (0, ̂ ). When X2 ^ 0, an energy gap between the
conduction band and the valence band is opened. The mean-field spinon spectrum
is given by

The mean-field ground state is obtained by filling the valence band. Due to the
energy gap, the spin-spin correlation is short-ranged. Using the ground-state wave
function, we can calculate ( f a i f a j ] t o check the self-consistency condition (9.1.7).
We find that, when Jz/Ji < 0.49, the self-consistency equation only supports one
solution with xi 7^ 0 and %2 = 0, i.e. the Tr-flux phase. When JijJ\ > 0.49,
eqn (9.1.7) also supports a second solution with X2 7^ 0. The second solution is
found to have a lower mean-field energy. In this case, T and P are spontaneously
broken.

Notice that the mean Hamiltonian for the chiral state is equivalent to the prob-
lem of electron hopping in a magnetic field. The coupling between the slave
fermions and the gauge field a^ is identical to the coupling between the electrons
and the electromagnetic field. Thus, one expects that the slave-fermion system
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described by eqn (9.1.10) has a phenomenon similar to the Hall effect. The 'Hall
effect' in this case implies that an 'electric' field of the a^ gauge field induces a
spinon current in the transverse direction:

where crxy is the Hall conductance. There is a theorem stating that the Hall con-
ductance of a filled band is always quantized as an integer times l/2yr (Thouless
et al., 1982; Avron et al, 1983). In our case, this implies that axy = 2n/2vr, where
the factor 2 comes from the spins. The value of the 'Hall' conductance can be
obtained using the method discussed in Section 4.4. We find that

The simplest way to understand this result is to note that there is one flux quan-
tum for every spin-up spinon, and one flux quantum for every spin-down spinon.
Thus, both spin-up and spin-down spinons have a fill fraction of v = 1. After
turning off the lattice potential, the valence band in the mean-field chiral spin state
becomes the first Landau level. Both the spin-up and spin-down slave fermions in
the valence band contribute l/2vr to the 'Hall' conductance. Therefore, the total
'Hall' conductance is given by eqn (9.1.27).

The effective action for the gauge fluctuations is obtained by integrating out
the spinons in eqn (9.1.10). Using the relationship between the 'Hall' conductance
and the Chern-Simons term, we can easily write down the effective action in the
continuum limit as follows:

Here g2 in eqn (9.1.28) is of the order of the spinon gap, and v is of order I/a J,
the typical spinon velocity. Using the effective Lagrangian, we can calculate the
low-energy dynamical properties of the gauge fluctuations.

Due to the nonzero 'Hall' conductance axy, we can change the spinon density
without creating spinons in the conduction band or creating holes in the valence
band. This property is important in understanding the properties of the quasipar-
ticles. Let us slowly turn on the flux of the ajL field, 3> = J d2x b. If the flux is
distributed in a large region, the the 'magnetic' field b in the flux is small. In this
case, the energy gap between the valence band and the conduction band remains
finite and all of the energy levels in the valence band are filled by a spin-up and a
spin-down spinon. Turning on the flux induces a circular 'electric' field eg, which
in turn generates a spinon current in the radial direction r due to the nonzero axy.
Thus, some charges are accumulated near the origin. We find that the total number
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of induced spinons is given by

We would like to stress that the flux only changes the spinon density. It does not
induce any spin quantum number. No matter how many spinons are induced by
the flux, the flux tube always carries zero spin because every energy level in the
valence band is filled by a spin-up and a spin-down spinon.

Now we are ready to discuss the quantum number of the quasiparticle excita-
tions in the chiral spin state. The simplest excitation in the mean-field chiral spin
state can be obtained by adding a spinon into the conduction band. However, this
excitation is not physical because the additional spinon in the conduction band
violates the constraint (9.1.5). To satisfy the constraint, we can add flux to change
the spinon density in the valence band. From the above discussion, we see that
the extra spinon density arising from the spinon in the conduction band can be
cancelled by introducing TT flux (see eqn (9.1.29)). Therefore, the physical quasi-
particles in the chiral spin state are spinons dressed by TT flux. The dressed spinons
carry spin- 1/2 because the flux cannot induce any spin quantum numbers. How-
ever, as a bound state of a charge and flux (note that the spinon carries a unit
charge of the a^ gauge field), the spinon has fractional statistics. Exchanging two
dressed spinons is equivalent to moving one spinon half-way around the other,
which induces a phase 6 = |?$- Here q = 1 is the charge of the spinon and
$ = TT is the flux bounded to the spinon. Hence the statistical angle of the dressed
spinon is 0 — j. Particles with such statistics are half-way between bosons (with
0 = 0) and fermions (with 9 = TT), and are called semions.

To understand the low-energy dynamics of the spinons, we would like to derive
the effective Lagrangian for the spinons. First let us ignore the gauge fluctuations
by setting a^ = 0. In this case, a spinon in the conduction band or the valence
band is described by the dispersion given in eqn (9.1.25). Here E£ (££") has two
minima (maxima) at (0,0) and (0,vr/a). Therefore, in the continuum limit, we
have four species of spinons described by the following effective Lagrangian:

Here fia and f^a correspond to the spinons near the two minima of the conduction
band, and /ia and /2a correspond to the holes near the maxima of the valence
band. When a^ ^ 0, the coupling between the spinons and the gauge field can be
obtained by replacing d/j. in eqn (9.1.30) by <9M ± ia^. Such a form of coupling is
determined by the requirement of gauge invariance. After including the coupling
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to the gauge field, the total effective Lagrangian has the form

From the equation of motion -j~ = 0, we find that

where n, = J]a(//a//a - //„//«), I = 1- 2* is the density of the spinons. Equa-
tion (9.1.32) tells us that a spinon is dressed by re flux, which agrees with the
previous results. The statistics of the spinons can also be directly calculated from
eqn(9.1.31).

We would like to point out that, according to eqn (9.1.31), there are two kinds
of quasiparticles for each fixed /, namely the spin-1/2 spinons in the conduction
band and the spin-1/2 holes in the valence band. This result is incorrect. For each
fixed value of 7 there should only be one kind of quasiparticles, namely the spin-
1/2 spinons. The spinons in the conduction band and hole in the valence band give
rise to the same spinon after the projection (Affleck et a!.., 1988; Dagotto et at.,
1988). This over-counting problem can be resolved after realizing that the chiral
spin ansatz actually has an SU('2) gauge structure (see Problem 9.2.4).

Problem 9.1.6.
Find the equations that determine xi and X'2 if the ansatz (9.1.22) of the chiral spin stale
by minimizing the mean-field energy (9.1.6).

Problem 9.1.7.
Prove eqn (9.1.25).

Problem 9.1.8.
Prove eqn (9.1.27) by using the result of Section 4.4.

9.2 The SU(2) projective construction

9.2.1 The hidden SU('2) gauge structure

• The projective construction has a hidden 577(2) gauge structure.
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• The mean-field ansatz (Uij,al
Q(i)) is a many-to-one label of physical spin

liquids. The SU(1) gauge-equivalent ansatz labels the same physical wave
function.

• The invariance of a physical wave function under a symmetry transformation
only requires the invariance of the corresponding mean-field ansatz up to a
gauge transformation.

9.2.1.} Spinon-pair condensation

In the last section, we constructed a stable mean-field state using a Chern-Simons
term. In this section, we would like to consider another class of stable mean-field
state due to the Anderson-Higgs mechanism. In order for the Anderson-Higgs
mechanism to work, we first need a boson that carries o,M charge. Secondly, the
charged bosons should have proper dynamics, so that they condense. In the mean-
field theory obtained from the projective construction, we do not have bosons
that carry o.M charge; but we have fermions that carry afi charge. So we can
make charged bosons from pairs of charged fermions and let those fermion pairs
condense. We see that the Anderson-Higgs mechanism can be achieved through
fermion-pair condensations.56 In the following, we will include the fermion-pair
condensation in our mean-field ansatz. We hope that these mean-field ansatz will
represent stable mean-field states.

Remember that, in terms of the spinon operators, the Hamiltonian (9.1.1) can
be rewritten as

where we have added proper constant terms ̂  f\,:Ji<* K> obtain the above result.
To obtain the mean-field Hamiltonian that contains fermion-pair condensation,

we replace both the operators f^fjft and fi^fi/j by their ground-state expectation
value

The xij term was included in the previous mean-field ansatz. The rjij term is new
and describes rermion-pair condensation. We also replace the constraint (9.1.4) by

''b If the fermions arc electrons, ihen the fermion-pair condensed stale is a BCS superconducting
state,
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its ground-state average

Such a constraint can be enforced by introducing site -dependent and time-
independent Lagrangian multipliers al

0(i), I — 1,2,3. In this way, we obtain
the following zeroth-order mean-field Hamiltonian that includes fermion-pair
condensation:

Here Xij and THJ in eqn (9.1.6) must satisfy the self-consistency condition (9.2.2)
and the site-dependent fields al

0(i) are chosen such that eqn (9.2.3) is satisfied by
the mean-field ground state. Such Xij, %j> and al

0 give us a mean-field solution.
For the Heisenberg model with nearest-neighbor spin coupling, see

eqn (9.1.15), the following mean-field ansatz with fermion-pair condensation is
a solution of the mean-field equation (9.2.2):

Such an ansatz actually corresponds to a d-wave BCS state. We will call it a d-
wave state.57 Due to the fermion-pair condensation, we expect that the mean-field
state described by the above ansatz contains no gapless U(l) gauge bosons due to
the Anderson-Higgs mechanism.

Well, despite that everything seems to fit together very well and the physical
picture seems to be very reasonable, the above result turns out to be incorrect.
Where did we make a mistake? The physical picture and reasoning presented here
are correct. The mistake turns out to be a mathematical one. We have claimed
that the mean-field theory (9.1.10) (or, more generally, eqn (9.2.4)) has a U(i)
gauge structure, such that the two ansatz related by the U(l) gauge transformation
(9.1.13) correspond to the same physical spin wave function (see eqn (9.1.14)) after
the projection. In fact, the mean-field theory has a larger SU(2) gauge structure.
Two ansatz related by the SU(2) gauge transformation correspond to the same

57 We note that the fermion-pairing order parameter rjij changes sign under a 90° rotation. This is
similar to a wave function that carries an angular momentum of 2. This is why we call the state the
d-wavc state.
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physical spin wave function. The different gauge structure has a profound conse-
quence on our understanding of the properties of mean-field states. In particular,
the fluctuations in Xij, flij, and al

Q(i) describe 577(2) gauge fluctuations.

9.2.1.2 The SU (2) formulation

To understand the 577(2) gauge structure in the mean-field Hamiltonian (9.2.4)
and in the constraints (9.1.4) (Affleck et al., 1988; Dagotto et al, 1988), we
introduce a doublet

Using eqns (9.2.6) and (9.2.7), we can rewrite eqns (9.2.3) and (9.2.4) as follows:

where rl, I = 1,2,3, are the Pauli matrices. From eqn (9.2.9), we can clearly see
that the Hamiltonian is invariant under a local 577(2) transformation Wi\

The 577(2) gauge structure actually originates from eqn (9.1.2). Here 577(2)
is the most general transformation between the spinons that leaves the physical
spin operator unchanged. Those transformations become the gauge transformation,
since the physical Hamiltonian is a function of the spin operators.

9.2.1.3 The meaning of the 577(2) gauge transformation

Just like the U(l) gauge transformation, the 577(2) gauge transformation has the
following meaning: two ansatz related by a 577(2) gauge transformation corre-
spond to the same physical spin wave function. To see this, we note that the

and a matrix
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/-termion states and the ^-fermion states at each site have the following relation:

where |0^} is the state with no ̂ -fermion, i.e. i/ja\0^} = 0. Thus, the physical one-
/-fermion-per-site states correspond to states with even numbers of ?/>-fermions
per site. These even-^-fermion-per-site states are local SU(2) singlet states (i.e.
they are an SU(2) singlet on every site). The empty ^-fermion state corresponds
to a down-spin and the doubly-occupied i/;-fermion state corresponds to an up-
spin. With this understanding, we may obtain a valid wave function of the spin
system by projecting the mean-field state to the even-t/)-fermion-per-site subspace.
Let ii, 12,... be the locations of the up-spins. The physical spin wave function can
be written as a function of ii,«2, • • • » i.e. *spin(*ii*2, • • • ) • As ii,«2i ••- are the only
sites with two •0-fermions, we find that

As (0^,| and ^i,iV>2,i are invariant under the local SU(2) transformation, the two
ansatz Uij and U^ • related by an SU(2) gauge transformation U[ • = WiUijW-
are just two different labels which label the same physical state:

The relationship between the mean-field state and the physical spin wave
function (9.2.11) allows us to construct transformations of a physical spin wave
function from those of the corresponding mean-field ansatz. For example, the

mean-field state        with translated ansatz U'- = Ui-ij-i produces a
translated physical spin wave function after the projection.

It is obvious that the translationally-invariant ansatz will lead to a
translationally-invariant physical spin wave function. However, the translational
symmetry of the physical wave function after projection does not require the trans-
lational invariance of the corresponding ansatz. The physical state is translationally
symmetric if and only if the translated ansatz U^- is gauge equivalent to the orig-
inal ansatz Uij. We see that the gauge structure can complicate our analysis of
symmetries, because the physical spin wave function ^spmCi^i}) maY have more
symmetries than the mean-field state l^kean) before projection.

9.2.1.4 Spin rotation invariance

We note that both of the components of i/> carry spin-up. Thus, the spin-rotation
symmetry is not explicit in our formalism and it is hard to tell whether eqn (9.2.9)
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describes a spin-rotation-invariant state or not. In fact, for a general Uij satisfying
Uij — U^, eqn (9.2.9) may not describe a spin-rotation-invariant state. However,
if Uij has the form

then eqn (9.2.9) will describe a spin-rotation-invariant state. This is because the
above Uij can be rewritten in the form of eqn (9.2.7). In this case, eqn (9.2.9)
can be rewritten as eqn (9.2.4), where the spin-rotation invariance is explicit. In
eqn (9.2.13), r° is the identity matrix and r1'2'3 are the Pauli matrices.

9.2.1.5 Variational approach

We would like to remark that, in addition to the self-consistency equation (9.2.2),
there is another way to obtain the mean-field solutions. We can view the mean-field
ground state of Hmean (see eqn (9.2.9)), namely |*Lean), as a trial wave function
and U^ as variational parameters. Introducing

we find that the mean-field energy for l^mean) is given by

Here Emean({Uij}) is a functional of Uij which has SU(1] gauge invariance:

The mean-field solution Uij can now be obtained by minimizing -Emean-

9.2.1.6 First-order mean-field theory

To obtain the first-order mean-field theory, we start with the zeroth-order mean-
field theory described by the mean field Hamiltonian

where Uij is the mean-field solution, which satisfies the self-consistency condition

The a!
0 in eqn (9.2.15) are chosen such that eqn (9.2.3) is satisfied. The impor-

tant fluctuations around the mean-field ground state are the following 'phase'



which describes spinons coupled to 577(2) lattice gauge fields.
We would like to point out that the mean-field ansatz of the spin liquids Ua can be

divided into two classes: the unfrustrated ansatz where Ua only link an even lattice site to
an odd lattice site; and the frustrated ansatz where Uij are nonzero between two even sites
and/or two odd sites. An unfrustrated ansatz has only pure SU(2) flux through each pla-
quette, while a frustrated ansatz has (/(!) flux of a multiple of 7r/2 through some plaquettes
in addition to the 677(2) flux.

Problem 9.2.1.
Use eqn (9.2.2) to obtain eqn (9.2.4) from cqn (9.2.1 ).

Problem 9.2.2.
The equivalence of the 7r-flux state and the r/-wavc state

1 . Show that the 7r-flux state (9. 1 . 1 8) is described by the 5"f/(2) link variables

2. Show that, when r\ = \, the d-wave state (9.2.5) is described by the SU(2) link
variables

3. Show that, when x ar|d \i are related in a certain way, the above two ansat?. are
gauge equivalent. Find an .9(7(2) gauge transformation Wi that changes one ansatz
to the other. (Hint: Consider the SU(2) gauge transformation ( i r 1 )Ia: (ir3) '*.) Find
the relation between x and \ i .

4. Show that, when x ar|d x.\ are related in this way, the 7r-flux state and the rf-wave
state have an identical spinon spectrum.

9.2.2 Dynamics of the 5(7(2) gauge fluctuations

• The Anderson-Higgs mechanism can be realized through the condensation of
5(7(2) gauge flux without using Higgs bosons.

• Collinear 577(2) flux breaks the 5(7(2) gauge structure down to a (7(1) gauge
structure.

T f l K SU(2) P R O J 1 I C T 1 V K C O N S T R U C T I O N 3 7 9

fluctuations of U^:

where ciij = a^ -r1 is a 2 x 2 traceless hermitian matrix. Due to the 577(2) gauge
structure, these fluctuations are the SU(2) gauge fluctuations. We must include
these fluctuations in order to obtain qualitatively correct results for spin-liquid
states at low energies. This leads us to the first-order mean-field theory
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• Non-collinear SU(2) flux breaks the 5(7(2) gauge structure down to a Z%
gauge structure. In this case, all of the 577(2) gauge bosons gain a gap.

Just like the £7(1) projective construction, to obtain a stable mean-field state in
the 577(2) projective construction, we need to find ways to kill the gapless 577(2)
gauge bosons. The £77(2) Chern-Simons term is one way to give SU(2) gauge
bosons a nonzero energy gap. In the following, we will discuss how to use the
Anderson-Higgs mechanism to kill the gapless 811(2} gauge bosons.

We know that (7(1) gauge bosons do not carry their own gauge charge. So we
need additional charged bosons to implement the Anderson-Higgs mechanism. In
contrast, SU(2) gauge bosons themselves carry nonzero gauge charges. Thus, we
do not need additional Higgs bosons to realize the Anderson-Higgs mechanism.
The 577(2) gauge bosons are capable of killing themselves.

To see how 577(2) gauge bosons commit suicide, we consider a lattice 577(2)
gauge theory. The lattice 577(2) gauge field is given by the link variables £7^ €
577(2). The first-order mean-field theory (9.2.18) is an 577(2) lattice gauge theory.
The energy of a configuration is a function of Uij, i.e. E(U^j). The energy is
invariant under the SU(2) gauge transformation

To understand the dynamics of the lattice 577(2) gauge fluctuations, we write
Uij = t/ij-elfi^T', where the 2 x 2 matrices a^ on the links describe the gauge
fluctuations. The energy can now be written as E(Uij, e l"^T ). To see whether the
577(2) gauge fluctuations gain an energy gap or not, we need to examine whether
E(Uij, e10>j r ) contains a mass term (a^-)2> or not, in the small-a^ limit.

To understand how the mean-field ansatz Uij affects the dynamics of the gauge
fluctuations, it is convenient to introduce the following loop variable of the mean-
field solution:

Here P(Ci) is called the 577(2) flux through the loop d given by i —*• j —> k —>
.. —> I —> i, with base point i. We will also call it the 577(2)-flux operator. The
loop variable corresponds to gauge field strength in the continuum limit. Under the
gauge transformations, P(Ci) transforms as follows:

We note that the 577(2) flux has the form P(C] - X°(C)T° + \xl(C)Tl. Thus,
when xl ^ 0, the 577(2) flux has a sense of direction in the 577(2) space which is
indicated by xl• From eqn (9.2.21), we see that the local 577(2) gauge transforma-
tions rotate the direction of the 577(2) flux. As the direction of the 577(2) flux for
loops with different base points can be rotated independently by the local 5(7(2)
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gauge transformations, it is meaningless to directly compare the directions of the
SU(2) flux for different base points. However, it is quite meaningful to compare
the dkections of the SU(2) flux for loops with the same base point. We can divide
different SU(2] flux configurations into the following three classes, based on the
SU(2) fluxes through loops with the same base point: a trivial SU(2) flux where
all P(C) oc r°; a collinear SU(2) flux where all of the SU(2) fluxes point in the
same direction; and a non-collinear SU(2) flux where the SU(2] fluxes for loops
with the same base point are in different directions.

First, let us consider an ansatz Uij, with trivial SU(2~) flux for all of the loops.
The SU(2) flux is invariant under the SU(2) gauge transformation. We can choose
a mean-field ansatz (by performing gauge transformations) such that all Uij oc r°.
In this case, the gauge invariance of the energy implies that

As a result, none of the mass terms (a^)2, (a|j-)2> an^ (alj)2 are allowed in the
expansion of E.58 Thus, the SU(2) gauge fluctuations are gapless and appear at
low energies. As the ansatz Uij oc r° is invariant under the global SU(2) gauge
transformation, we say that the SU(2) gauge structure is not broken.

Second, let us assume that the 5(7(2) flux is collinear. This means that the
SU(2) fluxes for different loops with the same base point all point in the same
direction. However, the SC7(2) fluxes for loops with different base points may
still point in different dkections (even for the collinear SU(2) fluxes). Using
the local 517(2) gauge transformation, we can always rotate the SU(2) fluxes
for different base points into the same dkection, and we can pick this dkec-
tion to be the r3 direction. In this case, all of the SU(2) fluxes have the form
P(C) oc %°(C) + ix3(C)r3. We can choose a mean-field ansatz (by performing
SU(2) gauge transformations) such that all of the Uij have the form i e 1^3"r . As
the ansatz is invariant under the global £7(1) gauge transformation e l d r 3 , but not
el6lTM, we say that the SU(2) gauge structure is broken down to a U(l) gauge
structure. The gauge invariance of the energy implies that

1 *?
When a . '• =0, the above reduces to

We find that the mass term (a3)2 is incompatible with eqn (9.2.24). Therefore, at
least the gauge boson a3 is massless. How about the a1 and a2 gauge bosons? Let

58 Under the gauge transformation e'e*T , a\j transforms as a}j = a\j + 0\ — Oj. The mass term
(a|,-)2 is not invariant under such a transformation and is thus not allowed.
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PA(«) be the SU(2) flux through a loop with base point i. If we assume that all of
the gauge-invariant terms that can appear in the energy function do appear in the
energy function, then E(Uij] will contain the following gauge-inariant term:

If we write U^i+x as xe^^c10*1"', use the fact that U^i+x = —Ul+xi (see
eqn (9.2.13)), and expand to order (a!

x)
2, then eqn (9.2.25) becomes

We see from eqn (9.2.26) that the mass terms for a1 and a2 are generated if PA oc
T3.

To summarize, we find that, if the SU(2) flux is collinear, then the ansatz
is invariant under the U(l) rotation clSn'T, where n is the direction of the
577(2) flux. As a result, the 577(2) gauge structure is broken down to a [7(1)
gauge structure. The corresponding mean-field state will have gapless U(l) gauge
fluctuations.

Third, we consider the situation where the 577(2) flux is non-collinear. In the
above, we have shown that an 577(2) flux PA can induce a mass term of the form
Tr([-P/i, al

xT
1]2). For a non-collinear 577(2) flux configuration, we can have two

SU(2) fluxes, PA and PB, pointing in different directions. The mass term will also
contain a term TT([PB, al

xT
1]2). In this case, the mass terms for all of the 577(2)

gauge fields, namely (a| -)2, (aij)2> and (af,-)2> will be generated. All of the 577(2)
gauge bosons will gain an energy gap (see Section 3.7.5) and the mean-field state
described by the ansatz will be a stable state. As the ansatz is invariant under the
Zi transformation Wi = — r°, but not other more general global 577(2) gauge
transformations, the non-collinear 577(2) flux breaks the 577(2) gauge structure
down to a Z% gauge structure. So we may guess that the low-energy effective
theory is a Z? gauge theory. In Sections 9.2.4 and 9.3, we will study the low-
energy properties of states with non-collinear 577(2) fluxes. We will show that
the low-energy properties of such states, such as the existence of a Z% vortex and
ground-state degeneracy, are indeed identical to those of a Z^ gauge theory. So
we will call the mean-field state with non-collinear 577(2) fluxes a mean-field Zi
state.

In a mean-field Z^ state, all of the gauge fluctuations are gapped. These fluctu-
ations can only mediate short-range interactions between spinons. The low-energy
spinons interact weakly and behave like free spinons. Therefore, including mean-
field fluctuations does not qualitatively change the properties of the mean-field
state. The mean-field state is stable at low energies.

A stable mean-field spin-liquid state implies the existence of a real physical
spin liquid. The physical properties of the stable mean-field state apply to the
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physical spin liquid. If we believe these two statements, then we can study the
properties of a physical spin liquid by studying its corresponding stable mean-
field state. As the spinons are not confined in mean-field Z2 states, the physical
spin liquid derived from a mean-field Z2 state contains neutral spin-1/2 fermions
as its excitation. This is a very striking result, after realizing that the spin model is
a purely bosonic model.

Problem 9.2.3.
(a) Show that the ansatz (9.2.5) is an S[/(2)-collinear state.
(b) Find the SU('2) gauge transformation that transforms C/y into the form e' *i"T . (Hint:
Try Wi = (iT3)'-+V)

Problem 9.2.4.
(a) Show that the chiral spin ansatz Uij obtained from eqn (9.1.22) is invariant under the
global SU(1} gauge transformation U^ — WUijW^.
(b) Show that the chiral spin ansatz Uij with al

() = 0 satisfies the constraint (9.2.8).
(c) Show that the ansatz described by eqn (9.1.22) and the following translationally-
invariant ansalz:

are gauge equivalent. In terms of the /-fermions (see eqns (9.2.4) and (9.2.7)), the above
ansatz describes a d,.= _y-j. + \dxy 'superconducting' state.
As the ST/(2) gauge structure is unbroken, the low-energy effective theory for the chiral
spin state is actually an SU(2) Chern-Simons theory (of level 1).

9.2.3 Spin liquids from translationallv -invariant ansatz

• Uniform RVB state, 7r-flux state and staggered-flux state.

• The symmetry of projected physical wave functions.

• The low energy SU(2} or U(l) gauge fluctuations.

As an application of the SU(1) projective construction, we will study a spin
liquid obtained from a translationally-invariant ansatz
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Such a ansatz will lead to a physical wave function with translational symmetry.59

First, let us introduce

where ul' ' are real, and U® is imaginary. Within zeroth-order mean-field theory,
the spinon spectrum is determined by the Hamiltonian (see eqn (9.2.9))

which allow us to determine al
0, 1 — 1, 2, 3.

Let us try the following simple ansatz60 (Baskaran et al, 1987; Affleck and
Marston, 1988; Kotliar and Liu, 1988):

First, we would like to show that the corresponding spin liquid has all of the
symmetries.

59 Here we will distinguish between the invariance of an ansatz and the symmetry of an ansatz.
We say that an ansatz has translational invariance when the ansatz itself does not change under a
translation. We say that an ansatz has translational symmetry when the physical spin wave function
obtained from the ansatz has translational symmetry. Due to the gauge structure, a translationally-
non-invariant ansatz, can have translational symmetry.

eo The ansatz is actually the r/-wave ansatz (9.2.5) introduced earlier.

In k space, we have

where// = 0,1,2,

a® — 0, and N is the total number of sites. The fermion spectrum has two branches
and is given by

The constraints can be obtained from dEKTOUD^/dal
0 = 0 and have the form
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To study the symmetry of the corresponding physical spin state, we need to
obtain its wave function l^phy)- Using the ansatz, we can obtain the mean-field
ground state IvtWan) of the mean-field Hamiltonian (9.2.27). The physical wave
function l^phy) is obtained by projecting into the subspace with even numbers of
^-fermions per site, i.e. |^phy) = ^l^mean}.

The ansatz is already invariant under the two translations Tx : i — * i + x and
Ty : i — > i + y. The ansatz is also invariant under the two parity transformation
Px : x — > —x and Py : y — » — y. The Pxy : (x, y) — » (y, x) parity transformation
changes u^i+x — »• Uiti+y and iti,i+y — > u^i+x. The transformed ansatz

is different from the original ansatz. However, note that a uniform gauge trans-
formation Gpzy(i) = ir3 changes Uij to Gp^UijG^ . It induces the changes
(r^r^r3) -> (—r1, -T2,r3). Thus the transformed ansatz is gauge equivelant
to the original ansatz through a gauge transformation GpTy. In other words, the
Pxy parity transformation, when followed by a gauge transformation Gpxv, leaves
the ansatz unchanged. As a result, the physical wave function is invariant under
the Pxy parity transformation. A 90° rotation R$Q is generated by PxPXy The
physical wave function also has 90°-rotational symmetry. The above ansatz also
has time-reversal symmetry, because the time-reversal transformation uij —» — ity
followed by a gauge transformation Gy(i) = ir2 leaves the ansatz unchanged.

To summarize, the ansatz is invariant under the following combined symmetry
and gauge transformations: GXTX, GyTy, Gp^Px, GpyPy, GpxyPxy, and GrT.
The associated gauge transformations are given by

So the spin liquid described by the ansatz (9.2.30) has all of the symmetries. We
will call such a state a symmetric spin-liquid state.

We note that the link variables u^ in eqn (9.2.30) point to different directions
in the r1'2'3 space, and thus are not collinear. As a result, the ansatz is not invariant
under the uniform SU(2) gauge transformations. One might expect that the SU(2)
gauge structure is broken down to a Z% gauge structure and that the ansatz (9.2.30)
describes a Z^ spin liquid. In fact, this reasoning is incorrect. As we pointed out
in Section 9.2.2, to determine if the £[7(2) gauge structure is broken down to a
J?2 gauge structure, we need to check the collinearness of the SU(2] flux, not the
collinearness of the SU(2) link variables.

When x = ?7 or when 77 = 0, the SU(2) fluxes PC for all of the loops are trivial,
i.e. PC oc r°. In this case, the SU(2) gauge structure is not broken and the SU(2)
gauge fluctuations are gapless (in the weak-coupling limit). The spinon in the spin
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liquid described by r) — 0 has the spectrum
which has a large Fermi surface. We will call this state the 577(2)-gapless state
(this state is called the uniform RVB state in the literature). The state with x — '<]
has gapless spinpns only at isolated k points, as indicated by the spinon spectrum

(see Fig. 9.2). We will call such a state
an 577(2)-linear state to stress the linear dispersion E cc \k\ near the Fermi points.
(Such a state is called the vr-flux state in the literature and in Section 9.1.1.) The
low-energy effective theory for the SU (2) -linear state is described by massless
Dirac fermions (the spinons) coupled to the 577(2) gauge field (see Problem 9.1.4).

After proper gauge transformations, the 577(2)-gapless ansatz can be rewritten
as

and the 577(2)-linear ansatz as

In these forms, the SU(2) gauge structure is explicitly unbroken, because Uij oc
ir°. We can easily see that all of the 577(2) fluxes Pij...k are trivial.61 The ansatz
are also invariant under the uniform 577(2) gauge transformations. Spinons in
both the 577(2)-gapless and the 577(2)-linear ansatz have a finite interaction at
low energies. So the two mean-field states are marginal mean-field states. It is not
clear if the mean-field states correspond to real physical spin liquids or not.

When x T^ "H and X? f] ¥" 0> me flux PC is non-trivial. However, the
577(2) fluxes are collinear. In this case, the 577(2) gauge structure is bro-
ken down to a £7(1) gauge structure. The gapless spinons still only appear
at isolated k points, as one can see from the spinon spectrum E^ =

We will call such a state the
(7(l)-linear state. (This state is called the staggered-flux state and/or the d-wave
pairing state in the literature.) After a proper gauge transformation, the C/(l)-linear
state can also be described by the ansatz (see Problem 9.2.3)

where the £7(1) gauge structure is explicit.62 The low-energy effective theory is
described by massless Dirac fermions (the spinons) coupled to the £7(1) gauge
field. Again the £/(l)-linear state is a marginal mean-field state, due to the finite
interactions induced by the gapless £7(1) gauge field at low energy.

61 Under the projective-symmcrry-group classification that will be discussed later, the 5f7(2)-
gaplcss ansatz (9.2.32) is labeled by SU2ArtO and the SU(2)-linear ansatz (9.2.33) is labeled by
SU2BnO (see eqn (9.4.33)).

B2 Under the projective-symmetry-group classification, such a state is labeled by UlCnOln (see
cqns (9.4.25H9.4.29).
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9.2.4 A stable Z-2 spin liquids from translalionallv-invariant ansatz

* A stable spin-liquid states—2<i spin-liquid states.

• The ̂ 2 spin liquid contains fractionalized excitations—spinons. The spinons
cany spin-1/2 and no electric charge, and have fermionic statistics.

Having learnt the recipe for constructing stable mean-field states, in this sec-
tion, we will study a stable mean-field state that does not break any symmetry. The
ansatz has the following form (Wen, 199la)

To show that cqn (9.2.35) describes a stable mean-field state, we only need to show
that it generates non-collinear SU(2) fluxes. Around two triangles with the same
base point, we obtain the following SU(2) flux:

We see that, if x^A ^ 0, then the 5f/(2) fluxes are non-collinear and the ansatz in
eqn (9.2.35) describes a stable mean-field state, or more precisely a Z^ state.

As the ansatz is invariant under a translation, the physical spin state is also
invariant under a translation. Thus, the physical wave function l^phy) has trans-
lational symmetry. Under the Px parity transformation, the ansatz is changed
to

(note that Px changes                         for a translationally-invariant
ansatz). The transformed ansatz is gauge equivalent to the original ansatz under an
SU(2) gauge transformation Gx(i) = ir^-)*.63 Although the /^-transformed
ansatz is different to the original ansatz, both ansatz lead to same physical wave
function after projection. The physical spin state has a /^.-parity symmetry.

We also note that the above combined transformation GXPX changes (a^a^)
to (-<JQ, —O,Q) if they are not zero. As the mean-field Hamiltonian has Px sym-
metry, the mean-field ground-state energy for nonzero («o,a;,) has the property

(™ We define (-)* ~ (_)' :»- + ' t < . The gauge transformation Wt = ir1 transforms cqn (9.2.36) to

Then the gauge transformation Wi = (-)1 transforms the above to eqn (9.2.35).
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isfy the constraint
for our ansatz. We only need to adjust

The action of the parity transformation is the same as the action of       So
the physical wave function also has Py-parity symmetry. Under the time-reversal
transformation, T changes                    The time-reversal trans-
formation followed by a gauge transformation GT will leave the ansatz (9.2.35)
unchanged, if we choose                          Thus,         has time-reversal symme-
try. The ansatz is invariant under the So the physical
wave function has      parity symmetry. We see that the ansatz (9.2.35) is invari-
ant under following the combined transformations:

, with the gauge transformations

The ansatz describes a spin liquid with all the symmetries. We call such a state a
22-symmetric spin-liquid state.

The spinon spectrum in the Z% state is given by

We find that the spinons are fully gapped. We will call the state (9.2.35) a Z-2-
gapped spin liquid.64 The ^-gapped spin liquid corresponds to the short-ranged
resonating valence bound (sRVB) state proposed by Kivelson et al. (1987) and
Rokhsar and Kivelson (1988).

As eqn (9.2.35) is a stable ansatz, the gauge fluctuations are all gapped and
only cause a short-range interaction between spinons. As the spinons are gapped,
the low-energy excitations of the 22-gapped state correspond to dilute gases of
spinons. These spinons behave like free fermions due to the short range of the
interaction. Therefore, the excitations in the ^-gapped state are free neutral spin-
1/2 fermions.

64 Here we would like Lo mention that, under the projective-symmetry-group classification that
will be discussed later in Section 9.4.3, the state (9.2.35) is labeled by the projectivc symmetry group
Z2AxxOz.

endfsdaa fjkdfsds thererdxcs. always ssdf
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F l G . 9.4. A Z-z vortex is created by flipping the sign of Uij on the l inks indicated by the th ick lines.

Here              except on the l inks indicated by the thick lines, where

9.2.5a A Z-2 vortex in Z^ spin liquids

• A Zi spin-liquid state contains a Zi vortex excitation that carries no spin and
no electric charge.

• Binding a Z^ vortex to a spinon changes the spinon statistics from bosonic to
fermionic, or from fermionic to bosonic.

In addition to the spinons, there is another type of quasiparticle excitation in the
Z'i spin-liquid state (Wen, 199la). This excitation appears as a topological soliton
in the mean-field theory and corresponds to a TT flux of the Z2 gauge field. So we
will call the new excitation a Z2 vortex. It is created by flipping the signs of
along a string of links (see Fig. 9.4). It is described by the following ansatz:

where 0 jj is illustrated in Fig. 9.4. The Zi vortex is located at the end of the strin
Note that, away from the Z2 vortex,      is locally gauge equivalent to      . Thus
the string of     with a flipped sign does not cost any energy and is unobservable.
The ansatz u^ actually describes a local excitation at the end of the string.

Since    determines the hopping amplitude of the spinons, as a spinon hopsd
around the Zi vortex, an additional minus sign will be induced. Therefore, the
Z'i vortex behaves like a   flux to the spinons. According to the discussions in
Section 7.1.2, we find that binding a Z2 vortex to a spinon changes the statistics
of the spinon from fermionic to bosonic. Thus, Z^ spin liquids contain neutral
spin-1/2 excitations with both bosonic and fermionic statistics.

Problem 9.2.5.
Show that the SU(2) flux through a loop C for the ^-vortex ansatz in eqn (9.2.38) is the
same as the SU (2) flux through the same loop for the ground-state ansatz liy, except when
the loop C encloses the vortex. As the mean-field energy is a function of the SU(2) flux,
the above result indicates that the siring of the sign-flipped        does not cost energy.



3 9 0 M E A N - F I R L D T H E O R Y O F S H I N L I Q U I D S A N D Q U A N T U M O R D E R

fkdfnj;lhdfsdfasdfdsfasdfsdsddds         dfsadfgffdgdsfgdfs

• There are many different stable spin-liquid states — Z2 spin-liquid states.
Some of them can have gapless spinon excitations.

• These states have exactly the same symmetry. There is no way to use
symmetry to characterize these different spin-liquid states.

In addition to eqn (9.2.35), we can write down another ansatz (Wen, 2002c) for
the ^-symmetric spin liquid:

with x and ?/ nonzero. The above ansatz becomes the 6'C/(2)-gapless spin liquid
if x — 0> and the 5f7(2)-linear spin liquid if r\ — 0. To show that the ansatz
in eqn (9.2.39) describes a symmetric spin liquid, we must show that it is invari-
ant under the following combined symmetry and gauge transformations:

, and GTT. We find that, if we choose the gaug
transformations to be

then the symmetry transformations followed by the corresponding gauge transfor-
mation will leave the ansatz unchanged.

Using the time-reversal symmetry, we can show that the vanishing     in our ansatz
(9.2.39) do indeed satisfy the constraint (9.2.29). This is because under the com-
bined time-reversal transformation CrT. As the ansatz with  is invariant under
the mean-field ground-state energy for nonzero    satisfies
Thus,  In fact, any ansatz which only has links between
two n on -overlapping sub-lattices (i.e. the unfrustrated ansatz) is time-reversal symmetric 

 For such ansatz, including the ansatz (9.2.39), a vanishing    satisfies the constraint

The spinon spectrum is given by (see Fig. 9.10(a))

The spinons have two Fermi points and two small Fermi pockets (for small r/).
The 577(2) flux is non-trivial. Furthermore, the SU(2) fluxes PC, and PC., do not
commute, where 

i are two loops with the same base point. The non-collinear
SU(2) fluxes break the 5f/(2) gauge structure down to a 2^ gauge structure. We

whern



THE 517(2) P R O J E C T I V E C O N S T R U C T I O N 391

will call the spin liquid described by eqn (9.2.39) a Z2-gapless spin liquid.60 The
low-energy effective theory is described by massless Dirac fermions and fermions
with small Fermi surfaces, coupled to the Zi gauge field. As there are no gapless
gauge bosons, the gauge fluctuations can only mediate short-range interactions
between spinons. The short-range interaction is irrelevant at low energies and the
spinons are free fermions at low energies. Thus, the mean-field Zj-gapless state is
a stable state. The stable mean-field state suggests the existence of the second real
physical spin liquid (in addition to the Z2-gapped spin liquid discussed in Section
9.2.4). The physical properties of such a spin liquid can be obtained from mean-
field theory. We find that excitations in the Z2-gapless spin liquid are described by
neutral spin- 1/2 fermionic quasiparticles !

The third ^-symmetric spin liquid can be obtained from the following
frustrated ansatz (Balents et a/., 1998; Senthil and Fisher, 2000):

The ansatz has translational, rotational, parity, and time-reversal symmetries. It
is invariant under the combined transformations
GTT, with

When
with the St/(2)-flux operators, such as the 5C7(2) through a square
Thus, the ansatz breaks the SU(2) gauge structure down to a Z% gauge structure.
The spinon spectrum is given by (see Fig. 9.8(a))

which is gapless only at the four k points with a linear dispersion. Thus, the spin
liquid described by eqn (9.2.41) is a .^-linear spin liquid.67

65 The ^2-gapless spin liquid is one of the Zi spin liquids classified in Section 9.4.3. Its projective
symmetry group is labeled by Z2Acel2(12)n (sec Section 9.4.3 and eqn (9.4.16)).

80 Here rlal
0(i) can be treated as an 811(2) flux through a loop of zero size.

67 The Z2-linear spin liquid is described by the projective symmetry group Z2A0032 or, equiva-
Icntly, Z2A0013 (see Section 9.4.3).
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The ^-gapped ansatz (9.2.35), the ^2-gapless ansatz (9.2.39) and the Z2-
linear ansatz (9.2.41) give rise to three spin liquid states after the projection. The
three states have exactly the same symmetry. So we cannot use symmetries to dis
tinguish the three states. To find a new set of quantum numbers to characterize the
three different spin liquids, we note that although the three Z<± spin liquids have
the same symmetry, their ansatz are invariant under the symmetry translations fol-
lowed by differentasgauge transformations (see eqns (9.2.37), (9.2.40) and (9.2.42)).
50 the invariant groups of the mean-field ansatz for the three spin liquids are dif-
ferent, and we can use such invariant groups to characterize different spin liquids.
More detailed and systematic discussion will be given in Section 9.4.

Problem 9.2.6.
Show that the ansatz in eqn (9.2.39) is invariant under the combined transformation,

 if the gauge transformations are givenby
eqn (9.2.40).

Problem 9.2.7.
Show that the chiral spin state has translational and 90°-rotational symmetries. Show tha
the chiral spin state also has the combined symmetries

Under the time-reversal transformation (or the spin-reversal transformation),
 As we only consider spin-rotation-invariant states in this chapter,

for convenience we will define a T transformation as a combination of a time-
reversal and a spin-rotation transformation:
will loosely call it a time-reversal transformation.

Such a transformation can be generated by

Let us use an operator T to represent the above transformation as
Note that T changes i to                           In terms of the /-

fermion (9.2.6), eqn (9.2.43) becomes

From               vwe find that T changes S to

In mean-field theory, eqn (9.2.43) induces the following transformation to the
mean-field ansatz:

nt

and

amn
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F l G , 9.5. The l inks crossing the x line and the y line get an additional minus sign.

The above describes how the mean-field ansatz transforms under the T transfor-
mation. Both the spin Hamiltonian (9.1.1) and the mean-field Hamiltonian (9.2.4)
are invariant under the time-reversal transformation.

Problem 9.2.8.
Find out how Uij and 0^(1) transform under the real time-reversal transformation S —*
-S.

9.3 Topological orders in gapped spin-liquid states

• Topological degeneracy of spin-liquid ground states.

• The existence of robust topological degenerate ground states implies the
existence of topological order.

We have constructed the ^-gapped state and the chiral spin state using mean-
field theory. Both of the spin-liquid states have a finite energy gap in all of their
excitations and respect the translational symmetry. We would like to point out that
the chiral spin liquid and the ^-gapped spin liquid studied here contain new types
of orders which cannot be characterized by the symmetries and by the order param-
eters associated with broken symmetries. This is quite obvious for the ^-gapped
state because it does not break any symmetry. The chiral spin liquid spontaneously
breaks the time-reversal and parity symmetries, and has a corresponding local
order parameter to describe such a symmetry breaking. As we will see later, the
chiral spin liquid contains additional structures that cannot be described by sym-
metry breaking. As both the chiral spin liquid and the /?2-gapped spin liquid have
a finite energy gap, the new type of orders are topological orders.
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As pointed out in Section 8.2.1, one way to show non-trivial topological orders
in the Z2-gapped state and in the chiral spin state is to show that the two states
have topologically-degenerate ground states. Let us first consider the Z2-gapped
state and its ground-state degeneracy.

We put the ^-gapped state on a torus, with even numbers of sites in both
the x and y directions. We consider the following four ansatz constructed from a
mean-field solution tt^:

where m, n = 0,1. Here sXty(ij) have values 0 or 1, with sx(ij) = 1 if the link ij
crosses the x line (see Fig. 9.5) and sx(ij) — 0 otherwise. Similarly, sy(ij) = 1
if the link ij crosses the y line and sy(ij) = 0 otherwise.

We note that u?? with different m and n are locally gauge equivalent
because, on an infinite system, the change Uij —> (—)ms*(*;j)(—)ms!/W)Uij.

can be generated by an SU(2) gauge transformation u^ —»• WiUijWL where

Wi = (~)™e(';*)(-)™efe), and O(n) = 1 if n > 0 and 9(n) = 0 if n < 0.
As a result, the different ansatz u^'n' have the same 577(2) flux through each
plaquette.

For a large system, the energy is a local function of u^j, and satisfies F(uij) =
F(uij) if u^ and u^ are gauge equivalent. Therefore, the energies for different

s are me same ^-n me thermodynamic limit). On the other hand, 
with different m and n are not gauge equivalent in the global sense. A spinon
propagating all the way around the torus in the x (or y) direction obtains a phase
eIm7r (or e m7r). Therefore, u^ \m.n=o,i describe different orthogonal degenerate
ground states (see also Problem 9.3.1). In this way, we find that the Zg-gapped state
has four degenerate ground states on a torus (Read and Chakraborty, 1989; Wen,
199la). From the phase that the spinon obtained by going around the torus, we
see that m and n label the number of vr fluxes going through the two holes on the
torus (see Fig. 9.6). The four degenerate ground states correspond to different ways
of threading TT flux through the two holes. Such a picture can be generalized to a
higher-genus Riemann surface. The degenerate ground states can be constructed by
having zero or one unit of the TT flux through the 2g holes on the genus g Riemann
surface (see Fig. 9.6). This leads to 22g degenerate ground states on a genus g
Riemann surface. This pattern of degeneracies on different Riemann surfaces is
characteristic of the Zi gauge theory. The degeneracies and the presence of the Zi-
vortex excitation indicate, in a physical way, that the low-energy effective theory
of the ^-gapped state is indeed a Zi gauge theory (see Problem 9.3.1). After
we include the spinons, the first-order mean-field theory for the ^-gapped state
describes fermions coupled to the Z^ gauge theory. The physical properties of the
^2-gapped state can be obtained from such an effective theory.
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FIG. 9.6. There are (a) 1<j = 2 holes in a g — 1 Riemann surface (a torus), and (b) 2g = 4 holes

in a g = 2 Riemann surface. We can thread zero flux or TV flux through these holes. This leads to

22s = 4 or 16 degenerate ground states for the Z2-gapped spin liquid.

On a finite compactified lattice, the only way for the system to tunnel from one
ground state to another is through the following tunneling process. At first, a pair
of the Z-2 vortices is created. One of the Z% vortices propagates all the way around
the torus and then annihilates the other Z^ vortex. Such a process effectively adds
a unit of the TT flux to the hole of the torus and changes m or n by 1. The different
ground states cannot tunnel into each other through any local fluctuations because
of the flux conservation. As a direct consequence of this result, the energy split
between different ground states on a finite lattice is expected to be of order
where      is related to the finite energy gap of the Z% vortex.

In mean-field theory, the degeneracy of ground states is a consequence of the
gauge invariance. The gauge invariance remains exact, even after we include the
following arbitrary perturbation to the original spin Hamiltonian:

where 5H may break translational symmetry, rotational symmetry, etc. Thus, the
above arguments are still valid and the mean-field ground states remain four-fold
degenerate even for the modified Hamiltonian. We expect this result to be valid
even beyond mean-field theory. The ground-state degeneracy of the ^2-gapped
state cannot be changed by any perturbations, as long as the perturbations are weak
enough not to close the energy gap of the Z^ vortex. Therefore, the ground-state
degeneracy is a universal quantum number that characterizes different phases of
the spin-liquid states. This also shows that a non-trivial topological order exists in
the ^2-gapped state.

Now let us consider the topological orders in the chiral spin state. Again, we
would like to calculate the ground-state degeneracy of the chiral spin state on,
say, a torus. The easiest way to calculate the ground-state degeneracy is to use the
effective Chern-Simons theory (9.1.28), which describes the dynamics of an
collective mode. The ground-state degeneracy of U(l) Chern-Simons theory has
been discussed for FQH states. Repeating the calculation in Section 8.2.1, we find
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that the ground-state degeneracy is 2. We would like to point out that the two-fold
degeneracy is for one sector of the T- and P-breaking ground states, say the sector
with The other sector with
two degenerate ground states. Thus, the total ground-state degeneracy is 4 = 2x2.
One factor of 2 comes from the T and P breaking, and the other factor of 2 comes
from the gauge fluctuations.

The two-fold ground-state degeneracy arising from the gauge fluctuations is
due to the non-trivial topological orders in the chiral spin state. This degener-
acy depends on the topology of the space. On a genus g Riemann surface, the
gauge fluctuations give rise to 29 degenerate ground states. The degeneracy is
again directly related to the gauge structure and can be shown to be robust against
arbitrary local perturbations of the spin Hamiltonian. Just like the FQH state, the
ground-state degeneracy of the chiral spin state is closely related to the fractional
statistics of the spinons. In general, one can show that, if the spinons have frac-
tional statistics         , then the chiral spin state will have g9-fold degenerate
ground states on a genus g Riemann surface (Wen, 1990). Also, as a result of non-
trivial topological order, the chiral spin state has gapless chiral edge excitations
(Wen, 1992).

To see the usefulness of the concept of topological order, let us consider the fol-
lowing physical question: what is the difference between the chiral spin state and
the ^-gapped state? One may immediately say that the two states have different
symmetries. However, if we modify our Hamiltonians to break the T and P sym-
metries, then the two states will have the same symmetries. In this case, we can
still ask whether the two states are the same or not in the sense of whether one state
can be continuously deformed into the other without phase transitions. When the
T and P symmetries are explicitly broken, the chiral spin state has two degenerate
ground states, while the ^-gapped state still has four degenerate ground states
on the torus. Therefore, the chiral spin state and the ^-gapped state are differ-
ent, even when they have the same symmetries. The two states differ by having
different ground-state degeneracies and different topological orders.

Problem 9.3.1.
Z% gauge structure in states with non-collinear SU(2) fluxes Let

and      is an ansatz with non-collinear 577(2) fluxes. Let        be the

projection of             (see eqn (9.2.11)), namely

(a) Show that, like the states in Z% gauge theory,
related by a Z% gauge transformation.
(b) Show that the four           defined in eqn (9.3. 1) (with u^ being a generic ansatz with
non-collinear SU(2) fluxes) are not SU(2) equivalent. (Hint: Consider the 577(2) fluxes
P(Ci), P(C-2), and P(Cs) through the three loops Ci^.a with the same base point. Here

alasosakmssk

wher

if sij and sij are
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<7i and C-± are two small loops such that                           , and C$ is a big loop around
the torus.)

9.4 Quantum orders in symmetric spin liquids

• Quantum orders are non-symmetry-breaking orders in quantum phases.

• Quantum orders apply to both gapped quantum states and gapless quantum
states.

In this section, we will develop a theory of quantum order based on the invari-
ant group of the mean-field ansatz. We will call the invariant group projective
symmetry group. Our theory allows us to characterize and classify hundreds of
spin-liquid states that all have the mine symmetry. In contrast to the ground state
degeneracy of topogogical order, the projective symmetry group can characterize
both gapped spin liquids and gapless spin liquids.

We have seen that there can be many different spin liquids with the same
symmetry. Many of these spin liquids occupy a finite region in phase space and
represent stable quantum phases. So here we are facing a similar situation to that
in the quantum Hall effect, namely that there are many different quantum phases
that cannot be distinguished by symmetries and order parameters. The quantum
Hall liquids have finite energy gaps. We can use ground state degeneracy or more
generally the topological order to describe the internal order of these distinct states.
Here we can still] use topological order to describe the internal orders of gapped
spin liquids. However, we also have many other stable quantum spin liquids that
have gapless excitations.

To describe internal orders in gapless quantum spin liquids (as well as gapped
spin liquids), in Chapter 8, we have introduced a new concept—quantum order—
that describes the non-symmetry-breaking orders in quantum phases (see Fig. 8.7).
The key point in introducing quantum orders is that quantum phases, in gen-
eral, cannot be completely characterized by broken symmetries and local order
parameters. This point is illustrated by quantum Hall states and by the stable
spin liquids constructed in the last few sections. However, to make the concept
of quantum order useful, we need to find concrete mathematical characterizations
of the quantum orders. As quantum orders are not described by symmetries and
order parameters, we need to find a completely new way to characterize them.
Wen (2002c) proposed the use of the projective symmetry group to characterize
quantum (or topological) orders in quantum spin liquids. The projective symmetry
group is motivated by the following observation from the section 9.2.6: the ansatz
for different symmetric spin liquids are invariant under the same symmetry trans-
formations followed by different gauge transformations. We can use these different
gauge transformations to distinguish between different spin liquids with the same
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symmetry. In the next two sections, we will introduce the projective symmetry
group in a general and formal setting.

9.4.1 Quantum orders and universal properties

• To define a new type of order is to find a new kind of universal property.

• (A class of) quantum orders can be described by projective symmetry groups.

• A projective symmetry group is the invariant group (or the 'symmetry' group)
of a mean-field ansatz.

We know that to define a quantum phase is to find the universal properties
of the ground state wave functions. We can use the universal properties to group
ground state wave functions into universality classes, such that the wave functions
in each class have the same universal properties. These universality classes will
correspond to quantum phases.

However, it is very difficult to find universal properties of many-body wave
functions. Let us consider the quantum orders (or the universal classes) in free
fermion systems to gain some intuitive understanding of the difficulty. We know
that a free fermion ground state is described by an anti-symmetric wave function
of N variables. The anti-symmetric function has the form of a Slater determi-
nant, namely $(xi,..., zjv) = det(Af), where the matrix elements of M are
given by are single-fermion wave functions. The first
step to finding quantum orders in free fermion systems is to find a reasonable
way to group the Slater-determinant wave functions into classes. This is very dif-
ficult to do if we only know the real-space many-body function
However, if we use the Fourier transformation to transform the real-space wave
function to a momentum-space wave function, then we can group different wave
functions into classes according to their Fermi surface topologies. To really prove
that the above classification is reasonable and corresponds to different quantum
phases, we need to show that, as a ground-state wave function changes from one
class to another, the ground-state energy always has a singularity at the transition
point. This leads to our understanding of quantum orders in free fermion sys-
tems (see Section 8.3.2). The Fermi surface topology is a universal property that
allows us to classify different fermion wave functions and characterize different
quantum phases of free fermions. Here we would like to stress that, without the
Fourier transformation, it is very difficult to see Fermi surface topologies from the
real-space many-body function

To understand the quantum orders in spin liquids, we need to find a way to
GROUPTHE SPIN LIQUAEUSSDFK                             INKDFDSLSDAFK,
label the positions of up-spins. What is missing here is the corresponding 'Fourier'
transformation. Just like the topology of a Fermi surface, it is very difficult to see

erties

and
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universal properties (if any) directly from the real-space wave function. At the
moment, we do not know how to classify the spin-liquid wave functions

However, we do not want to just give up. Motivated by the projective con-
struction, here we consider a simpler problem to get things started. We limit
ourselves to a subclass of many-body wave functions that can be obtained from
the ansatz via eqn (9.2.11). Instead of looking for the universal prop-
erties of generic many-body wave functions, we try to find universal properties of
the many-body wave functions in the subclass. As the many-body wave functions
in the subclass are labeled by the ansatz            DSADSADSAASADSASDASAD
wave functions are actually the universal properties of the ansatz, which greatly
simplifies the problem. Certainly, one may object that the universal properties of
the ansatz (or the subclass of wave functions) may not be the universal properties
of the spin quantum phase. This is indeed the case for some ansatz. However, if
the mean-field state described by the ansatz is stable against any fluc-
tuations (i.e. no fluctuations around the mean-field state can cause any infra-red
divergence), then the mean-field state faithfully describes a spin quantum state and
the universal properties of the ansatz will be the universal properties of the corre-
sponding spin quantum phase. This completes the link between the properties of
the ansatz and the properties of physical spin liquids.

So what should be the universal property of an ansatz? Motivated by Lan-
dau's theory for symmetry-breaking orders, here we would like to propose that the
invariance group (or the 'symmetry' group) of an ansatz is a universal property
of the ansatz. Such a group will be called the projective symmetry group (PSG).
We will argue later that certain PSGs are indeed universal properties of quantum
phases, and these PSGs can be used to characterize quantum orders in quantum
spin liquids.

• A projective symmetry group is an extension of a symmetry group.

• Projective symmetry groups classify all of the mean-field phases.

• A projective symmetry group characterizes the quantum order in a physical
spin-liquid state only when the corresponding mean-field state is stable.

Let us give a detailed definition of a PSG. A PSG is a property of an ansatz.
It is formed by all of the transformations that keep the ansatz unchanged. Each
transformation (or each element in the PSG) can be written as a combination of
a symmetry transformation U (such as a translation) and a gauge transformation

LKJHBFDJGDFGJKLBFGDFDF
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GU- The invariance of the ansatz under its PSG can be expressed as follows:

for each GVU e PSG.
Every PSG contains a special subgroup, which will be called the invariant

gauge group (IGG). The IGG (denoted by Q) for an ansatz is formed by all of
the pure gauge transformations that leave the ansatz unchanged:

If we want to relate the IGG to a symmetry transformation, then the associated
transformation is simply the identity symmetry transformation.

If the IGG is non-trivial, then, for a fixed symmetry transformation U, there
can be many gauge transformations GU such that G/jU will leave the ansatz
unchanged. If GuU is in the PSG of Uij, then GGuU will also be in the PSG
if and only if G E Q. Thus, for each symmetry transformation U, the different
choices of GU have a one-to-one correspondence with the elements in the IGG.
From the above definition, we see that the PSG, the IGG, and the symmetry group
(SG) of an ansatz are related as follows:

This relation tells us that a PSG is a projective representation or an extension of
the symmetry group.68

Certainly, the PSGs for two gauge-equivalent ansatz u^ and W(i)uijW^(j)
are related. From WGuU(aij) = W(uij), where W(uij) = W(i)uijW*(j), we
find that

where Wv = UWU'1 is given by Wu(i} = W(U(i)). Thus, if GVU is in the
PSG of the ansatz u^, then (WGuWu)U is in the PSG of the gauge-transformed
ansatz W(i)uijW^(j). We see that the gauge transformation GU associated with
the symmetry transformation U is changed in the following way:

after the gauge transformation W(i).
As the PSG is a property of an ansatz, we can group all of the ansatz sharing

the same PSG together to form a class. We claim that such a class is a universality

68 More generally, we say that a group PSG is an extension of a group SG if the group PSG contains
a normal subgroup IGG such that PSG/IGG = SG.
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class that corresponds to a quantum phase.69 It is in this sense that we say that
quantum orders are characterized by PSGs.

It is instructive to compare the PSG characterization of the quantum orders with
the symmetry characterization of the symmetry-breaking orders. We know that a
symmetry-breaking order can be described by its symmetry properties. Mathemat-
ically, we say that a symmetry-breaking order is characterized by its symmetry
group. Similarly, the quantum orders are also characterized by groups. The dif-
ference is that the quantum orders are characterized by PSGs—the extensions of
the symmetry group. We see that using the projective symmetry group to describe
a quantum order is conceptually similar to using the symmetry group to describe
a symmetry-breaking order. We also see that quantum states with the same sym-
metry can have many different quantum orders, because a symmetry group can
usually have many different extensions.

In addition to characterizing symmetry-breaking orders, the symmetry descrip-
tion of a symmetry-breaking order is also very useful because it allows us to obtain
many universal properties, such as the number of gapless Nambu-Goldstone
modes, without knowing the details of the system. Similarly, knowing the PSG
of a quantum order also allows us to obtain the low-energy properties of a quan-
tum system without knowing its details. In Section 9.10, we will show that the PSG
can produce and protect low-energy gauge fluctuations. In fact, the gauge group
of the low-energy gauge fluctuations is simply the IGG of the ansatz. This gener-
alizes the results obtained in Section 9.2.2. In addition to gapless gauge bosons,
the PSG can also produce and protect gapless fermionic excitations and their crys-
tal momenta. These gapless fermions can even be produced in a purely bosonic
model. We see that gapless gauge bosons and gapless fermions can have a unified
origin—the quantum orders.

Here we would like to stress that PSGs really classify different mean-field
phases. A continuous mean-field phase transition is always associated with a
change of PSG. Thus, strictly speaking, the above discussions about PSGs and
their physical implications only apply to mean-field theory. However, some
mean-field states are stable against fluctuations. Then the PSGs for these stable
mean-field states can be applied to the corresponding physical spin liquids, and
they describe the real quantum orders in those spin liquids. On the other hand,
there are mean-field states that are unstable against the fluctuations. In this case,
the corresponding PSGs may not describe any real quantum orders.

More precisely, such a class is formed by one or several universality classes that correspond to
quantum phases. (A more detailed discussion of this point is given in Section 9.9.)

69
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• We have classified all of the mean-field ansatz whose PSG is a Z^ extension
of the lattice symmetry group (SG), i.e. PSG/Z2 = SG,

• There are over 100 symmetric Z% spin liquids.

• The concepts of an invariant PSG and an algebraic PSG.

As an application of the PSG theory of quantum orders in spin liquids, we
would like to classify the PSGs associated with translational transformations,
where, for simplicity, we restrict the IGG Q to be Z%, That is, we want to find
all of the Z-i extensions of the translation group.

When Q = Z'2,\i contains only two elements — the gauge transformations G\_
and G2:

In order for the IGG of an ansatz to be Q = Z%, the ansatz must generate
non-collinear 577(2) fluxes. Otherwise, the IGG will be larger than Zi. The non
collinear SU(2) fluxes in an ansatz break the .$77(2) gauge structure down to a Z%
gauge structure. The corresponding spin liquid is a Z^ spin liquid. We see that the
Z'i extensions of the translation group physically classify all of the Z^ spin liquids
that have only translational symmetry.

Consider a Z% spin liquid with translational symmetry. Its PSG, as a Zi exten-
sion of the translation group, is generated by the four elements and

Due to the translational symmetry of the ansatz, we can choose a gauge in which
all of the 5(7{2)-flux operators of the ansatz are translationally invariant. That is,
PC, = PC-, if the two loops C\ and Ci are related by a translation. We will call
such a gauge a uniform gauge.

Under the transformation GXTX, an S77(2)-flux operator PC based at i trans-
forms as 
base point of the translated loop TX(C). We see that translational invariance of PC
in the uniform gauge requires that
Gy satisfies a similar condition. As different /S77(2)-flux operators based at the
same base point do not commute, G.,^y(i) at each site can only take one of the two
values

We note that a site-dependent gauge transformation of the form W(i) = ±r°
does not change the translationally-invariant property of the 5f7{2)-flux operators.
Thus, we can use such gauge transformations to further simplify through

SADFJKLGFDSYSDFG;LKJCLSSIFIEDSYSTEM IN2003KNKDLNFS
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eqn (9.4.3). First, we can choose a gauge to make (see Problem 9.4.1)

We note that a gauge transformation satisfying does not change
the condition We can use such kinds of gauge transformation to make

As the translations in the x and y directions commute, must satisfy (for
any ansatz, Z% or not Z%)

This means that

For Zi spin liquids and due to eqn (9.4.4), eqn (9.4.7) reduces to

or

When combined with eqns (9.4.5) and (9.4.4), we find that eqns (9.4.8) and (9.4.9)
become

and

Thus, there are only two gauge-inequivalent Z% extensions of the translation group.
The two PSGs are generated by G   and            with            given by eqns (9.4.10)
and (9.4.II).70 Under the PSG classification, there are only two types of Z2 spin
liquids which have only translational symmetry and no other symmetries. The
ansatz that is invariant under the PSG (9.4.10) has the form

and the one that is invariant under the PSG (9.4.11) has the form

Through the above example, we see that the PSG is a very powerful tool. It
can lead to a complete classification of (mean-field) spin liquids with prescribed
symmetries and low-energy gauge structures.

70 We would like to remark that G^Tx and GyTy satisfy the usual translational algebra

given by eqn (9.4.9), GXTX and GyTy satisfy the magnetic translational algebra
DF are given by eqn (9.4.8). When Gx and Gy are
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In the above, we have studied Z*} spin liquids which have only translational
symmetry and no other symmetries. We found that there are only two types of
such spin liquids. However, if spin liquids have more symmetries, then there can
be many more types. Wen (2002c) obtained a classification of symmetric Zi spin
liquids using the PSG. The classification was obtained by noticing that the gauge
transformations GXtV, Gpxtpytpxy, and GT must satisfy certain algebraic relations
similar to eqn (9.4.7). Solving these algebraic relations and factoring out gauge-
equivalent solutions, we find that there are 272 different Z% extensions of the
symmetry group generated by the translational, parity, and time-reversal trans-
formations {TXty, Px,y,xy, T}. Here we will just list the 272 Z2 PSGs. These PSGs
are generated by (GxTx,GyTy,GTT,GpxPx,GpvPy,GpxvPXy). The PSGs can
be divided into two classes. The first class is given by

Here the three yys can independently take the two values ±1. The gs have 17 dif-
ferent choices, which are given in Table 9.1. Thus, there are 2 x 17 x 23 = 272
different PSGs. They can potentially lead to 272 different types of symmetric Z^
spin liquids on a two-dimensional square lattice.

To label the 272 PSGs, we propose the following scheme:

The label Z2A... corresponds to the case in eqn (9.4.14), and the label Z2B... cor
responds to the case in eqn (9.4.15). A typical label will look like Z2Arj{:r^r12r£.
We will also use an abbreviated notation. An abbreviated notation is obtained by
replacing (rWV3) or (r°,rW+) by (0,1,2,3), and (r°,ri,^,r£
by (n, x, y, z). For example, Z2Ar_|r£r12T^ can be abbreviated to Z2Aln(l2)z.

These 272 different Z% PSGs are, strictly speaking, the so-called algebraic
PSGs. The algebraic PSGs are denned as extensions of symmetry groups. The
algebraic PSGs are different from the invariant PSGs, which are defined as a
collection of all transformations that leave an ansatz uij invariant. Although an

and the second class is given by



invariant PSG must be an algebraic PSG, an algebraic PSG may not be an invari-
ant PSG. This is because certain algebraic PSGs have the following property: any
ansatz u^j that is invariant under an algebraic PSG GI may actually be invariant
under a larger PSG G%. In this case, the original PSG GI cannot be an invariant
PSG of the ansatz. The invariant PSG of the ansatz is really given by the larger
PSG GZ- If we limit ourselves to the spin liquids constructed through the ansatz
«ij, then we should drop the algebraic PSGs which are not invariant PSGs. This is
because these algebraic PSGs do not characterize mean-field spin liquids.

We rind that, among the 272 algebraic 2^ PSGs, at least 76 of them are not
invariant PSGs. Thus, the 272 algebraic Zi PSGs can lead to at most 196 possible
7,'i .spin liquids.

9.4.4 A Z'± and a [7(1 ) projective symmetry group and their ansatz

• We can find the most general ansatz for a given PSG. The common physical
properties shared by these ansatz are universal properties associated with the
PSG.

As an application of the Zi PSG, let us construct the most general ansatz that
is invariant under the 22 AGO 13 PSG:

From the invariance under GxTx and  GyTy and because Gx
ial, the Z2A0013 ansatz is directly translation ally invariant and has the form

SThe key to obtaining the most general Z2A0013 ansatz is to

Q U A N T U M O K D H K S I N S Y M M E T R I C S P I N L I Q U I D S 4 0 5

TABLE 9.1. The 17 choices of and </r for ihe Z2 PSG. Here
and

ansatz.4

and Gy are triv-
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find out which Um must vanish. The time-reversal transformation GxT and the
180° rotation Aare important for this purpose. The invariance und
GrT requires that — um = r3umr3. Thus, only Um can be nonzero. The invari-
ance under requires that um = u_m, which is always satisfied
by                           because u^ are real and  Thus, the 180°
rotation does not impose additional conditions. Other transformations relate differ-
ent Um&. The invariance under requires that

 Therefore, the most general Z2A0013 ansatz
has the form

After replacing         in eqn (9.2.41) b with
um=0, we find that the ansatz (9.2.41) for a ^-linear spin liquid is a special case
of the above ansatz. Thus, the PSG of the ansatz (9.2.41) is the Z2A0013 PSG, and
the corresponding spin liquid is a Z2A0013 spin liquid.

In addition to the ^-symmetric spin liquids studied above, there can be sym-
metric spin liquids whose low-energy gauge group is U(l) or 577(2). Such U(l)-
or S'f7(2)-symmetric spin liquids are classified by PSGs whose IGG is U(l) or
SU(2). We call these PSGs [7(1) and SU(2) PSGs. The U(l) and SU(2) PSGs
have been calculated by Wen (2002c). Section 9.4.5 summarizes those results.

One of the U(l) PSGs is given by

where

The IGG is formed by                          Such a PSG is labeled by UlCnOln.
It is obtained from eqn (9.4.27) by choosing
and

Let us obtain the most general ansatz that is invariant under the UlCnOln PSG.
To be invariant under the IGG, the ansatz must satisfy                           for any
6. Thus, the u^j must have the form                                      The invariance under
under the translationsA AKL;NL;KNZ;VLCKNCXZ;VNLXCVZ;LNXCN
ant and -a?- to change sign under the two translations Tx^y. Thus, the u^j have

WHe
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the form
transformation GT"T requires that We find that,
if m = even.71 The invariance under the 180° rotationrequireGPVPY Requires

that which implies that 

and                    , and provides no new constraint o         The hermitian relation
m,i implies 

the above conditions and including the action of Gp^ Px, etc., we find that the most
general UlCnOln ansatz has the form

where we have also listed the gauge transformations in the transformed PSG. The
IGG now has the form IGG 
by              , then one can show that the above ansatz corresponds to a d-wave state
in terms of the /-fermions (see eqns (9.2.4) and (9.2.30)).

The spinon spectrum for the ansatz (9.4.20) is given by

We note that, for odd m,
at                 The UlCnOln spin-liquid state always has at least four

71 Here m is even (odd) if is even (odd).

The f7(l)-linear ansatz (the staggered-flux phase) (9.2.34) is a special case of the
above ansatz. Thus, the staggered-flux phase (9.2.34) is a UlCnOln state.

We can use a gauge transformation                 to make the above ansatz
translationally invariant:

THE ;ASFKJADFDJDFJKDFJDFS
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branches of gapless spinons at                  The gapless spinons and their
crystal momenta              are universal properties of the UlCnOln spin-liquid
state. The gaplessness and the crystal momenta of the spinons are protected by the
UlCnOln PSG. This is a striking result. As a purely bosonic model, the UlCnOl
spin-liquid state does not break any symmetry. However, it contains a special quan-
tum order that guarantees the existence of gapless/erm/OTs! As the gapless spinons
at                    is a universal property of the UlCnOln state, we can use it to
detect the UlCnOln quantum order in experiments.

Problem 9.4.1.
Find the gauge transformation that transforms
eqn (9.4.3). Here B(i) is an arbitrary function with only the two values ±1.

Problem 9.4.2.
(a) Find the gauge transformations and GT for the Z2Azzl3 PSG from
eqn (9.4.14).
(b) Find the most general ansatz that is invariant under the Z2Az^l3 PSG. We will show
later that such an ansatz always has gapless fermion excitations.

Problem 9.4.3.
Prove eqn (9.4.20). (Hint: See eqn (9.4.3).)

9.4.5 Remarks: classification of symmetric f /( l) and 517(2) spin liquids

• A classification of all of the mean-field ansatz whose PSG is a U(l) or an
5E7(2) extension of a lattice symmetry group, i.e. PSG/U(1) = SG or
PSG/SU(2) = SG.

A classification of the f/(l) and the SU('2) PSG is given by Wen (2002c). In the following,
we only summarize the results. The PSGs that characterize mean-field symmetric [/(I) spin
liquids can be divided into the four types U1A, U1B, U1C, and U1™. There are the followin
24type-U1APSGs:

We will use U1A« Tto label the 24 PSGs. Here a, 6, c, and d are associated
with  and CT, respectively. They are equal to r1 if the corresponding G

and

thussrs
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contains a r1, and equal to r° otherwise. A typical notation looks like                      , which
can be abbreviated as U1 AcclOx.

There are also the following 24 type-111 B PSGs:

and

We will use UI                                 to label the 24 PSGs.
The 60 type-U1 C PSGs are given by



which will be labeled by 
The type-U1™ PSGs have not been classified. However, we do know that, for each

rational number m/n e (0,1), there exists at least one mean-field symmetric spin liquid of
type U1™. The ansatz is given

It has          flux per plaquette. Thus, there are infinitely many U1™ spin liquids.
We would like to point out that the above 108 U1A, U1B, and U1C PSGs are algebraic

PSGs. They are only a subset of all possible algebraic U(l) PSGs. However, they do contain
all of the invariant U(l) PSGs of type U1 A, U1B, and U1C. We find that 46 of the 108 PSG
are also invariant PSGs. Thus, there are 46 different mean-field (7(1) spin liquids of type
U1A, U1B, and U1C. Their ansatz and labels are given in Wen (2002c).

To classify the symmetric SU(2) spin liquids, we find that there are eight different SU(2)
PSGs, which are given by

and

where the gs are in SU(2). We introduce the following notation:

to denote the above 8 PSGs. Here SU2. n (9.4.31) and SU2Br°xpajr. f̂

is for eqn (9.4.32). We find that only 4 of the 8 SU(2) PSGs, namely SU2A      ] and
SU2B[             , lead to S'C/(2)-symmetric spin liquids. The SU2AnO state is the uniform RVB
state (9.2.32) and the SU2BnO state is the ?r-flux state (9.2.33). The other two SU(2) spin
liquids are labeled by SU2AOn, namely

410 M E A N - F I E L D T H E O R Y OF SPIN L I Q U I D S AND Q U A N T U M O R D E R
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and by SU2Bl)n, namely

The above results give us a classification of f/(l)- and S'f/(2)-symmetric spin liquids
at the mean-field level. We would like to point out that the (7(1) and the SU(2) mean-field
states are not stable mean-field states. Some of the f/(l) and the SU(2) mean-field states
are marginal. So, when compared to the Z2 mean-field states, it is less clear if the [/(I) and
the St/(2) mean-field states correspond to any physical t/(l)- or Sl/(2)-symmetric Spjn
liquids for spin-1/2 models. Physical f/(1) or SU(2) states may exist only in the large-JV
limit (see Section 9.8).

9.5 Continuous phase transitions without symmetry breaking

• The continuous phase transition between quantum phases is governed by the
following principle. Let PSGi and PSGi. be the PSGs of the two quan-
tum phases on the two sides of a transition, and let PSGCT be the PSG that
describes the quantum critical state. Then PSGi C PSGcr and PSG-2 C
PSGcr-

• The above principle applies to both symmetry-breaking transitions and tran-
sitions that do not change any symmetry,

After classifying mean-field symmetric spin liquids, we would like to know
how these symmetric spin liquids are related to each other. In particular, we would
like to know which spin liquids can change into each other through a continuous
phase transition. At the mean-field level, this problem can be completely addressed
by the PSG. The idea is that the PSG is just the 'symmetry' group of the mean-field
states. The mean-field phase transitions can be described by the change of PSGs.
Just like the symmetry-breaking phase transition, a mean-field state with a PSG
of PSG\ can change to a mean-field state with a PSG of PSG-2 via a continuous
(mean-field) phase transition if and only if PSG-2 C PSGi or PSGi C PSG?.

To understand this result, let us assume that the mean-field state described by
PSG] has an ansatz u$j. Its neighbor has an ansatz Uij + 6uij, where Suij is a
small perturbation. Assume the perturbation changes the PSG to a different one

be invariant under PSG'2 in order for the uy +      to be invariant under PSG-2.
Therefore, PSG2 C PSCn.

Using the above result, we can obtain the symmetric spin liquids in the neigh-
borhood of some important symmetric spin liquids using the following procedure.
We start with a symmetric spin liquid -u^ with a PSG of PSGi. Here PSGi is
an extension of a symmetry group SG by IGGi, i.e. PSGi/IGG-\ = SG. We

jklcvckcv.        dfsfdffdfgffggfgggfffggrrggffffdssdfggdsdfgd     fgfs       fddfg
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then find all of the subgroups of PSGi that are extensions of the same symmetry
group SG. Let denote these subgroups by PSGz. Then PSG% must have a normal
subgroup IGG% such that PSG^/IGG-^ = SG. Using those subgroups, we can
constrcuct all of the neighboring mean-field states that have the same symmetry.

After lengthy calculations in Wen (2002c), all of the mean-field symmetric
spin liquids around the Ef(l)-linear state UlCnOln in eqn (9.2.34), the SU(2)-
gapless state SU2A?iO in eqn (9.2.32), and the 5't/(2)-linear state SU2BnO in
eqn (9.2.33) were found. It was shown, for example, that, at the mean-field level,
the [/(l)-linear spin liquid UlCnOlre can continuously change into the 8 different
Z2 spin liquids Z2A0013, Z2Azzl3, Z2A001n, Z2Azzln, Z2B0013, Z2Bzzl3,
Z2B001n, and Z2Bzzln.

Let us discuss a simple example to demonstrate the above result. The ansatz

with x ¥" f]i describes the UlCnOln spin liquid (the staggered-flux state) whe
7 = 0. That is, the ansatz is invariant under the symmetry transformations fol-
lowed by the gauge transformations given in eqn (9.4.20). When 7 ^ 0, the ansatz
generate non-collinear SU(2) fluxes, which break the £7(1) gauge structure down
to a Z'2 gauge structure. The ansatz now describes a Z^ state. For a nonzero 7,
the ansatz is no longer invariant under the symmetry transformations followed by
the UlCnOln gauge transformations listed in eqn (9.4.20). It is only invariant
under the symmetry transformations followed by a subset of the UlCnOln, gauge
transformations :

The symmetry transformations followed by the above gauge transformations give
us the Z2Az2;13 PSG. Thus, as 7 changes from zero to nonzero, the UlCnOln
state continuously changes to the Z2A^2;13 state.

We would like to stress that the above results about the continuous transitions
are valid only at the mean-field level. Some of the mean-field results survive the
quantum fluctuations, while others do not. One needs to do a case-by-case study
to see which mean-field results can be valid beyond mean-field theory (Mudry and
Fradkin, 1994).

One possible effect of quantum fluctuations is to destabilize certain mean-field
states. We may assume that the destabilization is via certain relevant perturbations
generated by the quantum fluctuations. Under such an assumption, some of the
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FIG. 9.7. (a) A mean-field phase diagram with three phases characterized by PSGi,2,3. The

mean-field phase transitions between them are continuous. The PSGs satisfy PSGi C PSGa and

One possible choice fo

and PSGs = UlCnOln. (b) The corresponding physical phase diagram with quantum fluctuation

Here we have assumed that, after including the quantum fluctuations, the state PSGs becomes an

unstable fixed point with only one relevant perturbation. The mean-field state PSGs shrinks into a

critical line that describes the transition between the two states PSGi and PSG2- The staggered-flux

state UlCnOln, if unstable, may appear as a critical state.

mean-field stable fixed points become unstable fixed points for real physical sys-
tems once quantum fluctuations are included. So some phases in the mean-field
phase diagram may shrink into lines that represent critical states at the transi-
tion point between two stable quantum phases (see Fig. 9.7). This picture lead
to the conjecture stated in the key points at the beginning of this section about the
principle that governs the continuous quantum phase transitions.

We would like to stress that all of the above spin liquids have the same sym-
metry. Thus, the continuous transitions between them, if they exist, represent a
new class of quantum continuous transitions which do not change any symmetries
(Wegner, 1971; Kosterlitz and Thouless, 1973; Dasgupta and Halperin, 1981; Wen
andWu, 1993; Chen etal, 1993; Senthil ef a/., 1999; Read and Green, 2000; Wen,
2000).

Problem 9.5.1.
The ansatz

with x ¥^ ?7> describes the UlCnOln spin liquid (the staggered-flux state) when A = 0.
(a) Show that, when A ̂  0, the ansatz describes a Z^ spin liquid.
(b) Find the subgroup of the UlCnOln PSG that leaves the ansatz invariant.
(c) Find the label of the above Z2 ansatz.

PSG 2 P S G 3 . P S G 1 , 2 , 3 i s  P S G 1 +  Z 2 A 0 0 1 3 ,  P S G 2 +  Z 2 A z z 1 3 ,
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9.6 The zoo of symmetric spin liquids

• Physical properties of the eight Z% spin liquids in the neighborhoods of the
staggered-flux state.

In this section, we would like to the study physical properties of the symmetric
spin liquids classified in Section 9.4, We have been using projective symmetry to
characterize different mean-field states. However, it is not straightforward to see
the physical properties of a mean-field state from its PSG. To find the physical
properties of a mean-field state, we need to construct the explicit ansatz that is
invariant under the corresponding PSG.

However, it is not the easiest thing to list a few hundred symmetric spin liquids,
not to mention constructing their ansatz and studying their theory properties one
by one. What we want to do here is to study some important spin liquids; but how
to determine the importance of a spin liquid?

In the study of high-Tc superconductors, it was found that the 5'f/(2)-linear
state SU2BnO (the 7r-flux state), the U(I)-linearS.state UlCnOln (the staggered-
flux/d-wave state), and the 6T7{2)-gapless state SU2An() (the uniform RVB state)
are important. They are closely related to some phases observed in high-Tc super-
conductors. The 6T/(2)-linear, the t/(l)-linear, and the S'[/(2)-gapless states
reproduce the observed electron spectra function for undoped, underdoped, and
overdoped samples, respectively. However, theoretically, these spin liquids are
unstable at low energies due to the {/(!) or SU(2) gauge fluctuations. These states
may change into more stable spin liquids in their neighborhood. This motivates us
to study these more stable spin liquids in the neighborhood of the 5'[/(2)-linear,
the f/(l)-linear, and the 5f/(2)-gapless states. To limit our scope further, here
we will mainly study the spin liquids in the neighborhood of the £/{l)-linear state
UlCuOln.72

9.6.1 Symmetric spin liquids aroundGFESDFDSFGHFGFS 

The Ul CnOln spin liquid (9.2.34 can continuously change into eight different spin
liquids that break the C/(l) gauge structure down to a Z^ gauge structure. These
eight spin liquids are labeled by different PSGs, despite them all having the same
symmetry. In the following, we will study these eight Z-^ spin liquids in more
detail. In particular, we would like to find out the spinon spectra in them.

12 We would like to poinl out that we will only study symmetric spin liquids here. The UlC?i01n
spin liquids may also change into some other states that break certain symmetries. Such symmetry-
breaking transitions have actually been observed in high-7c superconductors (such as the transitions
to the anti-ferromagnetic state, the rf-wave superconducting state, and the stripe state).



THE zoo OF S Y M M E T R I C SPIN L I Q U I D S 415

The first one is labeled by Z2A0013 and takes the following form:

It has the same quantum order as that in the ansatz (9.2.41). The label Z2A0013
tells us the PSG—the 'symmetry' group—of the ansatz. Remember that the PSG
for a symmetric spin liquid is generated by the combined symmetry transformation
and gauge transformation
The gauge transformation GO generates the IGG of the PSG. The 'Z2' in the label
Z2A0013 tells us that IGG = Z2 and G0 (i) = (-). The 'A' in the label tells us that

T means that Gp  and the '3' means that                   The secon
ansatz is labeled by Z2Azzl3 and takes the following form:

sSADFS       EWEWEREREERRRRR
thuss
third ansatz is labeled by Z2A001n and takes the following form:

If you are careful, you will find that the label Z2A001n does not appear in our
list of 196 Z-2 spin liquids classified in Section 9.4.3 (see Table 9.1). However, the
PSG labeled by Z2A001n and the PSG labeled by Z2A003n are gauge equivalent,
and the label Z2A003n does appear in our list (see the second row of Table 9.1).
In the following, we will call the above spin liquid the Z2A003n state. The fourth
ansatz is labeled by Z2Azzln and takes the following form:

asdsthe nextkdsdlkfdsfnkfd. tes
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the first four Z2 spin liquids given by eqns (9.6.1), (9.6.2), (9.6.3), and (9.6.4)
(assuming that OQ is small in eqn (9.6.1)) (see Fig. 9.8). Therefore, the four
ansatz describe symmetric Z2-linear spin liquids. The single-spinon dispersion
for the second Z2 spin liquid Z2Azzl3 is quite interesting. It does not have the
90°-rotational symmetry. This is consistent with the 90° symmetry in the ground
state, because excitations with odd numbers of spinons can never satisfy the con-
straint and are not allowed. The spinon dispersion has a 90°-rotational symmetry
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The above four ansatz have translational invariance. The next four Z% ansatz do
not have translational invariance because they are all of Z2B type. (However, they
still describe translationally-symmetric spin liquids after the projection.) These Z2

spin liquids are as follows:
Z2B0013:

Z2B001n:

and Z2Bzzln:

Z2Bzzl3:

the spinons are gapless at four os;lated poinrs with a lineat sispwesiomfors
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FIG. 9.8. Contour plots of the spinon dispersion E+(k) as a function of for the

Za-linear spin liquids: (a) the Z2A0013 state in eqn (9.6.1); (b) the Z2A«2l3 state in eqn (9.6.2); (c)

the Z2A001n state in eqn (9.6.3); and (d) the Z2Azzln state in eqn (9.6.4).

around k — (0, TT), and spectra of excitations with even numbers of spinons have
90°-rotational symmetry.

We would like to point out that, when OQ is large, eqn (9.6.1) may have a gapped
spinon spectrum. Thus, the Z2A0013 state can be a gapped spin liquid or a gapless
spin liquid. The other three Z2A states are always gapless and are ^-linear states.
In Section 9.9, we will show that all of the ^-gapped and the ^-linear states
are stable. The mean-field results for these states can be applied to physical spin
liquids.

Next let us consider the ansatz Z2B0013 in eqn (9.6.5). The spinon spectrum
for the ansatz (9.6.5) is determined by the eigenvalues of
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FIG. 9.9. Contour plots of the spinon dispersion min(Ei(k), £2(ft)) as a function of

2-lineai states: (a) the Z2B0013 state in eqn (9.6.5); (b) the Z2Bzzl3asassdsd,
state in eqn (9.6.6); (c) the Z2B001n state in eqn (9.6.7); and (d) the Z2Bzzln state in eqn (9.6.8).

assuming that                      The four bands of the spinon dispersion have the
form We find that the spinon spectrum vanishes at eight isolated
points near                    (see Fig. 9.9(a)). Thus, the state Z2B0013 is a
Z<z -linear spin liquid.

The spinon spectra of the other three Z2B states can be obtained in a similar
way. The spectra are plotted in Fig. 9.9. The three Z2B states are also ^-linear
states. The gapless spinons appear only a

where kx and
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Knowing the translational symmetry of the above Z2B spin liquid, it seems
strange to find that the spinon spectrum is defined only on half of the lattice
Brillouin zone. However, this is not inconsistent with translational symmetry
in the physical spin liquid, because the single-spinon excitation is not physical.
Only two-spinon excitations correspond to physical excitations and their spectrum
should be denned on the full Brillouin zone. Now the problem is how to obtain
the two-spinon spectrum defined on the full Brillouin zone from the single-spinon
spectrum defined on half of the Brillouin zone. Let |fc, 1} and |fe, 2} be the two
eigenstates of a single spinon with positive energies E\(k) and E%(k), respec-
tivelyddffff
by a gauge transformation) changes \k, 1} and \k, 2} to the other two eigenstates
with the same energies as follows:

Now we see that the momentum and the energy of two-spinon states

Equation (9.6.9) allows us to construct the two-spinon spectrum from the single-
spinon spectrum.

9.6.2 A strange symmetric spin liquid around SU(2) spin liquids

There are many types of symmetric ansatz in the neighborhood of the uniform
RVB state (or the SC/(2)-gapless state SU2AnO) in eqn (9.2.32) and in the neigh-
borhood of the 7r-flux state (or the SU(2)-linear state SU2BnO) in eqn (9.2.33).
Here we will only consider one of them—the Zi spin liquid Z2Byl(12)n (note
that Z2Byl(12)n is gauge equivalent to Z2Bx2(12)ri) which takes the following
form:

The above ansatz reduces to the ansatz of the S?7(2)-gapless state SU2AnO when
X = 0, and reduces to the 5?7 (2)-linear state SU2BnO when r\ = 0. After the
Fourier transformation, we find that the spinon spectrum is determined by

andwhere

AREGIVENBYS

sdf 
sdsdsdsdsdsdsdsdsdsdsdsdsd
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FIG. 9.10. Contour plots of the spinon dispersion E+(k) as a function of for the

Zz spin liquids: (a) the Zz-gapless state Z2A.x2(12)n in eqn (9.2.39); and (b) the .^-quadratic

state Z2Ba;2(12)n in cqn (9.6.10). Despite the lack of rotational and parity symmetries in the

single-spinon dispersion in (a), the two-spinon spectrum docs have these symmetries.

The spinon spectrum can be calculated exactly and its four branches take the
form         and The spinon energy vanishes at the two isolated points

Sthe low-energy spectrum is given by (see
Fig. 9.10(b))

It is interesting (and strange) to see that the energy does not vanish linearly as
k — > 0; instead it vanishes like fc2! We will call such a state a ^-quadratic spin
liquid to stress the quadratic E oc k2 dispersion.

Problem 9.6.1.
The PSG of the ansatz (9.6.3)

1. Find the gauge transformations etc. for the Z2A001n PSG from the
label Z2AOO In.

2. Show that the ansatz (9.6.3) is invariant under the Z2A001n PSG.

3. Find the gauge transformation that transforms the Z2A001n PSG to the Z2A003n
PSG.

Problem 9.6.2.
Check that, for the spin liquid described by eqn (9.6.10), the 5Lr(2)-flux operators (se
eqn (9.2.20)) for the loops

d o not commute as long as both % and 77 are nonzero. Thus, th
spin liquid indeed has a Z% gauge structure.

a n d N e a r
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Problem 9.6.3.
(a) Show that the ansatz in eqn (9.6.10) reduces to the ansat/ of the S'f/(2)-gapless state
SU2AnO when ry = 0, and reduces to the ST/(2)-gapless state SU2Bnl) when x = 0-
(b) Find the spinon spectrum ±£1 and ±#2-

9.7 Physical measurements of quantum orders

• Quantum orders described by PSGs can be measured via spectra of excita-
tions.

After characterizing the quantum orders using the PSG mathematically, we
would like to ask how to measure quantum orders in experiments. The quan-
tum orders in gapped states are related to the topological orders. We can use
ground-state degeneracy, edge states, quasiparticle statistics, etc. to measure the
topological orders (Wen, 1990, 1995; Senthil and Fisher, 2001). The quantum
orders in a state with gapless excitations need to be measured differently. In this
section, we would like to demonstrate that quantum orders can be measured, in
general, by the dynamical properties of gapless excitations. However, not all of
the dynamical properties are universal. Thus, we need to identify the universal
properties of gapless excitations, before using them to characterize and measure
quantum orders. The PSG characterization of quantum orders allows us to obtain
these universal properties—we simply need to identify the common properties of
gapless excitations that are shared by all of the ansatz with the same PSG.

To demonstrate the above idea, we would like to study the spectrum of two-
spinon excitations. We note that spinons can only be created in pairs. Thus, the
one-spinon spectrum is not physical. We also note that the two-spinon spec-
trum includes spin-1 excitations, which can be measured by neutron-scattering
experiments.

At a given momentum, the two-spinon spectrum is distributed in one or several
ranges of energies. Let E^ffc) be the lower edge of the two-spinon spectrum at
momentum k. In mean-field theory, the two-spinon spectrum can be constructed
from the one-spinon dispersion as follows:

In Figs 9.11-9.14, we present the mean-field for some simple spin liquids. If
the mean-field state is stable against the gauge fluctuations, then we expect that the
mean-field E^s should qualitatively agree with the real EIS.

Among our examples, there are eight stable Z2-linear spin liquids (see
Figs 9.11 and 9.12). Using the eight Z% spin liquids as examples, we can demon-
strate how the universal properties of spin-1 excitations can distinguish different
quantum orders.
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FIG. 9.11. Contour plots of E% as afunclionof. 
(a) the Z2A0013 state in eqn (9.6.1); (b) the Z2Azzl3 state in eqn (9.6.2); (c) the Z2A001n state in
eqn (9.6.3); and (d) the Z2A.zzln state in eqn (9.6.4).

(a) The Z2A spin liquids can be distinguished from the Z2B spin liquids by exam-
ining the spectrum of spin-1 excitations. For the Z2B spin liquids, the spin-1
spectrum is periodic in one-quarter of the Brillouin zone (i.e. the spectrum is
invariant under
trum in the Z2A spin liquids does not have such a periodicity.
(b) The periodicity of the spin-1 spectrum can also distinguish the Z2A0013 and
Z2Azzl3 spin liquids from the Z2A001ra and ZlAzzln spin liquids. The spin-1
spectrum is periodic in one-half of the Brillouin zone (i.e. the spectrum is invariant
under  for the Z2A001n and Z2Azzln spin liquids
Also, the Z2A001ra and Z2A^zl77, spin liquids have gapless spin-1 excitations at
exactly
(c) The Z2A0013 and Z2A2;2;13 spin liquids can be distinguished by examining the

AND 
INCONTITRSACRTJSDF

AN

sadkljsdasadfsadffffssdfsadfs
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FIG. 9.12. Contour plots of £23 (&) as a function of for the .^-linear spin liquids:
(a) the Z2B0013 state in eqn (9.6.5); (b) the Z2Bz«13 state in eqn (9.6.6); (c) the Z2B001n state in
eqn (9.6.7); and (d) the Z2Bzzln state in eqn (9.6.8). The spectra arc periodic in one-quarter of the
Brillouin zone.

gapless spin-1 excitations near (TV, 0) and (0, TT). The gapless spin-1 excitations in
the Z2Azzl3 spin liquids are located along the zone boundary.
We see that quantum orders in spin liquids can be measured by neutron-scattering
experiments, which probe the spin-1 excitations.

Next, let us discuss the [/(l)-linear state UlCraOln (the staggered-flux state).
The UlCriOln state was proposed to describe the pseudo-gap metallic state in
underdoped high-Tc superconductors (Wen and Lee, 1996; Rantner and Wen,
2001). The UlCnOln state naturally explains the pseudo-gap in the underdoped
metallic state. As an algebraic spin liquid, the UlCnOln state also explains
the Luttinger-like electron spectral function (Rantner and Wen, 2001; Franz and
Tesanovic, 2001) and the enhancement of the (TV, 7r)-spin fluctuations (Kim and
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FIG. 9.13. Contour plots of E2s(k) as a function of for (a) the ^-gapless state

Z2Az2(12)n in eqn (9.2.39), and (b) the Z2-quadratic state Z2Bx2(12)n in eqn (9.6.10).

FIG. 9.14. Contour plots of .£2., (fc) as a function of sjkhsdfjksadjhdjkjsaldfnaklsdfklfddsffasdfsad
liquids: (a) the UlCnOln state in eqn (9.2.34) (the staggered-flux phase); and (b) the UlCnOOx state

in eqn (9.8.9) in the gapless phase. The spectra arc periodic in one-half of the Brillouin zone.

Lee, 1999; Rantner and Wen, 2002) in the pseudo-gap state. From Fig. 9.14, we
see that gapless points of the spin-1 excitations in the UlCnOln state are always
at k = (TT, TT), (0,0), (TT, 0), and (0, TT). The equal-energy contour for the edge of
the spin-1 continuum has the shape of two overlapped ellipses at all of the four k
points. Also, the energy contours are not perpendicular to the zone boundary. All of
these are the universal properties of the UlCnOln state. Measuring these proper-
ties in neutron-scattering experiments will allow us to determine if the pseudo-gap
metallic state is described by the UlCnOln (the staggered-flux) state or not.
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The UlCnOln state is unstable due to the instanton effect of the (2 + 1)-
dimensional U ( l ) gauge theory. Thus, the UlCnOln state has to change into
some other states, such as the eight Z? spin liquids discussed in Section 9.6 or
other states not discussed here. From Fig. 9.11 (a), we see that the transition from
the UlCnOln state to the Z2-linear state Z2A0013 can be detected by neutron
scattering if one observes the splitting of the node at (TT, TT) into four nodes at

nodes at (TT ± <£, 0) and (0, TT ± 6). From Fig. 9.11 (b), we see that, for the transition
from the UlCnOln state to the J?2-linear state 7.2Azzl3, the node at (TT. TT) still
splits into the four nodes at                  . However, the nodes at (TT, 0) and (0, TT
split differently into the two nodes at         .and        . We can also study th
transition from the UlCnOln state to the other six Zi spin liquids. We find that
the spectrum of spin-1 excitations changes in certain characteristic ways. Thus, by
measuring the spin-1 excitation spectrum and its evolution, not only can we detect
a quantum transition that does not change any symmetries, but we can also tell
which transition is happening.

9.8 The phase diagram of the J\-J% model in the \argt-N limit

9.8.1 The large-AT limit

• The spin-1/2 model can be generalized to the SP(1N) model.

• For the SP(2N) model, the mean-field theory obtained from the SU(1)
projective construction has weak fluctuations and is a good approximation.

So far, we have been concentrating on how to characterize, classify, and measure dif-
ferent spin liquids and their quantum orders. We have not discussed how to find physical
spin Hamiltonians to realize some of the hundreds of different spin liquids that we have
constructed. In this section, we are going to address this issue.

At the mean-field level, it is not very hard to design a spin Hamiltonian that realizes
a spin liquid with a given quantum order. It is also not hard to find the mean-field ground
state for a given spin Hamiltonian. The real issue is whether we should trust the mean-field
results. We have seen that, if the obtained mean-fiefd ground state is unstable (i.e. if the
mean-field fluctuations cause diverging interactions at low energies), then the mean-field
result cannot be trusted and the mean-field state does not correspond to any real physical
spin state. We have also argued that, if the mean-field ground state is stable {if the mean-
field fluctuations cause vanishing interactions at low energies), then the mean-field result
can be trusted and the mean-field state does correspond to a real physical spin state.

Here we would like to point out that the above statement about stable mean-field states
is too optimistic. A 'stable mean-field state' does not have diverging fluctuations at low
energies. So it does not have to be unstable. On the other hand, it does not have to be
stable either. This is because short-distance fluctuations, if strong enough, can also cause
phase transitions and instabilities. Therefore, in order for a mean-field result to be reliable,
the mean-field state must be stable {or marginal) and the short-distance fluctuations must

skdjbhdsfkbdskjgndfgk;ljdkjfjfnjdjdjd     ljkdd    klldsnsksnsnsk.
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be weak. As we do not have any small parameters in our spin model, the short-distance
fluctuations are not weak, even for stable mean-field states. Due to this, it is not clear if the
mean-field results, even for the stable states, can be applied to our spin-1/2 model or not.

In the following, we are going to generalize our spin model to a large-TV model. We will
show that the mean-field states for the large-TV model have weak short-distance fluctua-

to real physical states. The mean-field results for the stable or marginal states can be
applied to the large-TV model.

Let us start with the following path integral representation of the 517(2) mean-field
theory:

which is obtained from the SU(2) mean-field Hamiltonian (9.2.9), and Uij has the form given
in eqn (9.2.13).73 After integrating out the fermions, we obtain the effective Lagrangian for
Uij and O,Q :

The problem is that the fluctuations of U^ and a0 are not weak in the above path integral.
To reduce the fluctuations, we introduce N copies of the fermions      and generalize

eqn (9.8.1) to the following path integral (Ran and Wen, 2003):

dffsdfdsfsdssdsdsdfsdfsdsddsfdsfddffggffggfgfgfffffdfgdfdfddfgggfgddfgfffffggdshe mean-field
approximation is a good approximation. It is also clear that the large-TV mean-field theory
is an 5£7(2) gauge theory. The fluctuations of [7y and a'0 correspond to the 5(7(2) gauge
fluctuations.

In Section 9.2.1, we constructed the mean-field Hamiltonian from the physical spin
Hamiltonian. Here we are facing the opposite problem. Knowing the large-TV mean-field
Hamiltonian

we would like to find the corresponding physical large-Af spin model.

73 We have changed the coefficient         o that integrating out Uij in eqn (9.8.1) will lead to the
spin Hamiltonian (9.1.1).

where a = 1,2,..., TV. After integrating out the fermions, we obtain

tion. Thus, the stable and the marginal mean-field states for the large-N-model correspond



THE P H A S E D I A G R A M OF THE Ji-Ja M O D E L IN THE LARGE- jY LIMIT 427

The most important step in constructing the physical model is to find the physical Hilbert
space. The physical Hilbert space is a subspace of the fermion Hilbert space. The physical
Hilbert space is formed by the 5(7(2) gauge-invariant states, i.e. the stales that satisfy the
constraint

on every site i.
After obtaining the physical Hilbert space on each lattice site, we need to find the physi-

cal operators that act within the physical Hilbert space. These physical operators are 311(2)
gauge-invariant operators (i.e. the operators that commute with                     Let us write down
all of the SU(2) gauge-invariant bilinear forms of ip for each site as follows:

where                   and the site index has been suppressed. These 5 operators are the
generalization of the spin operators for the spin-1/2 model.

When N = 1, the large-N model becomes the spin-1/2 model and the 5 operator
generates the 5(7(2) spin-rotation group. For N > l, what is the group generated by the
5 operators? Firstly, let us count the number of different 5 operators. For
the aksjbkbslkjdflkjkl;jfdkj;ffjl;jkkjkjkj;l;lkjkljl;llkllkkjk           ljklk;jkl;nn;lknnjoioulklnm,.nlikknm
For           the labels are not symmetric, so there are simply TV2 of them. In total, we have

 different 5 operators.
One can examine the following commutation relations between the 5 operators:

These are the relations for the SP(2N) algebra. So the 5 operators are the '2N2 + N
generators which generate the 5P(2JV) group. When TV = 1, 5P(2) is isomorphic to the
5(7(2) spin-rotation group.

After integrating out Uij and al
0 in eqn (9.8.2), we obtain the following physical

Hamiltonian for the large-N model:



4 2 8 M E A N - F I E L D T H H O R Y O K S P I N L I Q U I D S A N D Q U A N T U M O R D E R

where

We find that // commutes with the SP(2N) generators £\ S^. Thus, our \arge-N model
has an SP(2N) symmetry. Here we would like to point out that the three components of
Sfh are not actually on the same footing. The first two are symmetric with respect to the a
and 6 labels, but the third one is not.

We know that, when N — l, the physical Hilbert space has two states per site. The two
states form an irreducible representation of SP(2) — SU(2). For higher N, the dimensions
of the physical Hilbert space per site are

Dimension

These physical Hilbert spaces turn out to be irreducible representations of the SP(2N)
symmetry group. We can label an irreducible representation by its highest-weight state for a
particular Cartan basis. The Cartan basis for SP(2N) can be chosen to be the z component
spins for each a, i.e.

Then the highest-weight state in the physical Hilbert space is simply the state with no 16
fermions.

9.8.2 The phase diagram of the SP(2N)sddssss

• The mean-field phase diagram is the phase diagram of the 5P(2JV) model in
the large-JV limit.

• The different phases in the mean-field theory or in the SP(2N)sdmodel can be
labeled by PSGs.

From eqn (9.8.3), we see that the SU(2) mean-field theory for the SP(2N) model has
the same structure as the SU(2) mean-field theory for the spin-1/2 model. The mean-field
states are described by the ansatz                 for both models. In particular, the mean-field
energy forthe SP(2N) model is just jV times the mean-field energy of the SP(2) model (i.e.
the spin-1/2 model). As a result, the mean-field phase diagram does not depend on TV. Just
like the spin-1/2 model discussed before, different mean-field states for the SP(2N) model
are characterized and classified by PSGs.

Here, we consider a particular SP('2N) model on a square lattice. The model has a
nearest-neighbor coupling Ji and a next-nearest-neighbor coupling

and

wezdss
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FIG. 9.15. The mean-field energies for the various phases in a Ji~Jz spin system: 'A' labels the

vr-flux state (the 5f/(2)-linear state SU2BnO); 'B' labels the SU(2) x Sf/(2)-gapless state in

eqn (9.8.6); 'C' labels the SU(2) x SJ7(2)-lincar state in eqn. (9.8.7); 'D' labels the chiral spin

state (an 5[7(2)-gapped state); 'E' labels the J7(l)-linear state (9.8.8) which breaks 90°-rotational

symmetry; T' labels the [/(l)-gapped state UiCnOOi in eqn (9.8.9); 'G' labels the Z2-linear state

Z2Azzl3 in eqn (9.6.2); 'H' labels the Z2-linear state Z2A0013 in eqn (9.6.1); and T labels the

uniform RVB state (the S67(2)-gapless state SU2AnO).

In the large-JV limit, the SU.(2) mean-field theory (9.8.3) is a good approximation. So we
will use the mean-field theory to calculate the phase diagram of the SP.(2N) model. The
mean-field ansatz that describes the mean-field ground state is calculated by minimizing the
mean-field energy. The result is presented in Fig. 9.15. Each curve in Fig. 9.15 represents
the mean-field energy of a local minimum. The curve with the lowest energy corresponds
to the mean-field ground state. We find that the different ansatz on each curve share the
same PSG. This is expected because, as we change J2, the mean-field energy described
by the curve changes in an analytic way. Thus, there is no quantum phase transition as
we move from one point of a curve to another point on the same curve. The ansatz on the
same curve belong to the same phase and are described by the same PSG.

However, if two curves cross each other, then the crossing point represents a quantum
phase transition. This is because the ground-state energy is not analytic at the crossing
point. As different curves have different PSGs, we see that a quantum phase transition is
characterized by a change in the PSG. In the following, we will discuss different quantum
orders (or PSGs) for the mean-field phases in Fig. 9.15.

In Fig. 9.15, the phase A is the w-flux state (the SU2BnO SI/(2)-linear state) given
in eqn (9.2.33). The phase B is a state with two independent uniform RVB states on the
diagonal links. It has SI/(2) x SU.(2) gauge fluctuations at low energies and will be called
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an SU(2) x SLr(2)-gapless state. Its ansatz is given by

The phase C is a state with two independent 7r-flux states on the diagonal links. It has
SU(2) x SU(2) gauge fluctuations at low energies and will be called an SU(2) x SU(2)-\\near
state. Its ansatz is given by

The phase D is the chiral spin state (9.1 .22). The phase E is described by the ansatz

which breaks the 90° -rotational symmetry and is a f/(l)-linear state. The phase F is
described by the following UlCnOOz ansatz:

The UlCriOQx state can be a f/(l)-linear (if QO is small) or a f/(l)-gapped state (if ao is
large). The state for the phase F turns out to be a [/(l)-gapped state. The phase G is
described by the Z2A?2ia ansatz in eqn (9.6.2), which is a Z2-linear state. The phase H is
described by the Z2A0013 ansatz in eqn (9.6.1) and is also a Z2-linear state. The phase I is
the uniform RVB state (the ,S7/(2)-gapless state SU2A?iO in eqn (9.2.32)).

From Fig. 9.15, we observe continuous phase transitions (at the mean-field level)
between the following pairs of phases: (A,D), (A,G), (B,G), (C,E), and (B,H). The three
continuous transitions (B,G), (B,H), and (A,G) do not change any symmetries. We also note
that the SU(2) gauge structure in the phase A breaks down to Z-i in the continuous transi-
tion from the phase A to the phase G. The SU(2) x SU(2) gauge structure in the phase B
breaks down to Z-2 in the two transitions (B,G) and (B,H).

9.9 Quantum order and the stability of mean-field spin liquids

• Many gapless mean-field spin liquids can be stable against quantum fluc-
tuations. They can be stable even in the presence of long-range gauge
interactions.

We have stressed the importance of the stability of mean-field states against
the mean-field fluctuations. Only stable mean-field states and marginal mean-field
states have a chance to describe physical spin liquids. We have discussed the ways
lo obtain stable mean-field states in Sections 9.1.5 and 9.2.2. Here we will discuss
the stability of the mean-field states again in the light of quantum orders and their
PSG characterization.
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9.9.1 The projective symmetry group—a universal property of quantum phases

• The PSG is a universal property of a real quantum phase if the corresponding
mean-field state is stable (i.e. has no infra-red divergence). In that case, the
PSG describes the quantum order in the quantum phase.

In this section, we would like to show that the PSG can be a universal property
of a quantum state, in the sense that it is robust against perturbative fluctuations.
Therefore, the PSG, as a universal property, can be used to characterize a quan-
tum phase. Any physical properties that are linked to (or protected by) the PSGs
are also universal properties of a phase and can be used to detect and measure
quantum order in experiments. In particular, PSGs can protect gapless gauge and
fermion excitations (see Section 9,10). Thus, the stability of the PSG also implies
the stability of the gapless gauge and fermion excitations.

We know that a mean-field spin-liquid state is characterized by
If we include perturbative fluctuations around the mean-field state, then we expect
Uij to receive perturbative corrections SUij. Here we would like to argue that the
perturbative fluctuations can only change Uij in such a way that Uij and
have the same PSG.

First, we would like to note the following well-known facts. The perturbative
fluctuations cannot change the symmetries and the gauge structures. For exam-
ple, if the ansatz Uij and the Hamiltonian have a symmetry, then SUij generated
by perturbative fluctuations will have the same symmetry. Similarly, the perturba-
tive fluctuations cannot generate the        that, for example, breaks a £/(!) gauge
structure down to a Z% gauge structure.

As both the gauge structure (described by the IGG) and the symmetry group
are part of the PSG, it is reasonable to generalize the above observation by saying
that, in addition to the TGG and the symmetry group in the PSG, the whole PSG
cannot be changed by the perturbative fluctuations.

In fact, the mean-field Hamiltonian and the mean-field ground state are invari-
ant under the transformations in the PSG. Thus, within a perturbative calculation
around a mean-field state, the transformations in the PSG behave just like the ordi-
nary symmetry transformations. Therefore, the perturbative fluctuations can only
generate 6Uij that are invariant under the transformations in the PSG.

As the perturbative fluctuations (by definition) do not change the phase, Uij
and              describe the same phase. In other words, we can group Uij into
classes (which are called universality classes) such that the     in each class ared
connected by the perturbative fluctuations. Each universality class describes one
phase. We see that, if the above argument is true, then the ansatz in a universality
class all share the same PSG. In other words, the universality classes or the phases
are classified by the PSGs (or quantum orders).

.1
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We would like to point out that we have assumed that the perturbative fluc-
tuations have no infra-red divergence in the above discussion. The infra-red
divergence implies that the perturbative fluctuations are relevant perturbations.
Such diverging corrections may cause phase transitions and invalidate the above
argument. Therefore, the above argument and results only apply to stable spin liq-
uids which satisfy the following requirements: (i) all of the mean-field fluctuations
have no infra-red divergence; and (ii) the mean-field fluctuations are weak enough
at the lattice scale.

In the following, we will discuss the stability of several types of mean-field
states. The requirement (ii) can be satisfied through the large- A^ limit and/or the
adjustment of short-range spin couplings in the spin Hamiltonian, if necessary.
Here we will mainly consider the requirement (i). We find that, at least in certain
large- A/" limits, many (but not all) mean-field states do correspond to real quantum
spin liquids which are stable at low energies.

All spin liquids (with an odd number of electrons per unit cell) studied so far
can be divided into four classes. In the following, we will study each class in turn.

9.9.2 Rigid spin liquids

Rigid spin liquids are states in which the spinons and all other excitations are fully
gapped. The gap of the gauge field may be produced by the Chern-Simons terms
or the Anderson-Higgs mechanism. The gapped gauge field only induces short-
range interaction between spinons. As there are no excitations at low energies,
the rigid spin liquids are stable states. The rigid spin liquids are characterized by
topological orders and they have unconfined neutral spin-1/2 excitations. The low-
energy effective theories for rigid spin liquids are topological field theories. The
^-gapped spin liquid and the chiral spin liquid are examples of rigid spin liquids.

9.9.3 Bose spin liquids

The UlCnOOa: state (9.8.9) can be a f/(l)-gapped spin liquid if     in eqn (9.8.9) is
large enough. Such a state, at the mean-field level, has gapped spinons and gapless
U(l) gauge bosons. We will call it a Bose spin liquid. The dynamics of the gapless
U(l) gauge fluctuations are described by the low-energy effective theory

wefdw      sdsdsdsdsdsdsdsdsdasathishis a vary good boin the worldos u notsdfy 
sions and after including the instanton effect, the U(l) gauge fluctuations will have
an infra-red divergence, which leads to an energy gap for the gauge bosons and
a confinement for the spinons (Polyakov, 1977). Thus, mean-field [/(l)-gapped
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states are not stable in 1 + 2 dimensions. Their PSGs may not describe any real
quantum orders in physical spin liquids.74

9.9.4 Fermi spin liquids

Fermi spin liquids are defined by the following two properties. Firstly, they have
gapless excitations that are described by spin-1/2 fermions, and, secondly, thes
gapless excitations have only short-range interactions between them. The Z%-
linear, ^-quadratic, and the ./^-gapless spin liquids are examples of Fermi spin
liquids.

The spinons have a massless Dirac dispersion in Z2-linear spin liquids. These
spinons with short-range interactions are described by the following effective
theory in the continuum limit (see Problem 9.1.4):

In 2 + 1 dimensions, ip has a scaling dimension [ip] = 1, so that the action is
fdsfsadfasdfafdsdsdfsdfasfasdfsadfasdfsdf         hggfgffghhhhhhhhhhhh[                
which is bigger than 3. We see that short-range interactions between massless
Dirac fermions are irrelevant in 1 + 2 dimensions. Thus, ^-linear spin liquids are
stable states.

Now let us consider the stability of the Z2-quadratic spin liquid Z2Bx2(12)n
in eqn (9.6.10). The spinons have a gapless quadratic dispersion              inin th
^-quadratic spin liquid. In this case, space and time have different scaling dimen-
sadfddddfdddfddfdfdfdfdfdfdfdfdffggbvcvvcvsdfsssdfhjjjkjhghjhjhjhjjhjhjhjhjhhjhj
action

sdfggdddfdfgdsddsdfddfdfddd    fgfgfgfgfgfgfgfgfgfgfgfgff                dfffgffffdfgfdf
fermion interaction term has a dimension           So the coupling constant g in
the interaction action has a scaling dimension \g] = 0,
because Sint always has zero scaling dimension. Thus, unlike the ^-linear spin
liquid, the short-range interactions between the gapless spinons in the Z%-quadratic
state are marginal in 1 + 2 dimensions. Further studies are needed to determine if
the higher-order effects of the interaction make the coupling relevant or irrelevant.
This will determine the dynamical stability of the Z% -quadratic spin liquid beyond
the mean-field level.

The Z2-gapless spin liquids are as stable as Fermi liquids in 1 + 2 dimensions.
If we assume that Fermi liquids are stable in 1 + 2 dimensions, then Z2-gapless
spin liquids are also stable.

74 We would like to mention that mean-field (7(l)-gapped states are stable in 1 + 3 dimensions.
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9.9,5 Algebraic spin liquids

An algebraic spin liquid is a state with gapless excitations, but none of the gap-
less excitations are described by free bosonic or fermionic quasiparticles. The
[/(l)-linear spin liquids are examples of algebraic spin liquids. Their low-lying
excitations are described by massless Dirac fermions coupled to the C/(l) gauge
field. As the fermion-gauge coupling is exactly marginal to all orders of pertur-
bation theory (Appelquist and Nash, 1990), the gapless excitations have a finite
interaction down to zero energy. As a result, there are neither free bosonic quasi-
particles (such as gauge bosons) nor free fermionic quasiparticles (such as spinons)
at low energies. This makes the discussion on the stability of these states much
more difficult. I refer the interested reader to Rantner and Wen (2002) and Wen
(2002c) for a discussion of algebraic spin liquids.

It was shown that, in 2 + 1 dimensions, f/(l)-linear states are stable in cer-
tain large-JV limits of the spin model where the mean-field fluctuations are weak.
The PSG of the [/(l)-linear states prevents destabilizing counter terms, such
as fermion mass terms, from being generated by perturbative fluctuations. This
ensures the stability of the [/(l)-linear states. Thus, at least in the large-iY limits,
the corresponding algebraic spin liquids exist as phases of physical spin systems.

The existence of the algebraic spin liquid is a very striking phenomenon.
According to a conventional wisdom, if bosons/fermions interact at low energies,
then the interaction will open an energy gap for these low-lying excitations. This
implies that a system can either have free bosonic/fermionic excitations at low
energies or have no low-energy excitations at all. The existence of the algebraic
spin liquid indicates that such a conventionai wisdom is incorrect. It raises the
important question of what protects gapless excitations (in particular, when they
interact at all energy scales). There should be a 'reason' or 'principle' for the exis-
tence of the gapless excitations. In the next section we will show that the PSG
prevents the gauge bosons and fermions to obtain mass terms. So it is the quantum
order and the associated PSG that protects the gapless excitations.

9.10 Quantum order and gapless gauge bosons and fermions

• Quantum order can produce and protect gapless gauge bosons and gap-
less fermions, just like symmetry breaking can produce and protect gapless
Nambu-Goldstone bosons.

Gapless excitations are very rare in nature and in condensed matter systems.
Therefore, if we see a gapless excitation, then we would like to ask why it exists.
One origin of gapless excitations is spontaneous symmetry breaking, which gives
Nambu-Goldstone bosons (Nambu, 1960; Goldstone, 1961). The relationship
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between gapless excitations and spontaneous symmetry breaking is very impor-
tant. Due to this relation, we can obtain low-energy physics of a complicated state
from its symmetry without knowing the details of the systems. This line of thinking
makes Landau's symmetry-breaking theory (Ginzburg and Landau, 1950; Landau
and Lifschitz, 1958) for phase and phase transition a very powerful theory with
which to study the low-energy properties of a phase. However, spontaneous sym-
metry breaking is not the only source of gapless excitations. Quantum order and
the associated PSGs can also produce and protect gapless excitations. What is
striking is that quantum order produces and protects gapless gauge bosons and
gapless fermions. Gapless fermions can be produced even from purely bosonic
models. In this section, we would like to discuss in some detail the relationship
between quantum order (and its PSG) and gapless gauge/fermion excitations (Wen,
2002a,c; Wen and Zee, 2002).

9.10.1 The projeetive symmetry group and gapless gauge bosons

• The gauge group of gapless gauge bosons (at the mean-field level) is the IGG
of the PSG.

The relationship between the gapless gauge fluctuations and quantum order is
simple and straightforward. The gauge group for the gapless gauge fluctuations in
a quantum-ordered state is simply the IGG in the PSG that describes the quantum
order.

To see how quantum order and its PSG produce and protect gapless gauge
bosons, let us assume that, as an example, the IGG Q of a quantum-ordered
state contains a U(l) subgroup, which is formed by the following constant gauge
transformations:

Next we consider one type of fluctuation around the mean-field solution
namely                  . As u^ is invariant under the constant gauge trans
asfdsdssd
the fluctuation                        fnbis means that       and      label th
same physical state and      corresponds to gauge fluctuations. The energy of the
fluctuations has a gauge invariance, i.e.                          
invariance of the energy, we see that the mass term of the gauge field,
not allowed. Therefore, the £/(!} gauge fluctuations described by a\- will appear
at low energies.

If the f/(l) subgroup of Q is formed by spatially-dependent gauge transforma-
tions as follows:

willsadfsdf

e.

asasdhsjbsdhsdsdskdsdklsksslslslslslslslllllll

sadsddfdfdddsss
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then we can always use an 677(2) gauge transformation to rotate TJ.J to the z
direction at every site and reduce the problem to the one discussed above. Thus,
regardless of whether the gauge transformations in the IGG have spatial depen-
dence or not, the gauge group for low-energy gauge fluctuations is always given
by Q. As every t/(l) subgroup of the IGG corresponds to a gapless f/(l) gauge
boson, the gauge group of low-energy gauge bosons is given by the IGG, even
when the IGG is non-abelian.

We would like to remark that sometimes the low-energy gauge fluctuations not
only appear near k = 0, but also appear near some other k points. In this case,
we will have several low-energy gauge fields, one for each k point. Examples
of this phenomenon are given by some ansatz of the 577(2) slave-boson theory
discussed in Section 9.8, which have an 577(2) x 577(2) gauge structure at low
energies. We see that the low-energy gauge structure 577(2) x SU(2) can even
be larger than the high-energy gauge structure 5(7(2). Even for this complicated
case where low-energy gauge fluctuations appear around different k points, the
IGG still correctly describes the low-energy gauge structure of the correspond-
ing ansatz. If the IGG contains gauge transformations that are independent of the
spatial coordinates, then such transformations correspond to the gauge group for
gapless gauge fluctuations near k = 0. If the IGG contains gauge transformations
that depend on the spatial coordinates, then these transformations correspond to
the gauge group for gapless gauge fluctuations near nonzero k. For example, if
IGG = (o '(-) lfrr |t then there will a gapless U(l') gauge boson near fc = (TT, IT)
described by the gauge field (—)*a' j(x). Thus, the IGG gives us a unified treatment
of all low-energy gauge fluctuations, regardless of their crystal momenta.

In this chapter, we have used the terms Z% spin liquids, [/(!) spin liquids,
SU(2) spin liquids, and 577(2) x SU(2) spin liquids in many places. Now we
can have a precise definition of these low-energy Z-2, t/(l), 577(2), and 577(2) x
577(2) gauge groups. These low-energy gauge groups are simply the IGG of the
corresponding ansatz. They have nothing to do with the high-energy gauge groups
that appear in the 5(7(2), (7(1), or Z-i slave-boson approaches. We have also used
the terms Z2 gauge structure, (7(1) gauge structure, and 577(2) gauge structure
of a mean-field state. Their precise mathematical meaning is again the IGG of the
corresponding ansatz. When we say that a (7(1) gauge structure is broken down to
a Z~2 gauge structure, we mean that an ansatz is changed in such a way that its IGG
is changed from the U(l) to the Z% group.

9.10.2 The protective symmetry group and gapless fermions

• Sometimes, a PSG guarantees the existence of gapless fermions. In that case,
the universality of the PSG implies the universality (or the stability) of the
gapless fermions.



 

To demonstrate the direct connection between the PSG and the gapless
fermions, in this section, we are going to study a particular spin liquid whose
quantum orders are characterized by Z2Azzl3 (Wen and Zee, 2002). The spinon
spectrum in a Z2Azzl3 spin liquid is given by the spinon hopping Hamiltonian

One example of the Z2A.zzI3 ansatz is given in eqn (9.6.2). We note that the
ansatz Uij can be viewed as an operator which maps a fermion wave function

Such an operator, denoted by H, will be called the
Hamiltonian. The eigenvalues of H determine the fermion spectrum. The gapless
fermions correspond to the zero eigenvalue of the Hamiltonian.

The Z2Azzl3 PSG is generated by

The combined transformations, such as GpxPx, can also be viewed as unitary
operators acting on      The projective symmetry of the Hamiltonian means that,
for example,

asa  the Z2Azzl3 ansatz is translationally invariant. I
momentum space, the Hamiltonian has the form

The invariance of the ansatz mj under GTT implies that
When expressed in the k space, we have

where the non-trivial GT gives rise to a non-trivial UT- Equation (9.10.2) implies
thate°'3(fe) = 0and

The invariance of the ansatz under GpxyPxy gives us

where the exchange of kx and ky is generated by Pxy. The invariance of the ansatz
under Gp^ Px leads to
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FIG. 9,16. Two patterns of the zeros of H(k). The                    lines arc represented by solid
and dashed tines, respectively. The filled circle arc zeros with winding number 1, anJ ihe open circles

are zeros with winding number — 1. The shaded area is one-quarter of the Brillouin zone. When the

zero-lines of    move to cross the zero-lines of     a zero with winding number 1 is changed into a

zero with winding number —1 plus two zeros with winding number 1 ,

In fact, eqns (9.10.3) and (9.10.7) define the most general Z2Az2l3 ansatz in the
k space.

Equation (9.10.7) allows us to determine e l i 2 ( f e ) from their values in one-
quarter of the Brillouin zone (see Fig. 9.16). In that one-quarter of the Brillouin
zone, e2(fc) is anti-symmetric under the interchanging of and fcy. Thus, 
0 when Equation (9.10.7) also implies that e l ( k ) changes sign under a
90° rotation around (0,7r) or 
Therefore, e1(fc) must vanish at (O.TT) and (TT, 0). It must also vanish on a line
connecting (0, TT) and (TT, 0) (see Fig. 9.16). As a result, the e1 = 0 line and th
f'2 = 0 line intersect at least once in the quarter of the Brillouin zone. The intersec-
tion point is the zero point of the Hamiltonian H(k). We see that gapless spinons
appear at at least four isolated k points in the Brillouin zone (see Fig. 9.16). T
Z2Azzl3 symmetry of the ansatz directly leads to gapless spinons.

Two typical distributions of the zeros of H(k) may look like those in Fig. 9.1
We see that the zeros have special patterns. To understand which features of the
patterns are universal, we would like to study the motion of the zeros as we deform

The momentum shift (TT, TT) is due to the ( — ) * term in Gpa and G/->,,-
Thus, the nonzero       fc) have the following symmetries:

o

and
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the ansatz. Before doing that, we want to point out that the zeros of H(k) have
an internal structure that can be characterized by a winding number. As k goes
around a zero, the two-dimensional vector            draws a loop around
(0,0). The winding number of the zero is given by how many times the loop
winds around (0,0). The winding number is positive if the loop winds around
(0,0) anticlockwise and is negative if the loop winds around (0,0) clockwise. A
typical zero has a winding number ±1. A zero with, say, a winding number 2 can
split into two zeros with a winding number 1 once we perturb the Hamiltonian.

For the Z2Azzl3 ansatz, the zeros of H(k) are given by the intersection of
the zero-lines of                                                                 then, as we deform the
ansatz, the zeros cannot just appear or disappear. The zeros can only be created
or annihilated in groups in a way that conserves the total winding number (see
Fig. 9.16). When combined with the symmetry of the ansatz (9.10.7), we find that
the following properties are robust against any small perturbations of the Hamil-
tonian that do not change the PSG: a pattern of +1 and —1 zeros along the line

the number of (+1, —1) zeros inside the triangle
((0, 0), (TV, TV), (0, TV)) (not including the zeros on the sides and comers). We define
these properties to be the pattern of the zero's (POZ) for the Z2Azzl3 spin liq
uids. Just like a change in Fermi surface topology, a change in POZ will lead to
a singularity in the ground-state energy and signal a phase transition. Thus, the
POZ is also a quantum number that characterizes quantum order. We see that the
quantum order in the spin liquid is not completely characterized by the PSG. The
POZ provides an additional characterization. The combination of the PSG and the
POZ provides a more complete characterization of the quantum order.

Problem 9.10.1.
Consider an ansatz of the Z2A0013 state in eqn (9.6.1). You may assume that 
(a) Show that changing aj will cause a change in the POZ. Show that the change in the
POZ causes a singularity in the mean-field ground-state energy.
(b) Find the spectrum of low-energy spinons at the transition point.

Problem 9.10.2.
(a) Find Gx.y, GpX!py,Pxy, and GT for the Z2A003n PSG.
(b) Find the most general mean-field Hamiltonian H(k) for the Z2A003n state.
(c) Show that the Z2A003n state always has gapless spinons at

and
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STRING CONDENSATION—AN UNIFICATION OF
LIGHT AND FERMIONS

• What are light and fermions?
Light is a fluctuation of nets of condensed strings of arbitrary sizes. Fermions
are ends of condensed strings.

• Where do light and fermions come from?
Light and fermions come from the collective motions of condensed string-nets
that fill the space.

• Why do light and fermions exist?
Light and fermions exist because our vacuum happens to have string-net
condensation.

In Chapter 9, we used the projective construction to construct many quantum-
ordered states in two-dimensional spin systems and introduced PSGs to charac-
terize and classify the quantum-ordered states. These quantum-ordered states not
only contain gauge bosons, but also contain fermions as their low-energy collec-
tive excitations. The emergence of gauge bosons and fermions is a very striking
result because the underlying lattice model is a purely bosonic model.

For many years, fermlons and gauge bosons were regarded as fundamental and
untouchable. When it was suggested that fermions and gauge theory can emerge
from a two-dimensional spin liquid (Baskaran et a/., 1987; Kivelson et a!., 1987;
Baskaran and Anderson, 1988), the suggestion was not even surprising because it
was greeted with suspicion and disbelief. These doubts were well founded. Even
now, it is not clear if two-dimensional spin liquids exist or not. However, this does
not imply that the original suggestion was wrong. The calculation, when adapted
to the SU(N) spin model (Affleck and Marston, 1988), does lead to well-defined
gauge bosons and fermions in three dimensions (see Section 10.7) (Wen, 2002a).
Thus, fermions and gauge bosons are not that fundamental and untouchable. They
can emerge from certain quantum orders in lowly bosonic models.

However, the projective construction that leads to the emergent gauge bosons
and fermions is very formal. It appears that everything relies on the very unrea-
sonable mathematical trick of splitting a spin into two unphysical fermions. It is
hard to have any confidence in such an approach. The amazing result of emergent
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fermions and gauge bosons obtained from such an approach appears to be really
unbelievable.

This chapter can be viewed as a confidence builder. We will discuss several
exactly soluble spin models which can also be solved by the projective construc-
tion. We will show that the result from the projective construction agrees with
the exact result for those models. In particular, the exactly soluble models have
emergent fermions and a gauge field, as suggested by the projective construction.

However, what is more important is that the exactly soluble model ties the
emergence of fermions and the gauge field with a phenomenon—the condensation
of nets of closed strings. We find that the quantum-ordered states obtained from
the projective construction are actually string-net-condensed states. The PSG that
characterizes the quantum order in states obtained from the projective construction
really characterizes different string-net condensations. The projective construction
and the string-net condensation are just two different ways to describe the same
type of quantum order. String-net condensation provides a physical foundation for
the formal projective construction.

Trying to connect projective construction and string-net condensation is just
a formal motivation for the discussions in this chapter. As fermions and gauge
bosons can emerge from string-net condensation, we would like to give the dis-
cussions in this chapter a more physical motivation. We would like to ask whether
string-net condensation has anything to do with the existence of light and fermions
in our universe. In particular, we would like to ask the following questions about
light and fermions. What are light and fermions? Where do light and fermions
come from? Why do light and fermions exist?

At the moment, the standard answers to the above fundamental questions
appear to be 'light is the particle described by a gauge field' and 'fermions are
the particles described by anti-commuting fields'. Here, we would like to argue
that there is another possible (and, I believe, more physical) answer to the above
questions, namely that our vacuum is filled with nets of string-like objects of arbi-
trary sizes and that these string-nets form a quantum condensed state. According
to string-net theory, the light (and other gauge bosons) is a collective vibration of
the condensed string-nets, and fermions are the ends of the strings. We see that
string-net condensation provides a unified origin of both light and fermions.75 In
other words, string-net condensation unifies light and fermions. If someone says,
'let there be string-net', then we will get both light and fermions.

Before providing evidence for the string-net theory of light and fermions, we
would like to first clarify what we mean by 'light exists' and 'fermions exist'. We
know that there is a natural mass scale in physics—the Planck mass. The Planck
mass is so large that any particle that we see has a mass at least a factor of 1016

75 Here, by 'string-net condensation' we mean the condensation of nets of string-like objects of
arbitrary sizes.
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smaller than the Planck mass. So all of the observed particles can be treated as
massless when compared with the Planck mass. When we ask why some particles
exist, we really mean why are those particles massless (or nearly massless) when
compared with the Planck mass. The real issue is what makes certain types of
excitation (such as light and fermions) massless (or nearly massless). Why does
nature want to have massless excitations at all? Who ordered them?

Secondly, we would like to clarify what we mean by 'the origin of light and
fermions'. We know that everything has to come from something. So when we ask,
'where do light and fermions come from?', we have assumed that there are some
things simpler and more fundamental than light and fermions. In Section 10.1,
we will define local bosonic models which are simpler than models with gauge
fields coupled to fermions. We will regard local bosonic models as more funda-
mental. Such a philosophy will be called the locality principle. We will show that
light and fermions can emerge from a local bosonic model if the model contains a
condensation of nets of string-like objects in its ground state.

The string-net theory of fermions explains why there is always an even num-
ber of fermions in our universe—because a string (or string-net) always has an
even number of ends. The string-net theory for gauge bosons and fermions also
has an experimental prediction, namely that all fermions must carry certain gauge
charges. At first sight, this prediction appears to contradict the known experimental
fact that neutrons carry no gauge charges. Thus, one may think that the string-net
theory of gauge bosons and fermions has already been falsified by experiments.
Here we would like to point out that the string-net theory of gauge bosons and
fermions can still be correct if we assume the existence of a new discrete gauge
field, such as a Z% gauge field, in our universe. In this case, neutrons and neutrinos
carry a nonzero charge of the discrete gauge field. Therefore, the string-net theory
of gauge bosons and fermions predicts the existence of discrete gauge excitations
(such as gauge flux lines) in our universe.

According to the picture of quantum order and string-net condensation, ele-
mentary particles (such as photons and electrons) may not be elementary after
all. They may be collective excitations of a local bosonic system below the
Planck scale. As we cannot do experiments close to the Planck scale, it is hard
to determine if photons and electrons are elementary particles or not. In this
chapter, through some concrete local boson models on two-dimensional and three-
dimensional lattices, we would like to show that the string-net theory of light
and fermions is at least self-consistent. The local bosonic models studied here are
just a few examples among a long list of local bosonic models that contain emer-
gent unconfined fermions and gauge bosons (Foerster et al., 1980; Kalmeyer and
Laughlin, 1987; Wen etal, 1989; Read and Sachdev, 1991; Wen, 1991a; Moessner
and Sondhi, 2001; Balents et al., 2002; loffe et al., 2002; Motrunich and Senthil,
2002; Sachdev and Park, 2002; Kitaev, 2003; Motrunich, 2003; Wen, 2003c). The
ground states of these models all have non-trivial topological/quantum orders.
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We would like to remark that, despite some similarity, the above string-net theory of
gauge bosons and fermions is different from standard superstring theory. In standard supe
string theory, closed strings correspond to gravitons and open strings correspond to gauge
bosons. The fermions come from the fermionic fields on the world sheet. All of the elemen-
tary particles, including gauge bosons, correspond to different vibrational modes of small
strings in superstring theory. In string-net theory, the vacuum is filled with large strings (or
nets of large strings, see Fig. 1.2). The massless gauge bosons correspond to the fluctua-
tions of nets of large closed strings, and fermions correspond to the ends of open strings.
There are no fermionic fields in string-net theory.

The string-net theory of gauge fluctuations is intimately related to the Wegner-Wilson
loop in gauge theory (Wegner, 1971; Wilson, 1974; Kogut, 1979). The relationship betwee
dynamical gauge theory and dynamical Wegner-Wilson-loop theory was suggested and
studied by Gliozzi et al. (1979) and Polyakov (1979). In Savit (1980), various duality rela-
tions between gauge theories and theories of extended objects were reviewed. In particular,
some statistical lattice gauge models were found to be dual to certain statistical membrane
models (Banks et al., 1977). This duality relationship is directly connected to the relation-
ship between gauge theory and string-net theory in quantum models. The new feature in
quantum models is that the ends of strings can sometimes be fermions or anyons (Levin
and Wen, 2003).

Here we would like to stress that the string-net theory for the actual gauge
bosons and fermions in our universe is only a suggestion at the moment. Although
string-net condensation can produce and protect massless photons, gluons, quarks,
and other charged leptons, we currently do not know whether string-net conden-
sations can produce neutrinos, which are chiral fermions. We also do not know
if string-net condensations can produce the SU(2) gauge field for the weak inter-
action which couples chirally to the quarks and the leptons. The correctness of
string-net condensation in our vacuum depends on the resolution of the above
problems.

On the other hand, if we are only concerned with the condensed matter problem
of how to use bosons to make artificial light and artificial fermions, then string-
net theory and quantum order do provide an answer. To make artificial light and
artificial fermions, we simply allow certain strings to condense.

10.1 Local bosonic models

In this chapter, we will only consider local bosonic models. We think that local
bosonic models are fundamental because they are really local. We note that a
fermionic model is, in general, non-local because the fermion operators at dif-
ferent sites do not commute, even when the sites are well separated. In contrast,
local bosonic models are local because different boson operators commute when
they are well separated. Due to the intrinsic locality of local bosonic models, we
believe that the fundamental theory of nature is a local bosonic model. To stress
this point, we will give such a belief the name locality principle.
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Let us give a detailed definition of local bosonic models. To define a physical
system we need to specify (i) a total Hilbert space, (ii) a definition for a set of
local physical operators, and (iii) a Hamiltonian, With this understanding, a local
bosonic model is defined to be a model that satisfies the following properties.

(i) The total Hilbert space is a direct product of local Hilbert spaces of finite
dimensions,

(ii) Local physical operators are operators acting within a local Hilbert space,
or finite products of these operators for nearby local Hilbert spaces. We will
also call these operators local bosonic operators because they all commute
with each other when far apart.

(iii) The Hamiltonian is a sum of local physical operators.

A spin-1/2 system on a lattice is an example of a local bosonic model. The local
Hilbert space is two-dimensional and contains f ) and | J.) states. The local physical
operators are  etc., where                       are the Pauli matrices.

A free spinless fermion system (in two or higher dimensions) is not a local
bosonic model, despite it having the same total Hilbert space as the spin-1/2 sys-
tem. This is because the fermion operators Ci on different sites do not commute and
are not local bosonic operators. More importantly, the fermion hopping operator
etc.,- in two and higher dimensions cannot be written as a local bosonic operator.
(However, due to the Jordan-Wigner transformation, a one-dimensional fermion
hopping operator  can be written as a local bosonic operator. Hence, a one-
dimensional fermion system can be a local bosonic model if we exclude c^ from
our definition of local physical operators.) A lattice gauge theory is not a local
bosonic model. This is because its total Hilbert space cannot be a direct product of
local Hilbert spaces.

10.2 An exactly soluble model from a projective construction

In this section, we are going to construct an exactly soluble local bosonic model.
In the next section, we will show that the model contains string-net condensation
and emergent fermions.

10.2.1 Construction of the exactly soluble model

• Exactly soluble models can be constructed by finding mutually-commuting
operators.

Usually, the projective construction does not give us exact results. In this sec-
tion, we are going to construct an exactly soluble model on a two-dimensional

a = 1,2,3,
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square lattice (Kitaev, 2003; Wen, 2003c). Our model has the property that the pro-
jective construction give us exact ground states and all of the other exact excited
states. The key step in the construction is to find a system of commuting operators.

Let us introduce the four Majorana-fermion operators 
satisfying We find that the operators

form a commuting set of operators, i.e. [Ui^, UjjJ = 0. After obtaining a com-
muting set of operators, we can easily see that, as a function of the C/ijS, the
interacting fermion Hamiltonian

commutes with all of the UijS. Here 
We will call Pi a ̂ -flux operator.

To obtain the Hilbert space within which the Hamiltonian H in eqn (10.2.2)
acts, we group \x'x^'y into the two complex fermion operators

at each site. One can check that ty\p, satisfy the standard fermion anti-commutation
algebra. The two complex fermion operators generate a four-dimensional Hilbert
space at each site. The dimension of the total Hilbert space is 4^sito. The commut-
ing property of the U^s and H allows us to solve the interacting fermion system
exactly.

To obtain the exact eigenstates and exact eigenvalues of H, let 0} be 
common eigenstate of the Uij operators with eigenvalue Sij. As (Uij)2 = — 1 and

we find that s^ satisfies                               As H is a func-
tion of the UijS, we find that |{sij-}} is also an energy eigenstate of eqn (10.2.2)
with energy

We will call Fi the Z% flux through the square i. When Vi > 0, the ground state
is given by  For such a state, we hav
To obtain the excited states, we flip the signs of some of the s^ to make some
Fi = -1.

To see if the |{si.j}}s represent all of the exact eigenstates of H, we need to
count the states. Let us assume that the two-dimensional square lattice has JVsite
lattice sites and a periodic boundary condition in both directions. In this case,
the lattice has 2jVsite links. As there are a total of 22N"tK different choices of BIJ

and

with

and
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(two choices for each link), the states \{sij}} exhaust all of the 4^°"° states in the
Hilbert space. Thus, the common eigenstates of U^j are not degenerate and the
above approach allows us to obtain all of the eigenstates and eigenvalues of H. We
have solved the two-dimensional interacting fermion system exactly!

We note that the Hamiltonian H can only change the fermion number at each
site by an even number. Thus, H acts within a subspace which has an even number
of fermions at each site. We will call the subspace the physical Hilbert space. The
physical Hilbert space has only two states per site. When restricted to within the
physical space, H actually describes a spin-1/2 or a hard-core boson system. To
obtain the corresponding spin-1/2 Hamiltonian, we note that

act within the physical Hilbert space and satisfy the algebra of Pauli matrices.
Thus, we can identify a\ as the spin operator. Using the fact that

within the physical Hilbert space.
All of the states in the physical Hilbert space (i.e. all of the states in the spin-

1/2 model) can be obtained from the \{sij}) states by projecting into the physical
Hilbert space, i.e. P\{sij}). The projection operator is given by

As [P, H] = 0, the projected state P\{sij}}, if nonzero, is still an eigenstate of H
(or -ffspin) and has the same eigenvalue. After the projection, the exact solution of
the interacting fermion model leads to an exact solution of the spin- 1/2 model.

We note that, for a system with a periodic boundary condition in both the x and
y directions, the product of all links

within the physical Hilbert space, we can show that the fermion Hamiltonian
(10.2.2) becomes (see Problem 10.2.2)

where
the projection of |{s™}} is nonzero only when

is the total fermion number operator. Thus,
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The physical states (with even numbers offermions per site) are invariant under
local Z<i transformations generated by

where d is an arbitrary function with only the two values ±1. We note that the Z?
transformations change 4!n to il'n — G^a and .s -̂ to Sij ~ GiSijGj. We find
that |{sjj}) and \{$ij}) give rise to the same physical state after projection (if their
projection is not zero). Thus {sij} is a many-to-one label of the exact eigenstates
of the spin-1/2 system Hsp-m. The projection into the physical Hilbert space with
an even number of fermions per site makes our theory a Z2 gauge theory.

Problem 10.2.1.
(a) Show that the t/ys in eqn (10.2. 1 ) form a commuting set of operators.
(b) Show that the -</>s in eqn (10.2.3) satisfy the standard anti-commutation relation of
complex fermions.

Problem 10.2.2.
(a) Show that 2?/>]>i ~ 1 = iATA* and 2i/4?i'2 - 1 = iA yA^. Show that a state with an
even number of fermions at a site is an eigenslate of A^A^A^A^ with eigenvalue +1.
(b) Prove eqn (10.2.7).
(c) Show that the a1 in eqn (10.2.5) satisfy the algebra of Pauli matrices within the physical
Hilbert space.
(d) Prove that the fermion Hamiltonian (10.2.2) becomes the spin Hamiltonian (10.2.6)
within the physical Hilbert space.

Problem 10.2.3.
We have seen that we can obtain a spin-1/2 system from the fermion system by restricting
the fermion Hamiltonian // to within the subspace with an even number of fermions per
site. We note that the fermion Hamiltonian H also acts within a subspace with odd numbers
offermions per site. Obtain the corresponding spin-1/2 system by restricting the fermion
Hamiltonian II to within the odd-number-fermion subspace.

10.2.2 Exact eigenstates and topologieally-degenerate ground states

• The ground-state degeneracy is protected by the Z% gauge structure and is
robust against any local perturbations.

The above Zi gauge structure allows us to count the number of physical states
obtained from the projection of the \{K^}} states. Again, we assume a periodic
boundary condition in both directions. Noting that the constant Z^ gauge trans-
formation d = — 1 does not change the ,s^, we see that there are only 2'v !" /2
distinct Sij& that are gauge equivalent to each other. Among the 4A ] t < number of
\{$ij}) states, 4N""-/2 of them satisfy rii('isi,i+a:)(''"'5i,i+y) = 1 (i.e. have even
numbers offermions). Thus, the projection of the {sij}} states gives us, at most,
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physical states. On the other hand, the projection of
all of the |{sij}} states should give us all of the 2Na'lie spin states. Therefore, differ-
ent J?2 gauge-equivalent classes of s^- must lead to independent physical states, so
that the projection can recover all of the 2Nait'a spin states. The Z2 gauge-equivalent
class of s^ is a one-to-one label of all of the physical states on a periodic lattice.
Thus, we can obtain all of the eigenstates and eigenvalues of -ffspin on a periodic
lattice.

We note that the Zz flux Fi is invariant under the Z2 gauge transformation.
Thus, if two configurations s^j and s^ have different Z% fluxes F^ and Fi, respec-
tively, then Sij and Sij must belong to two different Z^ gauge-equivalent classes.
The two states sy) and Sij) will lead to different physical states after the projec-
tion. This result suggests that the projected states (the physical states) are better
labeled by the Z<i flux Fi. It turns out that Fi is not a perfect one-to-one label of
the physical states. For a system on an even x even lattice with periodic boundary
conditions, each Fi labels four states (i.e. for each Z2-flux configuration Fi, there
are four and only four physical states that reproduce the same Fi). All of the four
physical states with the same Fi have the same energy.

To understand the four-fold degeneracy, let us consider one of the eigenstates
that is given by the projection of a | {sij}) state. Other degenerate eigenstate states
can be obtained by performing the following two transformations:

We see that T\ does not change s^i+x and only flips the sign of s^i+j, when iy = 0.
By construction, TI and T2 do not change the Zi flux F±. If we view the periodic
lattice as a torus, then T\ and T% insert vr flux through the two holes of the torus
(see Fig. 9.6).

On an even x even lattice, the transformations TI and T2 do not change the prod-
uct Yli(^si,i+x)(isi,i+y)- Therefore, the three transformations TI, T2, and TiT2

generate the other three degenerate states. We see that all of the energy eigenval-
ues have a four-fold degeneracy. In particular, the spin-1/2 model Hspin has four
degenerate ground states on an even x even periodic lattice.

On an even x odd lattice, the situation is a little different. The state generated by
T2 has odd numbers of fermions and does not correspond to any physical spin-1/2
state. Thus, we can only use TI to generate the other degenerate state. There are
only two degenerate ground states on an even x odd periodic lattice (generated by
TI). On an odd x odd lattice, there are also two degenerate ground states generated
byTiT2.

We note that, locally, the TI and T2 transformations are indistinguishable from
the Z'2 gauge transformation. As the physical spin operators are invariant under



AN E X A C T L Y S O L U B I . R M O L> L L 1 'ROM A P R O J L C T I V l i C O N S T R U C T I O N 449

the Z-i gauge transformation, they are also invariant under the T\ and TI transfor-
mations. Therefore, the degenerate ground states generated by T\ and T% remain
degenerate, even after we add an arbitrary local perturbation to our exactly sol-
uble model (10.2.6). The degeneracy of the ground states is a robust topological
property, indicating non-trivial topological order in the ground state.

Problem 10.2.4.
Consider eqn (10.2.6) on an Lx x Ly periodic lattice. We assume that Vt — V, except on
a row of squares where Vi = 0. In this case, the system can be viewed as being defined on
a cylinder with two circular edges in the x direction. Find the ground-state degeneracy of
the system. These degenerate ground states can be viewed as edge states. Show that there
are \/2 edge states per edge site. This implies that the edge excitations arc described by a
Majorana fermion.

10.2.3 The projeetive symmetry group characterization of ground states

• The V < 0 and V > 0 ground states of eqn (10.2.6) have different quantum
orders.

In this section, we will assume that the Vi in the spin-1/2 system (10.2.6) are
uniform, i.e. Vi — V. We have solved eqn (10.2.6) by writing the spin operator
as a product of fermion operators, see eqn (10.2.5), i.e. we have solved the spin-
1/2 system using the projeetive construction. It is quite interesting to see that,
for the particular spin-1/2 system (10.2.6), the projeetive construction gives exact
results. As the exact ground-state wave function is obtained from the projeetive
construction (i.e. obtained by projecting the free fermion wave function (9.2.11)),
we can use the PSG characterization developed in Chapter 9 to characterize the
quantum order in the ground state.

The discussion in Chapter 9 is limited to spin-rotation-invariant states. In the
following, we will generalize the mean-field theory and the PSG to spin-rotation -
non-invariant states. The spin-1/2 model //SPJU can also be viewed as a hard-core
boson model, if we identify the | j) state as the zero-boson state |0), and the | f)
state as the one-boson state |1). In the following, we will use the boson picture to
describe our model.

To use the projeetive construction to construct quantum-ordered (or entan-
gled) many-boson wave functions, we first introduce the 'mean-field' fermion
Ham il Ionian

where I,J— 1, 2. We will use u^j and Wij to denote the 2 x 2 complex matrices

whose elements are u1^ and w1^' , respectively. Let 3*^™"^) be the ground state
of the above free fermion Hamiltonian. Then the following many-body boson wave
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function can be obtained:

where G(t) 6 SU(2).
The quantum order in the boson wave function can be char-

acterized by the PSG. The PSG is formed by combined symmetry transformations
and the 577(2) gauge transformations that leave the ansatz (uij,Wij) invariant.

Here we would like to point out that the common eigenstates of Uij, namely
|{fiij}}, are the ground states of the free fermion system

Thus, from the projective construction point of view, Hmeiai can be viewed as
the 'mean-field' Hamiltonian Hme&n. In fact, -ffmean is a special case of Hmean

with

The state |{sij}} is equal to the mean-field state )&mean" } if Sij and
are related through the above equation. The physical spin wave function is
obtained by the projection P\{sij}) of the mean-field state, which is equivalent
toeqn(10.2.10).

Remember that, in the projective construction, we need to choose the ansatz
u^ and Wij to minimize the average energy 
our spin model HBp-m, the trivial ground state obtained in this way turns out to be
the exact ground state! Also, if we choose a different s^, then the projected state

 will correspond to an exact eigenstate of -Hgpm with energy (10.2.4).
It is in this sense that the projective construction provides an exact solution of
-"spin-

When V > 0, the ground state of our model is given by the Z^ -flux configura-
tion Fi = 1. To produce such a flux, we can choose In this

where

We note that the physical boson wave function
the following 5(7(2) gauge transformations:

is invariant under

for
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case, eqn (10.2.12) becomes eqn (10.2.9) with

To obtain the IGG tor the above ansatz, we note that u±j is invariant under the
constant gauge transformation G(i) = e' *T~. However, Wij is invariant only when

Thus, IGG — Z%. We find that the low-energy effective theory is a
Z'2 gauge theory. As the ansatz is already translationally invariant, the ansatz is
invariant under GXTX and GyTy with the trivial gauge transformations
T°. The PSG for the above ansatz is simply the Z2A PSG in eqn (9.4.10). Thus,
the ground state for V > 0 is a Z2A state. Note that, for the Z2A PSG, GfT,, and
GyTy satisfy the translationai algebra 

When V < 0, the ground state is given by the configuration FI = -1, which
can be produced by The ansatz now has the form

The ansatz is invariant under the translation i —> i + x followed by the gauge
transformation Gx(i) = (-)'«. Its PSG is the Z2B PSG in eqn (9.4.11). Thus, the
ground state for V < 0 is a Z2B state. For the Z2B PSG, GXTX, and GyTy satisfy
the magnetic translationai algebra 
fermion hopping Hamiltonian H,liean describes fermion hopping in the magnetic
field with TV flux per plaquette. The different PSGs tell us that the V < 0 and
V > 0 ground states have different quantum orders.

10.3 Z-2 spin liquids and string-net condensation on a square lattice

• String-net condensations lead to an emergent Z% gauge theory and fermions.

In this section, we are going to discuss the exactly soluble spin- 1/2 model
(10.2.6) (Kitaev, 2003; Wen, 2003c) from the string-net condensation point of view
(Levin and Wen, 2003). The model is one of the simplest models that demonstrates
the connection between string-net condensation and emergent gauge bosons and
fennions in local bosonic models. The model can also be solved using the slave-
boson approach, which allows us to see how the PSG that describes the quantum
order is connected to the string-net condensation (see Section 10.4).

10.3.1 Constructing Hamiltonians with closed string-net condensations

• Local boson models with emergent gauge fields can be constructed by making
certain string-like objects condense.

Let us first consider an arbitrary spin- 1/2 model on a square lattice. The first
question that we want to ask is what kind of spin interaction can give rise to a

The
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where i = (ix,iy) labels the lattice sites, ax'y'z are the Pauli matrices, and J
(or Xlodd) 's a sum over even s'tes Wltn (~r = ( — l)l*+''u = 1 (or over odd sites
with (—) T = —1). The ground state of Hj, namely |0), has spins pointing in the
x direction at even sites and in the y direction at odd sites (see Fig. 10.1). Such 
state will be defined as a state with no string.

To create a string excitation, we first draw a string that connects nearest-
neighbor even squares (see Fig. 10.1). We then flip the spins on the string. Such 
string state is created by the following string creation operator (or simply the string
operator):

where the product fJc ^s over a^ °ftne s'tes on l^e string, and a^ = y if i is even
and ai = x if i is odd. A generic string state has the form

where C-\, C-2, ... are strings. Such a state will be called a string-net state because
strings can intersect and overlap. The operator that creates a string-net, namely

F I G . 10 .1 . An open-string excitation on top ol'lhe ground state oi W./.

low-energy gauge theory. If we believe the connection between gauge theory and
string-net theory (Banks et ai, 1977; Savit, 1980; Wen, 2003a), then one way to
obtain a low-energy gauge theory is to design a spin interaction that allows strong
fluctuations of large closed strings, but forbids other types of fluctuations (such as
local spin flip, open-string fluctuations, etc.). We hope that the presence of strong
fluctuations of large closed strings wil l lead to the condensation of closed strings
of arbitrary sizes, which in turn gives rise to a low-energy gauge theory.

Let us start with
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will be called a string-net operator. The state \C\_Ci.. .} is an open-string-net state
if at least one of the Ci is an open string. The corresponding operator W(Cuct)
will be called an open-string-net operator. If all of the Ci are closed loops, then
\C\Ci...} is a closed-string-net state and Ty(Cnet) is a closed-string-net operator.

The Hamiltonian H j has no string-net condensation because its ground state
|0) contains no string-nets, and hence {0|W(C'net)|0} = 0. To obtain a Hamil-
tonian with closed-string-net condensation, we need to first find a Hamiltonian
whose ground state contains a lot of closed string-nets of arbitrary sizes and does
not contain any open strings (or open string-nets).

Let us first write down a Hamiltonian such that closed strings and closed string-
nets cost no energy and any open strings cost a large energy. One such Hamiltonian
has the form

where

We find that the no-string state |0) is one of the ground states of HU (assum-
ing that U > 0) with energy —UNsite. All of the closed-string states, such as
W(Cciose)|0), are also ground states of HU because [Hu, W(Cc\ose)] — 0. Sim-
ilarly, [Hu,W(Caet)] = 0 implies that any closed-string state is also a ground
state.

Using the commutation relation between the open-string operator W(Copen)
and Fi, namely

if Copen ends at the square i,

otherwise,

we find that the open-string operator flips the sign of Fi at its two ends. An open-
string state VF(C0pen)|0} is also an eigenstate of F$ and hence an eigenstate HU,
with an energy ~UNsjic + 4U. We see that each end of the open string costs an
energy 2U. We also note that the energy of closed string-nets does not depend on
the length of the strings in the net. Thus, the strings in HU have no tension. We can
introduce a string tension by adding the Hj to our Hamiltonian. The string tension
will be 2 J per site (or per segment). We note that any string-net state \C-]_Cz...) is
an eigenstate of Hu+Hj. Thus, string-nets described by Hy+Hj do not fluctuate,
and hence cannot condense. To make strings fluctuate, we need the g-tena

where p labels the odd squares and Cp is the closed string around the square p.
When Hg acts on a string-net state, it adds a loop of the string Cp to the string-
net. Thus the <?-term causes the string to fluctuate. The total Hamiltonian of our
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spin-1/2 model is given by

When U ^> g S> J, the closed strings have little tension and their fluctuations
induced by H9 are not limited by the tension. Thus, the ground state contains
strong fluctuations of closed strings. In other words, the ground state is filled by
closed strings of arbitrary sizes. If U 3> g, then it costs too much energy for closed
strings to break up into open strings. Thus, when U ^> g >• J, the ground state of
our spin-1/2 model contains a condensation of closed strings (or, more precisely,
a condensation of closed string-nets). In the following, we will study the physical
properties of such a string-net-condensed state.

Problem 10.3.1.
(a) Show that FJS satisfy

on a lattice with periodic boundary conditions in both the x and y directions. The minus
sign in eqn (10.3.2) allows the above simple result.
(b) On an even x even lattice with periodic boundary conditions, show that the ̂ s satisfy
the more strict condition

10.3.2 String-net condensation and low-energy effective theory

• String-net condensation gives rise to gauge excitations.

Let us first discuss the string-net condensed phase with U » g > 0 and ,7 = 0.
When J = 0, the model H\j + Hg becomes the model (10.2.6) discussed in the last
section, with Vi = U at the even sites and Vi — g at the odd sites. The model is
exactly soluble because [F;, Fj] = 0 (Kitaev, 2003). The eigenstates of 
can be obtained from the common eigenstates of £\, namely |{F^}), where h\ is
the eigenvalue of Fj. As F? = 1, the eigenvalues of F^ are simply F^ = ±1. The
energy of 

Note that, for a finite system on an even x even periodic lattice of size 

F; satisfy the constraints 
are not independent and can only label 9Ll L »/4 different configurations. However,
the Hilbert space of our spin-1/2 model contains 2LirL" states. To reproduce the

states, the common eigenstates of F^ must be four-fold degenerate. This
agrees with the result obtained in the last section.

Therefore, the Fis
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In the limit U > g, all of the states containing open strings will have an energy
of order U. The low-energy states contain only closed string-nets and satisfy

The different low-energy states are labeled by the Fi on odd squares, i.e.
Fi\i=odd = ±1. In particular, the ground state is given by

Such a ground state has a closed-string condensation. This is because all of
the closed-string operators W(Cc\ose) commute with HU + Hg. Hence the ground
state |^o) °f HU + Hg is an eigenstate of W(Cci0se) and satisfies

The above equation also implies that the ground state |*o) is an equal- weight
superposition of different closed-string-net configurations.

The low-energy excitations above the ground state can be obtained by flipping
Fi from 1 to —1 on some odd squares. If we view F$ on odd squares as the flux i
Z<2 gauge theory, then we find that the low-energy sector of the model is identical
to a Z-2 lattice gauge theory, at least for infinite systems. This suggests that the
low-energy effective theory of our model is a Z<i lattice gauge theory.

However, one may object to this result by pointing out that the low-energy
sector of our model is also identical to an Ising model with one spin on each odd
square. Thus, the low-energy effective theory should be the Ising model. We would
like to point out that, although the low-energy sector of our model is identical to
an Ising model for infinite systems, the low-energy sector of our model is different
from an Ising model for finite systems. For example, on a finite even x even lattice
with periodic boundary conditions, the ground state of our model has a four-fold
degeneracy (Kitaev, 2003; Wen, 2003c). The Ising model does not have such a
degeneracy, while the Z^ gauge theory has such a degeneracy. Also, our model
contains an excitation that can be identified as a Z^ charge. Therefore, the low-
energy effective theory of our model is a Zi lattice gauge theory instead of an
Ising model. The Fi = — 1 excitations on odd squares can be viewed as the Z2

vortex excitations in the Z% lattice gauge theory.
To understand the Z? charge excitations, we note that, in the string-condensed

state, the string costs no energy and is unobservable. Applying the closed-string
operator to the ground state results in the ground state itself. As the string is unob-
servable, a piece of open string behaves like two independent particles. Each end
of the open string corresponds to a particle on even squares. The energy required
to create such a particle is of order U. Now, let us consider the hopping of one such
particle around four nearest-neighbor even squares (see Fig. 10.2). Each hopping
step is generated by a small piece of string operator. We see that the product of
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F 1C. 10.2. A hopping of the Z-i charge around four nearest-neighbor even squares.

the four hopping amplitudes is given by the eigenvalue of F\ on the odd square
in the middle of the four even squares. This is exactly the relationship between
charge and flux. Thus, if we identify Fi on odd squares as Zi flux, then the ends of
strings on even squares will correspond to the Zi charges. Due to the closed-string
condensation, the ends of open strings are not confined and have only short-ranged
interactions between them. Thus, the Z-i charges behave like point particles with
no string attached.

10.3.3 Three types of strings and emergent fermions

• The ends of strings are gauge charges. The ends of certain strings can also be
fermions.

In the following, we are going to study several different types of string. To
avoid confusion, we will call the strings discussed above Tl strings. TheTl strings
connect even squares (see Fig. 10.3(a)).

Just like the Z-^ charges, a pair of Z2 vortices is also created by an open-string
operator. As the Zi vortices correspond to flipped Fi on odd squares, the open-
string operator that creates Zi vortices is also given by eqn (10.3.1), except that
now the product is over a string that connects odd squares. We will call such a
string a T2 string.

We would like to point out that the reference state (i.e. the no-string state) for
the T2 string is different from that of the Tl string. The no-T2-string state is given
by |0) with spins pointing in the y direction at even sites and in the x direction at
odd sites. As the Tl and T2 strings have different reference states, we cannot have
a dilute gas of the Tl strings and the T2 strings at the same time. One can easily
check that the T2 string operators also commute with Hy + Hg. Therefore, the
ground state |*o). 'n addition to the condensation of Tl closed strings, also has a
condensation of T2 closed strings.
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F I G . 10.3. The three types of strings: (a) a Tl string; (b) a T2 string; and (c) a T3 string.

The hopping of a Z2 vortex is induced by a short T2 open string. As the T2
open-string operators all commute with each other, the Z2 vortex behaves like a
boson. Similarly, the Z2 charges also behave like bosons. However, Tl open-string
operators and T2 open-string operators do not commute. As a result, the ends of
the Tl string and the ends of the T2 string have non-trivial mutual statistics. As we
have already shown that moving a .Z2 charge around a Z-z vortex generates a phase
TT, the /?2 charges and the Z<± vortices have semionic mutual statistics.

The T3 strings are defined as bound states of the Tl and T2 strings (see
Fig. 10.3(c)). TheT3 string operator is given by the product of a Tl string operator

Z-2 S P I N L I Q U I D S A N D S T R I N G - N E T C O N D E N S A T I O N



4 5 8 S T R I N G C O N D E N S A T I O N — A N U N I F I C A T I O N 01- L I G H T A N D F R R M I O N S

and a T2 string operator, and has the form

where C is a string connecting the mid-point of the neighboring links, and in are
sites on the string. Here ln = z if the string does not turn at the site in; ln = x or
y if the string makes a turn at the site irt; ln = x if the turn forms an upper-right
or lower-left corner; and ln = y if the turn forms a lower-right or upper-left corner
(see Fig. 10.3(c)). The ground state also has a condensation of T3 closed strings.
The ends of a T3 string are bound states formed by a Z% charge and a Z% vortex
on the two squares on the two sides of a link (i.e. t\ = I on the two sides of
the link). Such bound states are fermions (see Section 7.1.2 and Fig. 7.8). So the
fermions live on the links. It is interesting to see that string-net condensation in our
model directly leads to a Z'l gauge structure and three new types of quasiparticle,
namely Z'i charge, Zi vortex, and fermions. Fermions, as ends of open T3 strings,
emerge from our purely bosonic model!

As the ends of the Tl string are Z-i charges, the Tl string can be viewed as
strings of Z^ 'electric' flux. Similarly, the T2 string can be viewed as strings of Z-i
'magnetic' flux.

10.4 Classifying different string-net condensations by the projective symme-
try group

10.4.1 Four classes of string-net condensations

• Different string-net condensations give rise to different quantum-ordered
phases.

We have seen that, when U > 0, g > 0, and J — 0, the ground state of our
model Hu + //;/ + Hj is given by

We will call such a phase a Z^ phase to stress the low-energy Z-± gauge structure.
In the Z2 phase, the Tl string operator W\(C\] and the T2 string operator W<i(C-z}
have the following expectation values:

When U > 0, g < 0, and J — 0, the ground state is given by

We see that there is TT flux through each odd square. We will call such a phase a Zy-
flux phase. The Tl string operator and the T2 string operator have the following
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expectation values:

where /V0<i,i is the number of odd squares enclosed by the T1 string C\.
When U < 0, g > 0, and J = 0, the ground state is given by

There is a ^2 charge on each even square. We will call such a phase a Z<2-
charge phase. The Tl string operator and the T2 string operator have the following
expectation values:

where Noven i-s the number of even squares enclosed by the T2 string 6V Note that
the ZVflux phase and the /^-charge phase, differing only by a lattice translation,
are essentially the same phase.

When (J < 0, g < 0, and J = 0, the ground state becomes

There is a Z-i charge on each even square and TV flux through each odd square. We
will call such a phase a Z%-flux-charge phase. The TI string operator and the T2
string operator have the following expectation values:

When U = g = 0 and ,/ ^ 0, the model is also exactly soluble. The ground
state is a simple spin-polarized state (see Fig. 10.1).

From these exactly soluble limits of the H\j + Hs + Hj model, we suggest a
phase diagram as sketched in Fig. 10.4. The phase diagram contains four different
string-net condensed phases and one phase with no string condensation. AH of
the phases have the same symmetry and are distinguished only by their different
quantum orders.

10.4.2 The protective symmetry group and ends of condensed strings

• The projective symmetry described by the PSG is simply the symmetry of the
effective theory for the ends of condensed strings.

From the different (W\ (C\)) and (W^C?)}, we see that the first four phases
have different string-net condensations. However, they all have the same sym-
metry. This raises an issue. Without symmetry breaking, how do we know that
the above four phases are really different phases? How do we know that it is
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FIG. 10.4. The proposed phase diagram for the H = Hu + Hg + Hj model. Here J is
assumed to be positive. The four string-net condensed phases are characterized by a pair of PSGs
(-P5'Ccharge, -P/SGvortex)- SP marks a spin-polarized phase.

impossible to change one string-net-condensed state into another without a phase
transition?

In the following, we will show that the different string-net condensations can be
described by different PSGs (just like different symmetry-breaking orders can be
described by different symmetry groups of ground states). In Chapter 9, different
quantum orders were introduced via their different PSGs (Wen, 2002b,c). It was
shown that the PSGs are universal properties of a quantum phase. Only phase
transitions can change PSGs. Thus, the fact that different string-net-condensed
states are characterized by different PSGs indicates that these different string-net-
condensed states belong to different quantum phases.

The connection between string-net condensation and the PSG also allows us to
connect string-net condensation to the quantum order introduced in Chapter 9. In
fact, the projective construction discussed in Chapter 9 can be viewed as a way to
construct string-net-condensed states.

To see the connection between the PSG and the string-net condensation, we
note that, when closed string-nets condense, the ends of the open strings behave
like independent particles. Let us consider the two-particle states PiP-2) that
describe the two ends of a Tl string. Note that the ends of the Tl strings, and
hence the Z% charges, only live on the even squares. Thus, p1 and p2 only label
the even squares. For our model Hy + Hg, \pip2) is an energy eigenstate and the
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Z^ charges do not hop. Here we would like to add the term

to the Hamiltonian. The t term t Y^i(ai + ai ) m&kes the Z% charges hop among
the even squares with a hopping amplitude of order i. The dynamics of the two Z%
charges are described by the following effective Hamiltonian in the two-particle
Hilbert space:

where H(pl) describes the hopping of the first particle pl and H(p^} describes
the hopping of the second particle p2. Now we can define the PSG of a string-
net-condensed state. The PSG is simply the symmetry group of the hopping
Hamiltonian H(p).

Due to the translational symmetry of the underlying model HU + Hg + Ht, we
may naively expect the hopping Hamiltonian of the Zi charge H(p) to also have
translational symmetry in the x + y and x — y directions:

If the above is true, then it implies that the PSG is the same as the translational
symmetry group.

It turns out that eqn (10.4.1) is too strong. The underlying spin model can have
translational symmetry, even when H(p) does not satisfy eqn (10.4.1). However,
the possible symmetry groups of H(p) (the PSGs) are strongly constrained by the
translational symmetry of the underlying spin model. In the following, we will
explain why the PSG can be different from the symmetry group of the physical
spin model, and what conditions the PSG must satisfy in order to be consistent
with the translational symmetry of the underlying spin model.

We note that a string always has two ends. Thus, a physical state always has an
even number of Z% charges. The actions of translation on a two-particle state are
given by

Here T and T        satisfy the algebra of translations

We note that T   and T   are direct products of translation operators on the
single-particle states. Thus, in some sense, the single-particle translations are
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square roots of the two-particle translations. The two-particle translational algebra
imposes a strong constraint on the single-particle translational algebra.

The most general form of single-particle translations is given by TxyGxy and
TXyGXy, where the actions of the operators Txy,Xy and Gxy,Xy are defined by

In order for the direct products
TXyGXy to reproduce the translational algebra (10.4.2), we only require
and TxyGXy to satisfy

or

The operators TxyGxy and TxyGxy generate a group. Such a group is simply the
PSG. The two different algebras (10.4.3) and (10.4.4) generate two different PSGs,
both of which are consistent with the translation group acting on the two-particle
states. We will call the PSG generated by eqn (10.4.3) the Z^a PSG and the PSG
generated by eqn (10.4.4) the Z^b PSG.

Let us remind the reader of the general definition of a PSG. A PSG is a group. It
is an extension of a symmetry group (SG), i.e. a PSG contains a normal subgroup
(called the invariant gauge group or IGG) such that

For our case, the SG is the translation group SG = {l,T$,TJ£,...}. The IGG
is formed by the transformations GO on the single-particle states that satisfy GO ®
GO = 1. We find that the IGG is generated by

The three transformations on the single-particle states, 
generate the Zia or Z%b PSGs.

We now see that the underlying translational symmetry does not require the
single-particle hopping Hamiltonian H(p) to have a translational symmetry. It
only requires H(p) to be invariant under the Z%a PSG or the Z%b PSG. When
H(p) is invariant under the Z^a PSG, the hopping Hamiltonian has the usual
translational symmetry. When H(p) is invariant under the Z^b PSG, the hop-
ping Hamiltonian has a magnetic translational symmetry describing a hopping in
a magnetic field with vr flux through each odd square.

and

and
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10.4.3 Projective symmetry groups classify different string-net condensations

• Different string-net condensations have different PSGs. As PSGs are a uni-
versal property of the quantum phase, we find that different string-net
condensations correspond to different phases.

After understanding the possible PSGs that the hopping Hamiltonian of the
ends of strings can have, we are now ready to calculate the actual PSGs. Let us
consider two ground states of our model One has
(for g > 0) and the other has (for g < 0). Both ground states
have the same translational symmetry in the x + y and x - y directions. However,
the corresponding single-particle hopping Hamiltonian H(p) has different sym-
metries. For the state, there is no flux through the odd squares and

has the usual translational symmetry. It is invariant under the PSG. For
the Fi i-odd = 1 state, there is TT flux through the odd squares and H(p) has a mag-
netic translational symmetry. Its PSG is the PSG. Thus, the                        state
and the  state have different orders despite them having the same
symmetry. The different quantum orders in the two states can be characterized by
their different PSGs.

As mentioned in Section 10.4.1, the above two states have different string-net
condensations. For the  state, the average of the Tl closed-string
operator is (W(C)) = 1; while for the state, the average of the Tl
closed-string operator is  where Nodd(C) is the number
of odd squares enclosed by the Tl closed string C. Thus, we can also say that
different string-net condensations can be characterized by their different PSGs.

In the above, we only showed that PSGs can characterize different string-net-
condensed states in some particular exactly soluble models. In fact, different PSGs
actually characterize different quantum phases in generic models. This is because,
as shown in Section 9.9.1, a PSG is a universal property of a phase (Wen, 2002c).
The PSG of a string-net-condensed state is robust against any local perturbations
of the physical model that do not change the symmetry of the model.

The above discussion also applies to the Z-i vortex and T2 strings.
Thus, the quantum orders in our model are described by the pair of PSGs
(P5Gc]iarge,.PS'G'vortex), one for the Z2 charge and one for the Z2 vortex.
The PSG pairs (Pi$Gcjiarge, PS(7vortex) allow us to distinguish four different
string-net-condensed states of the model (see Fig. 10.5).

1(1.4.4 Projective symmetry groups for the ends of T3 strings

• For a state with condensations of several different types of strings, the ends
of different condensed strings may have different projective symmetries and
different PSGs.
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F I G . 10.5. The proposed phase diagram for the H = H\; + Ha + Ht model. Here t = t' is

assumed to be positive. The four string-net condensed phases are characterized hy the pair of PSGs

(PAXA'tiui-Bc, P.S"Gvoricx)- SP marks a uniform spin-polarized phase. All of the phases have the same
symmetry and none of (he phase transitions change (he symmetry.

The new model has a larger translational symmetry generated by i —> i + x and
i —*• i + y (see Fig. 10.5). Note that, when HI, = 0, the new model is identical
to the spin Hamiltonian (10.2.6) studied in Section 10.2.1. The PSGs for the con-
densed Tl and T2 strings were studied in the last section. Here we would like to
discuss the PSG for the T3 string. As the ends of the T3 strings live on the links,
the corresponding single-particle hopping Hamiltonian Hf(l) describes fermion
hopping between links. Clearly, the symmetry group (the PSG) of Hf(l) can be
different from that of H ( p ) ,

Let us define the fermion hopping I —» I + x as the combination of the two
hops I — > / + | - | ^ / + x (see Fig. 10.6). The hoppin
generated by a^- and the hopping ( + f — If —> I + x is generated by aj ' .a,.

Thus, the hopping / —*• I + x is generated by ajy
+ « af+ » . Similarly, we define the

fermion hopping
generated by Under such a definition, a fermion hopping around a

• The PSG introduced in Section 9.4.2 corresponds to the PSG of the T3 string.

In this section, we wil l assume that U = g = V in our model:

as the two hops It is

is
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F I G . 10.6. Hoppings of a fermion around a square and around a site.

square l-^l + x ^ l + x + y—> I + y ^ I is generated by (see Fig. 10.

The ground state has f^ = sgn(l/). However, because the T3
string ends on the link 5 —> 6, we have —F^ = F.-t = agii( V). On the other hand,
we have FI = Fi ~ sgn(K). Therefore, the total amplitude for a fermion hopping
around both squares, 1234 and 5678, is given by the sign of V in eqn (10.4.5).
When sgn(V) = 1, the fermion sees no flux, while, when agn(V) = —1, the
fermion sees TT flux per square. As a result, the generators (TxGx,TyGy) of the
translational symmetries for Hf(l) satisfy the algebra of magnetic translation (see
eqn (7.2.3))

In addition to being invariant under (T.rG-x,TyGy), Hf(l) is also invariant
under GQ:

So (G(,,TrGx,TyGy) generate the symmetry group — the fermion PSG — of

When KgnfV) = 1, TXGX and TyGy satisfy the translationa! algebra. The cor-
responding fermion PSG is the Z2A PSG. When sgn(K) = -1, T,,.GX and TyGy

satisfy the magnetic translational algebra with TT flux per plaquette. The corre-
sponding fermion PSG is the Z2B PSG. We see that the quantum orders in the
ground state can also be characterized using the fermion PSG. The quantum orde
in the V < 0 ground state is characterized by the Z2A PSG, and the quantum order
in the V > 0 ground state is characterized by the Z2B PSG.

In Section 10.2, the spin- 1/2 model (10.4.5) (with t = t' = 0) was solved using
the slave-boson approach by splitting the spin into two fermions. There, it was
shown that the fermion hopping Hamiltonian for the V > 0 and V < 0 states have
different symmetries, or are invariant under different PSGs. The different PSGs
imply different quantum orders in the V > 0 and V < 0 ground states. The PSGs
obtained in Section 10.2 for the V > 0 and V < 0 phases agree exactly with the

or
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fermion PSGs that we obtained above. This example shows that the PSGs intro-
duced in Section 9.4 to describe the quantum orders are the symmetry groups of the
hopping Hamiltonian of the ends of condensed strings. The PSG description and
the string-net-condensation description of quantum orders are intimately related.

Here we would like to point out that the PSGs introduced in Section 9.4 are all
fermion PSGs. They are only one of many different kinds of PSGs that can be used
to characterize quantum orders. In general, a quantum-ordered state may contain
condensations of several types of strings. The ends of each type of condensed
string will have their own PSG. Finding all types of condensed strings and their
PSGs will give us a more complete characterization of quantum orders.

10,5 Emergent fermions and string-net condensation on a cubic lattice

• Emergent fermions in three-dimensional models cannot be understood in
terms of attaching flux to a boson. One really needs string-net theory to
understand emergent fermions in three dimensions.

In 2 + 1 dimensions, a fermion can be obtained by binding TT flux to a unit
charge (or a Z2 vortex to a Z2 charge). This is how we obtain the fermion in our
spin-1/2 model HJJ + Hg. As both the Zi vortex and the Z2 charge appear as
ends of open strings, the fermions also appear as ends of strings. We see that we
have two theories for emergent fermions in (2 + l)-dimensional bosonic models.
Emergent fermions can be viewed as a bound state of charge and flux, or they can
be viewed as ends of strings. However, in 3 + 1 dimensions, we cannot change a
boson into a fermion by attaching TT flux. Thus, one may wonder whether fermions
can emerge from (3+ l)-dimensional local bosonic models. In this section, we are
going to study an exactly soluble spin-3/2 model on a cubic lattice. We will study
a string-net-condensed state in such a model. We will show that the fermions can
still appear as ends of strings. In fact, the string-net theory for emergent fermions
is valid in any dimensions.

10.5.1 Exactly soluble spin-3/2 model on a cubic lattice

To construct an exactly soluble model on a three-dimensional cubic lattice, we first
introduce the operators 7?6, a, b — x, ;r, y, y, z, z, that act within the local Hilbert
space at each site. At a site, the 7nb satisfy the following algebra (the site index i
is suppressed):

if a, b, c, d are all different
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To show that the algebra is self-consistent, let Aa be a Majorana-fermion oper-
ator labeled by a = x, x, y, y, z, z. From the algebra of the Majorana fermion
{Aa, Ab} = 2Sab, we can show that

satisfy the above algebra.
The above algebra has a four-dimensional representation. We first note that

-yaz = 7°, a = x. x, y, y, satisfy the Dirac algebra

Therefore, we can express them in terms of the four 4 x 4 Dirac matrices

We can also define 75 as

which anti-commutes with 7°, i.e. {7a,75} — 0. As jzz anti-commutes with
7°2 = 7a, a = x, x, y, y, we can identify 75 as ̂ zz. From the algebra (10.5.1), we
can express the remaining 7°* as

In this way, we express all of the jab, a, b = x, x, y, y, z, z, in terms of the Dirac
matrices ^x^x^^. One can show that the 7°* defined this way satisfy the algebra
(10.5.1).

As the 7°* are four-dimensional, we can say that they act on spin-3/2 states.
In terms of 7^, we can write down an exactly soluble spin-3/2 model on a cubic
lattice as follows:

where p labels the squares in the cubic lattice and Fp is equal to
either
depending on the orientation of the square 
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It is easy to obtain the eigenvalues of H^D by noticing that

Let |{FP}, a) be the common eigenstates of 
where a labels the possible degeneracy. Then |{Fp}, a) is also an energy eigen-
state with energy —g^2pFp. As Fp = ±1, the ground-state energy is EQ =
— 3|(/|7Vsite on a periodic lattice, where Nsne is the number of lattice sites. The
excited states are obtained by flipping the signs of some Fp, whose energies are
EQ plus integer multiples of 2\g\.

One subtlety is that the Fp are not all independent. If S is the surface of a unit
cube, then we have the operator identity

It follows that H»es fp — 1 for all cubes. If we view Fp as the Z-z flux through
the square p, then the above constraint implies flux conservation. This means that
the spectrum of our model is identical to a Z^ gauge theory on a cubic lattice.
The ground state can be thought of as a state with no flux, i.e. Fp — 1 for all p.
The excitations above the ground state are described by flux loops. The elemen-
tary excitations correspond to the smallest flux loops where Fp — — 1 for the four
squares p adjacent to some link (ij). We can think of these excitations as quasi-
particles which live on the links of the cubic lattice (see Fig. 10.7). As we will see
later, such a flux-loop excitation has fermionic statistics.

Problem 10.5.1.
(a) Show that the 4 x 4 matrices 7° in eqn (10.5.3) satisfy the Dirac algebra.
(b) Show that the terms in the summation in eqn (10.5.4) all commute with each other.
(Hint: You may use the Majorana-fermion representation of 7ab.) This allows us to solve
HZD exactly.

Problem 10.5.2.
Solving eqn (10.5.4) using Majorana fermions and the projective construction
(a) Let A? be a Majorana-fermion operator, where a — x, x, y, y, z, z. For every nearest-
neighbor link, define

where ab is the pair of indices associated with the link i —> j (see Fig. 10.7). Show that
the t/jjS form a commuting set of operators.
(b) Consider the fermion Hamiltonian
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F I G . 10.7. An open string in the cubic lattice and the pairs of indices associated with near-

est-neighbor links. An end of an open siring flips the sign of Fp on the four shaded squares.

where ̂ p is a sum over all of the square faces of the cubic lattice. Here i1, i2, i3, and i4
label the four corners of the square p. Introduce the complex fermion operators

and let A^ = 5Zu=i 2 3 ̂ 1 i'^a.-i be the fermion number operator at the site i. Show that the
term ion Hamiltonian (10.5.6) reduces to the spin-3/2 Hamiltonian (10.5.4) in the subspace
with an even number of fermions per site.
(c) Use the procedure in Section 10.2 to find the ground-state energy and the ground-
state degeneracy of eqn (10.5.4) on an even x even x even lattice with periodic boundary
conditions.

10.5.2 String operators and closed-string condensation

To show that the ground state of H-^/j has a closed-string condensation, we need to
find a closed-string operator that commutes with Hart- First, let us construct more
general open-string operators.

To construct the string operators in terms of the physical -yab operator, we note
that we can associate each nearest-neighbor link i —*• j with a pair of indices ab,
as illustrated in Fig. 10.7. For example, the link i —> i. + x is associated with xx,
the link i —>• i — x with xx, the link i —* i + y with yy, etc. The open-string
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FIG. 10.8. The loop C can be divided into the two loops C\ and i

operator can then be defined as

where bmam+i is the pair of indices associated with the link im -> im+i- For
example, the open-string operator for the open string in Fig. 10.7 is given by

We would like to stress that an open string C is formed by linking the mid-point
of the links through the neighboring sites (see Fig. 10.7). Thus, the ends of open
strings live on the links.

The closed-string operator is still given by eqn (10.5.7). However, i\ and in

are now nearest neighbors, and 6noi is the pair of indices associated with the link
in -^ ii.

Let us first discuss some special properties of the closed-string operators that
lead to closed-string condensation. Using the Majorana representation of 7°*, we
can show that any two closed-string operators commute with each other. As Fp

itself is a closed-string operator, the closed-string operators commute with the
spin-3/2 Hamiltonian. Thus, the ground state is also an eigenstate of the closed-
string operators and has a closed-string condensation (or, more generally, a closed-
suing-net condensation).

If we divide a loop C into the two loops C\ and C%, as in Fig. 10.8, then the
closed-string operators for the three loops are related by

Such a relation allows us to express W(C) as a product of the Fps and evaluate
the amplitude of the condensed closed strings. For the Fp = 1 ground state, we
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find that

For the Fp = —1 ground state, we find that

where Np is the number of squares on a surface Sccloso, and Scalose is a surface
formed by the faces of the cubes and bounded by the closed string CciOSe-

Problem 10.5.3.
(a) Use the Majorana-fermion representation of ̂ ab = i Aa \b to show that the closed-string
operator (10.5.7) can be expressed as

where Uij is defined in eqn (10.5.5).
(b) Show that the closed-string operators (10.5.7) denned for two closed loops commute
with each other.
(c) Verify the relation (10.5.8).

10.5.3 Emergent fermions as ends of open strings

In the closed-string condensed state, the ends of the open string become a new
type of quasiparticle. When we apply the open-string operator to a ground state,
by calculating the commutator between the Fp and the open-string operator, we
find that the open-string operator only flips the sign of Fp near its two ends. As a
result, the string itself costs no energy. Only string ends cost energy.

Noting that the string ends live on links and that there are four squares attached
to each link, we find that the open-string operator flips the sign of Fp on those
four squares (see Fig. 10.7). Therefore, each end of an open string corresponds to
a small Z2-flux loop and costs an energy 4|2g| = 8\g\. These small ^-flux loops
correspond to quasiparticle excitations above the ground state.

To find the statistics of the Z2-flux loops, we need to use the following
statistical hopping algebra introduced by Levin and Wen (2003) (see Section
4.1.4):

where tji describes the hopping of particles from link i to link j (note that, here, the
ends of strings live on links). It was shown that the particles are fermions if their
hopping operators satisfy the algebra (10.5.9) with 9 = IT. If we choose (i, j, k, I)
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FIG. 10.9. A fermion on link 1 can hop onto the ten different links 2-1 1. The hopping ] —» 4 is

generated by "tfx, the hopping 1 —* 3 by ^'f'", and the hopping 1 —> 7 by

to be the links (2,1,3,4) in Fig, 10.9, then the hopping operators (tji, tkj^ji} are
given by (7?z, 7?x, 7?*). Equation (10.5.9) becomes

From the Majorana-fermion representation of 7ab, we find that the above equa-
tion is valid if 9 — TT. If we choose (i,j, k, 1) to be the links (2,1, 3,10), then
eqn (10.5.9) becomes

The above equation is again valid with 6 — TT. Other choices of (i,j,k,l) all
fall into the above two types. The hoppings of the ends of the strings satisfy the
fermion hopping algebra. Hence, the ends of the strings (i.e. the small J?2-flux
loops) are fermions. We see that fermions can emerge from local bosonic models
if the bosonic models have condensations of certain types of closed strings.

10.6 The quantum rotor model and E/(l) lattice gauge theory

• In higher dimensions, a gauge theory is quite non-trivial. It describes fluctua-
tions of an entangled state. These fluctuations cannot be represented by local
degrees of freedom.

• The [/(!} gauge fluctuations are fluctuations of closed string-nets in space.

• Gapless C/(l) gauge bosons can emerge if the ground state contains a
condensation of closed string-nets of arbitrary sizes.

We have studied exactly soluble local bosonic models that have emergent Z<i
gauge fields. In this section, we are going to study the emergence of a continuous



F I G . 10.10. (a) A four-rotor system, (b) A simple lattice gauge theory is described by the lattice

gauge field «i,if i and au(i), i = 1, 2, 3,4.

U(l) gauge theory from a quantum rotor model (Foerster et al., 1980; Senthil and
Motrunich, 2002; Wen, 2003a). We will also see how string-net condensation and
the related quantum order are associated with the emergent £7(1) gauge bosons.

This section can also be regarded as a physical way to describe quantum f/(l)
gauge theory. In my mind, the standard description of gauge theory using gauge
potential is unnatural, because the gauge potential itself is unphysical. Here we
will show that it is possible to use physical degrees of freedom—nets of closed
strings—to formulate the U(l) gauge theory (Banks et a/., 1977; Savit, 1980).

10.6.1 A four-rotor system

• Strong quantum fluctuations of certain combinations of rotor angles lead to a
low-energy effective gauge theory.

Let us first consider a single rotor described by a particle of mass m moving on
a circle 0 ̂  0 < 2rc. The Lagrangian is

The Hamiltonian has the form

where Sz is the angular momentum and a = c^ l S . If we choose the basis states
to be |n) = (27r)~1/ '2e ine with n = integer, then we find that Sz n) = n\n) and
a n) — |n — 1).

To obtain the simplest model that has an emergent low-energy gauge theory, let
us consider the following model of four rotors described by #{12), #(23) > ^(.34). ar|d
#(41) (see Fig. 10.10(a)):

T H E Q U A N T U M R O T O R M O D E L A N D f/( l ) L A T T I C E G A U G l i T H E O R Y 4 7 3
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where we have assumed that 4+1 ~ 1 and 1 — 1 ~ 4. The Hilbert space is spanned
by n(i2}n{23}ri(34}n(4i)}. where the integer raj^+i is the eigenvalue of 5f i+1>. If
U ^> J, then the low-energy excitations are described by the \nnnn) states with
energy E1 = 4 Jra2. All of the other excitations have energy of order U.

To see the connection with lattice gauge theory, we would like to write down
the Lagrangian of our four-rotor model. If we write the Hamiltonian in the form

Obviously, we do not see any sign of gauge theory in the above Lagrangian. To
obtain a gauge theory, we need to derive the Lagrangian in another way. Using the
path integral representation of H and noting that (9, Sz) is a canonical coordinate-
momentum pair, we find that

Introducing the ao(i), i — 1,2,3,4, field to decouple the U term, we can rewrite
the above path integral as

where

grating out Sf. •,-,•>, we obtain

After inte-

where the Lagrangian is given by

then the Lagrangian will be

where

In the large-{7 limit, we can drop the a^(i)/4U term and obtain

where and

and
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which is just the Lagrangian of a [7(1) lattice gauge theory on a single square with

as the lattice gauge fields (see Fig. 10.10(b)). One can check that the above
Lagrangian is invariant under the following transformation:

which is called the gauge transformation. We note that the low-energy wave
function *(ai2, «23, 034, «4i) is a superposition of \nnnn) states. All of the low-
energy states are gauge invariant, i.e. invariant under the gauge transformation
ttij —> CLij + (f>j — <pi-

The electric field of a continuum U(l) gauge theory is given by E = a — dao
(in the c = e — 1 unit). In a lattice gauge theory, the electric field becomes the
following quantity defined on the links:

We see that our lattice gauge Lagrangian can be written as
Comparing this with the continuum U(l) gauge theory L oc E1 — B2, we see
that our Lagrangian contains only the kinetic energy corresponding to E2. A more
general lattice gauge theory also contains a potential energy term corresponding to
B2.

To obtain a potential energy term, we generalize our rotor model to

We note that (rannle1^-1 '4* e~ l 6 > (<' i + 1> nnn) = 0. Thus, to first order in t, the new
term has no effect at low energies. The low-energy effect of the new term only
appears at second order in t.

If we repeat the above calculation with the new term, then we obtain the
following Lagrangian:

It is a little more difficult to see in the above Lagrangian why the new term has no
low-energy effect at first order in t. Let us concentrate on the fluctuations of the
following form:76

After integrating out ap(«), the Lagrangian for the above type of fluctuation has
the form

76 In lattice gauge theory, such a type of fluctuation is called a pure gauge fluctuation.

Wewith
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see that, in the large- U limit, the above form of fluctuations is fast and strong.
As the fa live on a compact space (i.e. fa and fa + ITT represent the same point),
these fast fluctuations all have a large energy gap of order U. We now see that
the t term te * W>;-i-<^+i) averages to zero due to the strong fluctuations of fa, and
has no effect at first order in t. However, at second order in t, there is a term

Such a term does not depend on 
and does not average to zero. Thus, we expect the low-energy effective Lagrangian
to have the form

where g = O(t2/U) and $ = ]T^ Ot.i+i is the flux of the [7(1) gauge field through
the square. The above Lagrangian does not depend on the fast quantum fluctuations
and is invariant under the gauge transformations (10.6.2). We see that it is the
strong quantum fluctuations of certain combinations of a^- that leads to a gauge-
invariant low-energy effective Lagrangian.

To calculate g quantitatively, we would first like to derive the low-energy effec-
tive Hamiltonian. If we treat the t term as a perturbation and treat the low-energy
states as degenerate states, then, at second order in t, we have

where n\ = n + 1. Thus, the low-energy effective Hamiltonian is

The corresponding Lagrangian is given by eqn (10.6.4) with

As discussed earlier, the pure gauge fluctuations have a large energy gap of order
U . The low-energy effective theory below U can be obtained by letting U — * oo,

three other similar terms



This model was studied in Section 6.4. There it was shown that, when g = 0,
the energy levels are given by En — 4Jn2, which agrees exactly with the energy
levels of eqn (10.6.1) at low energies. Hence eqn f 10.6.1) is indeed a gauge theory
at low energies.

Here we would like to make a remark. What is a gauge theory? Is the four-rotor
model really a gauge theory at low energies? The standard definition of gauge
theory is a theory with a gauge potential. According to this definition, the four-
rotor model can be a gauge theory if we insist on writing its Lagrangian in terms
of gauge potentials. On the other hand, the four-rotor model is not a gauge theory
because its natural Lagrangian does not contain any gauge potential. We see that
the gauge theory is not a well defined physical concept. Whether a model is a
gauge theory or not is not a well-defined question. It is almost like calling the
four-rotor model a gauge theory if we label the four sites by (a, b, c, d), and call
it a non-gauge theory if we label the four sites by (1.2,3,4). From this point
of view, the discussion in the present section is quite formal, with little physical
significance.

Problem 10.6.1.
Consider the three-site rotor model described by eqn (10.6.3) with i = 1 ,2 : H (see
Fig. 1 0 . 1 1 ) .

I . Derive the action for the low-energy lattice gauge theory. You only need to calculate
g up to an O(l) coefficient.

2. Calculate the energy levels at low energies, assuming that U ~S> g ;=> J.

1 0.6.2 A lattice of quantum rotors and artificial light

• A lattice of quantum rotors can be described by a lattice U ( l ) gauge theory.

T H E Q U A N T U M R O T O R M O D E L A N D {/(]) L A T T I C E G A U G E T H E O R Y 4 7 7

F I G . 1 0 . 1 1 . (a) A three-rotor system, and (b) (he related lattice gauge theory.

and we obtain



4 7 8 S T R I N G C O N D K N S A T I O N — A N U N I F I C A T I O N O F L I G H T A N D F E R M I O N S

F I G . 10.12. A rotor lattice, a loop representing a low-energy fluctuation, and a pair of charge

excitations {A,B). The sum of the angular momenta for rotors al the corners of each shaded square is

zero in the large-Lr l imit.

• The deconfined phase of the lattice gauge theory contains artificial light.

After understanding the systems with a few rotors, we are ready to study lattice
rotor systems. As an example, we will consider a square lattice where there is one
rotor on every link (see Fig. 10.12). We have

Here i — (ix,iy) labels the sites of the square lattice, and a = ±^ ,±f • The U
term enforces the constraint that the total angular momentum of the four rotors
near the site i is zero. The model can also be generalized to a three-dimensional
cubic lattice as follows:

Here labels the sites of the cubic lattice, and
the two labels

site.
and label the two nearest-neighbor rotors around the
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In the following, we are going to show that, in the limit
J, the above two-dimensional and three-dimensional models contain a low-energy
collective mode. Such a collective mode is very different from the usual collective
modes, such as spin waves and phonons, due to its non-local properties. In fact, it
does not correspond to the fluctuations of any local order parameter and one needs
to use U(l) gauge theory to describe it. We will call such a collective mode a t7(l)
gauge fluctuation. The collective mode has an exponentially-small energy gap A ~

Q~cvt2/JU for the two-dimensional model and is exactly gapless for the three-
dimensional model. The collective mode in the three-dimensional model behaves
in every way like the light in our universe. Thus, we can also call it artificial light.

What is remarkable about the above models is that they contain no sign of
gauge structure at the lattice scale. The [7(1) gauge fluctuation and the related
gauge structure emerge at low energies. This suggests the possibility that the light
in our universe may also appear in a similar fashion. Gauge structure may emerge
naturally in strongly-correlated quantum systems. The rotor models that we are
going to study in this section are the simplest models that contain artificial light.
In the following, for simplicity, we will concentrate on the two-dimensional rotor
model. The calculations and the results can be easily generalized to the three-
dimensional rotor model.

To understand the dynamics of our two-dimensional rotor system, let us first
assume that J = t — 0 and U > 0. In this case, the Hamiltonian is formed by
commuting terms which perform local projections. The ground states are highly
degenerate and form a low energy subspace. One of the ground states is the state
with Sf = 0 for every rotor. Other ground states can be constructed from the first
ground state by drawing an oriented loop in the square lattice, and then alternately
increasing or decreasing the angular momenta of the rotors by 1 along the loop
(see Fig. 10.12). Such a process can be repeated to construct all of the degenerate
ground states. We see that the fluctuations in the projected space are represented by
loops. The low energy subspace has some non-local characteristics, despite it being
obtained via a local projection. If t and J are nonzero, then the t term will make
these loops fluctuate and the J term will give these loops an energy proportional
to the loop length. It is clear that, when [7 » J, t, the low-energy properties of our
system are determined by the fluctuations of the loops. The system can have two
distinct phases. When J ;§> t, the system has only a few small-loop fluctuations.
When J -C t, the system has many large-loop fluctuations, which can even fill
the whole space. As we will see later, these large-loop fluctuations are actually
£7(1) gauge fluctuations. We note that the loops can intersect and overlap. In fact,
a typical loop looks more like a net of closed strings. In the following, we will
call the loop fluctuations the closed-string-net fluctuations to stress the branching
structure of the fluctuations.

and
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The degenerate ground states are invariant under local symmetry transforma-
tions generated by

where (—)* = (—)l*+V The above transformation is simply the gauge trans-
formation. Thus, we can also say that the degenerate ground states are gauge
invariant.

Using a calculation similar to that in Section 10.6.1, we find that our lattice
rotor model can be described by the following low-energy effective Lagrangian in
the large- U limit:

Here Also, $i is th
(7(1) flux through the square at 

 Generalizing the second-order perturbative calculation in Section 10.6.1
we find that

Equation (10.6.9) describes a C/(l) lattice gauge theory.
Here we would like to stress that the Lagrangian (10.6.9), having the form

of a U(l) gauge theory, does not necessarily imply that low-energy excitations
behave like gauge bosons. This is because quantum fluctuations can be very strong
and the intuitive picture from the Lagrangian can be completely misleading. In
order to have excitations that behave like gauge bosons, we need to choose J
and g so that the Lagrangian (10.6.9) is in the semiclassical limit. To see when
the semiclassical limit can be reached, we express the action of the lattice gauge
theory in dimensionless form as follows:

where I — \fgJt and ao = ao / l^fgJ*. We find that the semiclassical limit is reached
if g/J = t2/JU 2> 1. In this limit, our model contains U(l) gauge bosons (or an
artificial light) as its only low-energy collective excitations.

Due to the instanton effect, a £7(1) gauge excitation develops a gap in 1 + 2
dimensions (Polyakov, 1977) (see Section 6.3.2). The instanton effect is associated
with a change in the U(l) flux $ from 0 to 2?r on a square. To estimate the impor-
tance of the instanton effect, let us consider a model with only a single square (i.e.
the four-rotor model discussed earlier). Such a model is described by eqn (6.4.11).
The instanton effect corresponds to a path 3>(t) (a time-dependent flux), where $

and



when T = ^^/2^/gJ. From the density of the instanton gas on the time axis,
\f~Jgv ~s", we estimate the energy gap of the U(l) gauge boson to be

We see that, when g/J » 1, the gap can be very small and the low-energy fluctua-
tions are very much like a gapless photon. Certainly, the real gapless artificial light
only exists in (3 + l)-dimensional models, such as the three-dimensional rotor
model (10.6.7).

The three-dimensional rotor model has the following low-energy effective
Lagrangian in the large-C/ limit:

Here J^p is the summation overall of the squares, and $p is the U(l) flux through
a square p. Also, gp may depend on the orientation of the square. The value of gp

can be tuned by t(aiC(2) in eqn (10.6.7).

10.6.3 String-net theory of artificial light and artificial charge

• A gauge theory is a closed-string-net theory in disguise.

• A confined phase is a phase with dilute small strings. A Coulomb phase is a
phase with nets of large closed strings that fill the whole space.

• Gauge bosons (in the Coulomb phase) correspond to fluctuations of large
closed string-nets, and gauge charges are end-points of open strings.

As mentioned earlier, the low-energy excitations in our rotor model below U
are described by nets of closed strings of increased/decreased Sz. To make this
picture more precise, we would like to define a string-net theory on a lattice.

The Hilbert space of the string-net theory is a subspace of the Hilbert space of
our rotor model (10.6.6). To construct the string-net Hilbert space, we first need

T H E Q U A N T U M R O T O R M O D i i L A N D t/(l) L A T T I C E ; G A U G R T H E O R Y 481

goes from To estimate the instanton action, we
assume that

The minimal instanton action is found to be
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FIG. 10 .13. (a) A closed string-lies, and (b) an open string-nel.

to introduce a string creation operator. A string creation operator is formed by the
product of e^19*"'' operators:

where C is a string connecting nearest-neighbor sites in the square lattice, the
product Y\/ij\ is over all of the nearest-neighbor links { i j ) that form the string,
and 9^) is the 9 field of the rotor on the link { i j ) .

As the string can intersect and overlap, the string looks more like a net. We will
call C a string-net and U(C) a string-net operator. If C is formed by a collection
of closed strings, then we will call it a closed string-net. If C contains at least an
open string, then it will be called an open string-net (see Fig. 10.13).

The string-net Hilbert space contains a state with all Sj = 0. Such a state,
by definition, corresponds to a state with no strings. If we apply the closed-string
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operator (10.6.12) to the Sj- = 0 state, then we obtain another state in the string-net
Hilbert space. Such a state is formed by 5| = ±1 along the closed string C and
can be regarded as a state with one closed string C. Other states in the string-net
Hilbert space correspond to multiple-string states and are generated by repeatedly
applying the closed-string operators (10.6.12) to the 5| = 0 state.

The Hamiltonian of our string-net theory is obtained from the rotor Hamilto-
nian (10.6.6) restricted in the string-net subspace. It is given by

where the sum Y^/a) is over a^ °f me nearest-neighbor links (ij} in the square
lattice, Sfj is the angular momentum operator for the rotor on the nearest-neighbor
links ( i j ) , Y^p sums over all of the squares of the square lattice, and Wp is the
closed-string operator for the closed string around the square p. One can check
that the above Hamiltonian indeed acts within the string-net Hilbert space. The J
term gives strings in the string-net a finite string tension, and the g term, as a string
'hopping' term, causes the string-nets to fluctuate. The J term in eqn (10.6.13)
directly comes from the J term in eqn (10.6.6), while the g term comes from the t
terms in eqn (10.6.6) at the second order perturbative expansion.

From the construction, it is clear that the string-net Hilbert space is identical
to the low-energy Hilbert space of our model (10.6.6), which is formed by states
with energy less than U. From our derivation of the effective lattice gauge theory
(10.6.9), it is also clear that the string-net Hamiltonian (10.6.13) is directly related
to the lattice gauge Lagrangian (10.6.9). In fact, the Hamiltonian of the lattice
gauge theory is identical to the string-net Hamiltonian (10.6.13). The Y^ij J(Sij)2

term in the string-net theory corresponds to the 
term in the gauge theory, and the ̂  ^g(Wp + h.c.) term in the string-net
theory corresponds to the 5^pcos($p) term in the gauge theory. As Sz ~

corresponds to the electric flux along the link, a closed string
of increased/decreased Sz corresponds to a loop of electric flux tube. We would
like to stress that the above connection between gauge theory and string-net the-
ory not only applies to the two-dimensional model (10.6.6), but it also works for
models in any dimensions.

We see that the U(l) gauge theory (10.6.9) is actually a dynamical theory of
closed string-nets. Typically, one expects a dynamical theory of closed string-nets
to be written in terms of string-nets as in (10.6.13). However, because we are
more familiar with field theory, what we did in the last few sections can be viewed
as an attempt to describe a string-net theory using a field theory. Through some
mathematical trick, we have achieved our goal. We are able to write the string-
net theory in the form of a gauge field theory. The gauge field theory is a special
field theory in which the field does not correspond to physical degrees of freedom
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and the physical Hilbert space is non-local (in the sense that the total physical
Hilbert space cannot be written as a direct product of local Hilbert spaces). The
point that we try to make here is that gauge theory (at least the one discussed
here) is a closed-string-net theory in disguise. In other words, gauge theory and
closed-string-net theory are dual to each other. In fact, if we discretize the time to
consider a space-time lattice, then we can find an exact mapping between £7(1)
lattice gauge theory and a statistical model of membranes in space-time (Banks
etal, 1977;Savit, 1980).

In the large-J/g limit (and hence the large-Agauge limit), the ground states
for both the rotor model and the string-net model are given by 5^ = 0 for every
rotor. In this phase, the closed string-nets or the electric flux tubes do not fluc-
tuate much and have an energy proportional to their length. This implies that the
U(l) gauge theory is in the confining phase. In the small-J/g limit, the closed
string-nets fluctuate strongly and the space is filled with closed string-nets of arbi-
trary sizes. According to the calculation in the previous section, we note that the
small- J/g phase can also be viewed as the Coulomb phase with gapless gauge
bosons. Combining the two pictures, we see that gapless gauge bosons correspond
to fluctuations of large closed string-nets.

After relating the closed string-net to artificial light, we now turn to artificial
charges. To create a pair of particles with opposite artificial charges for the artificial
£7(1) gauge field, we need to draw an open string and alternately increase and
decrease the Sz of the rotors along the string (see Fig. 10.12). The end-points of the
open string, as the end-points of the electric flux tube, correspond to particles with
opposite artificial charges. We note that, unlike the rotors, charged particles live on
the sites of the square lattice. In the confining phase, the string connecting the two
artificial charges does not fluctuate much. The energy of the string is proportional
to the length of the string. We see that there is a linear confinement between the
artificial charges.

In the small- J/g limit, the large g causes strong fluctuations of the closed
string-nets, which leads to gapless U(l) gauge fluctuations. The strong fluctua-
tions of the strings connecting the two charges also changes the linear confining
potential to the log(r) potential between the charges.

To understand the dynamics of particles with artificial charges and to derive the
log(r) potential, let us derive the low-energy effective theory for these charged par-
ticles. Let us first assume that J = t = 0. A pair of charged particles with opposite
unit artificial charges can be created by applying the open-string operator (10.6.12)
to the ground state. At the end of the open siring, we have
We find that each charged particle has an energy U which comes from the term

^e strmg itself costs no energy. If we apply the same open-
string operator n times, then we create n units of opposite artificial charges at the
ends of the open string. The energy of a charge of n units is n?U.
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The gauge theory with charges contains two parts, namely the charges and the
strings. Let us first consider only the charges and treat the charged particles as
independent particles. In this case, the total Hilbert space of charged particles is
formed by the state |{ni}}, where ni is the number of artificial charges at the
site i of the square lattice. Here |{ni}} is an energy eigenstate with energy E =

 Such a system can be described by the Lagrangian

where ipi is an angular variable. The creation operator of the charged particle of a
unit charge is given by e ' Vi .

The gauge fluctuations are described by the strings and eqn (10.6.9). In the
[7(1) gauge theory, the ground state is gauge invariant (away from the charges).
From eqn (10.6.8), we see that the gauge invariance implies that 
Thus, there are no open ends of strings away from the charges.

To find the coupled theory of the charge and the gauge field, we include the
fact that the charged particles are always at the ends of the open strings. In other
words, the physical state of the gauge theory contains open strings, but the open
strings can only end at the charges. Such a constraint can be imposed by the gauge
invariance. So we can use the gauge invariance to combine the charge Lagragian
(10.6.14) and the gauge Lagragian (10.6.9) together and write down the coupled
theory. Using the gauge invariance, we find that the combined Lagrangian has the
form (see Problem 6.4.5)

After including the gauge field, the single charge creation operator e1¥7i is no
longer physical because it is not gauge invariant. The gauge-invariant operator

always creates a pair of opposite charges, together with the open string connecting
the charges. Therefore, open strings always end at the charges. In fact, the above
gauge-invariant operator is simply the open-string operator (10.6.12). We also see
that the string operator (10.6.12) is closely related to the Wegner-Wilson loop
operator (Wegner, 1971; Wilson, 1974; Kogut, 1979).

The t term generates a hopping of charged particles to the next-nearest neighbor
in the square lattice. Thus, if t / 0, then the charged particles will have a non-
trivial dispersion. The corresponding Lagrangian is given by
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where (ij) are next-nearest neighbors in the square lattice, and k\$ are the two
sites hetween site i and site j. The above Lagrangian also tells us that the charged
particles are bosons.

We also note that an increased Sf • corresponds to two artificial charges at i and
j. Therefore, each unit of artificial charge carries 1/2 angular momentum! (Note
that the total angular momentum Y^ta) Sf- • » is a conserved quantity.)

10.6.4 Physical properties of two-dimensional and three-dimensional rotor systems

• The continuum limit of the lattice gauge theory.
• The speed and the fine-structure constant of artificial light.

To understand the physical properties of the artificial light in the two
dimensional model, let us take the continuum limit of eqn (10.6.9) by writing

where a = (a.,:, a,;) is a two-dimensional vector field (the vector gauge potential
in two dimensions), o,0 corresponds to the potential field, x is near the site i,
f)X(ij} is the vector that connects the i and j sites in the square lattice, and / is
the lattice constant of the square lattice. In the continuum limit, the Lagrangian
(10.6.9) becomes

where 0/ describe the positively-charged bosons, 4>i describe the negatively-
charged bosons, 0i and ^i describe the charged boson at the even sites of the
square lattice, and (,"2 and ife describe the charged boson at the odd sites of the
square lattice. It costs energy 2f/ to create a pair of charged bosons. The mass of
the bosons is m = (8tl'2)~l, and mc% = gJ/4t. We would like to note that the

where e = d,a - dxaQ and b — dxay — dyo,x are the corresponding artificial
electric field and artificial magnetic field, respectively. We see that the velocity
of our artificial light is ca = -^/IgJfi/h2. The bandwidth of the artificial light is
about. 

From eqn (10.6.15), we find the continuum Lagrangian that describes the
charged particles in the two-dimensional model (in the U >• t limit) as follows:
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boson velocity ~ 8tl can be larger than the speed of artificial light. The potential
energy between a positive and a negative charge is V(r) = '•— In r.

For the three-dimensional model, the Lagrangian in the continuum limit is
given by

where e and b are the artificial electric field and artificial magnetic field, respec-
tively, in three dimensions. The speed of artificial light is c,a = ^gJl^/h'2. The
above three-dimensional Lagrangian can be rewritten in the more standard form

where a = ^ ^/J/2g is the artificial fine-structure constant. The mass of the
charged boson is m = (Sf,/2)"1. An artificial atom (a bound state of two positively-
charged and negatively-charged bosons) has an energy-level spacing of order

and a size of order 2/amc,,.

Problem 10.6.2.
Verify eqns( 10.6.16) and (10.6.17).

10.7 Emergent light and electrons from an SU(Nf) spin model

• A non-trivial quantum order (i.e. a string-net condensation) in a local bosonic
model can lead to both massless photons and massless fermions. String-net
condensation provides a way to unify light and fermions.

• The masslessness of the photons and fermions is protected by the PSG that
characterizes the string-net condensation.

As stressed at the beginning of this chapter, to understand the existence of light
and electrons is to understand why these particles are massless (or nearly massless
when compared with the Planck mass). For a generic interacting system, massless
(or gapless) excitations are rare. If they exist, then they exist for a reason.

We know that symmetry breaking can produce and protect gapless Nambu-
Goldstone modes. In Section 9.10, it was proposed that, in addition to symmetry
breaking, quantum order and the associated PSGs can also produce and protect
gapless excitations. The gapless excitations produced and protected by quantum
order can be gapless gauge bosons and/or gapless fermions.

In this section, we are going to study a specific SU(Nj) spin model on a cubic
lattice (Wen, 2002a). The ground state of the model has a non-trivial quantum order
(i.e. a string-net condensation). As a result, the model has emergent massless U ( l )
gauge bosons (the artificial light) and massless charged fermions (the artificial
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electron and proton). In other words, the SU(Nf) spin model has an emergent
QED! A world based on such an SU(Nf) spin model will be quite similar to our
world; both worlds are formed by charged fermions (i.e. electrons and protons)
interacting via Coulomb interactions. A more complicated spin model on a cubic
lattice can even lead to an emergent QED and QCD with photons, gluons, leptons,
and quarks (Wen, 2003b). Thus, it will not be surprising if someday we find that
all of the elementary particles in nature emerge from a generalized spin model (i.e.
a local bosonic model).

10.7.1 An SU(Nj) spin model on a cubic lattice

The model is formed by SU(Nf)-spms, with one spin at each site of a cubic
lattice. Here Nf is even and the lattice sites are labeled by the three integers i =
(ix,iy,iz)- The states at each site, namely

form the rank-Ary/2 anti-symmetric tensor representation of S U ( N f ) . The spin

operators S?b, a,b = 1, 2, . . . , N f , at each site form the adjoint representation of
SU(Nf):

where the repeated indices are summed.
Let

We choose the Hamiltonian for our SU(Nf) model to be (Wen, 2002a)

10.7.2 The ground state of the SU(Nf) model

To understand the ground state, let us introduce the fermion representation of the
SU(Nf) spin model (Affleck and Marston, 1988). We first introduce Nf fermion
operators t/)a which form a fundamental representation of S U ( N f ) . The Hilbert
space at each site is then formed by states with A/y/2 fermions. The spin operator



We choose ao(i) so that the mean-field ground state of Hmean, namely
has Nf/2 fermions per site on average. A state of the SU(N/) model can be

constructed from the mean-field state l^mean) by projecting into a subspace with
exactly Nf/2 fermions per site:

We can now choose Xij to minimize the average energy ^ j | f f ^ x ^ ^ an(j
hence obtain the trial energy and the trial wave function of the ground state.

The discussion in Section 9.1.1 is for the SU(Nf) model with Nf = 2.
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is eiven by

If we introduce

then Wi is given by

Using the fermion representation, we can express the Hamiltonian (10.7.2) as

where J^ is a sum over all of the squares p, and J|n is a product over all of the
four links around the square p; that is, []n Xij = Xi^Xi^i-.Xi^Xi.i, > with «t, i2,
is, and 14 being the four sites around the square p.

We note that, in the large-iV/ limit, Xij commute with each other, i.e.
[XijiXi'j1] — O(l/Nf}. Also, Xij is a sum °f Nf terms. Although each term has
strong quantum fluctuations, the sum has little fluctuations. Thus, \,ij behaves like
a c-number in the large-Nf limit. That is, for a given state we can replace Xij by a
complex number Xij- The energy of such a state is E = g 
O(N71). Different states will have different X i j , and hence different energies.

The ground state of the SU(Nf) model can be obtained by choosing a set of
Xij that minimize E = g ̂ pllln Xij + h.c.]. Here we encounter one difficulty:
the Xij are not independent and we cannot choose their values arbitrarily. For
example, we cannot make all of the Xij to be zero at the same time. We will use
the projective construction in Section 9.1.1:77 to overcome this difficulty, We start
with a mean-field Hamiltonian



490 S T R I N G C O N D E N S A T I O N — AN U N I F I C A T I O N OF LIGHT AND F E R M I O N S

In the large- Nf limit, the projection P only makes a small change to the wave

function |^^an)- Thus, to obtain the ground-state energy, we can perform an
easier calculation by minimizing (tymelu\H\^meln) instead.

Here is how we perform the minimization. We first pick a set of Xij- Then

we choose a0(i) so that {\Eri?ean|V'I'0i|*mXean) = N//2. Then we calculate

Xij = Nyl (tym<£a\ipl'<l)j *mean}- Such Xij ^e the corresponding c-numbers
for the operator Xij discussed above. We see that Xij are independent and
their values can be chosen arbitrarily. The non-independent Xij w& functions
of Xij, i-e. XijttXij})- The ground state is obtained by minimizing E =
9 EP[rin> XijttXij}) + h-c-} as we change Xij-

We find that the ground state is obtained by choosing Xij as

which lead to the following set of Xij '•

The ansatz Xij has TT flux through each square. As a result, flaXi;? = ~|x|4-
The minus sign is the reason why the above Xij minimize g Z^pUInXij + h.c.]
(assuming that g > 0).

The ground state described by the ansatz Xij does not break any symmetries.
However, the ground state has a non-trivial quantum order. In the following, we
will show that the ground state supports massless U(l) gauge bosons and massless
charged fermions.

10.7.3 The low-energy dynamics of the SU(Nf) model

The fluctuations of Xij describe a collective mode in our SU(Nf) spin model. The
dynamics of such a collective mode are described by a classical field theory on a
cubic lattice. The fluctuations of \x\ correspond to a massive excitation and can be
ignored. The low-energy fluctuations of the collective mode are described by the
phase fluctuations around Xiji i-e- Xij = Xij e iaii • As discussed in Section 9.1.1,
the fluctuations described by a^ are U(l) gauge fluctuations. The physical wave
function for a U(l) gauge fluctuation is given by the projected mean-field state for
the deformed ansatz:
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The following effective Hamiltonian of ay is obtained by substituting the
above into eqn (10.7.3):

and (»i, 12,43,14) are the four sites around the square p. The Hamiltonian (10.7.6)
describes a [7(1) lattice gauge theory with a^ as the lattice [7(1) gauge field and
$p as the [7(1) flux through the square p.

The C7(l) gauge fluctuations (10.7.5) are not the only type of low-energy
excitations. The second type of low-energy excitations is given by the projected
mean-field state with some particle-hole excitations, such as

where

We see that eqn (10.7.9) describes fermion hopping in a Tr-flux phase. The fol-
lowing low-energy effective Hamiltonian for fermions and gauge excitations is
obtained by combining eqns (10.7.6) and (10.7.9):

In the continuum limit, —2g ̂ p |x|4 cos($p) becomes
where Z() is the lattice constant of the cubic lattice, and B is the magnetic field

where

These excitations correspond to charged fermions.
To determine the dynamics of the fermion excitations, we write

where Xij — (Xij}- Substituting eqn (10.7.8) into eqn (10.7.3), we obtain
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strength of the £7(1) gauge field. Comparing this with the standard Hamiltonian
of U(l) gauge field theory, namely H = giB2 + g^E2 (where E is the electric
field of the [/(!) gauge field), we find that our {7(1) Hamiltonian is missing the
kinetic energy term from the electric field. The kinetic energy term appears as the
higher-order terms in the I/TV/ expansion in our model.

To estimate the value of the coefficient in the E2 term, we note that, for a time-
independent gauge potential, E2 has the form (dxao)2. Such a term is generated
from eqn (10.7. 1 1) by integrating out the fermions. The generated term is of order
Nf N

1
1, ,(lodxao)2. The first coefficient Nf comes from the fact that each Nf

family of the fermions contributes equally to (lodxao)2. The second coefficient
describes the contribution from one family of the fermions. The coefficient has
the dimension of inverse energy. Its value can be estimated as the inverse of the
fermion bandwidth, i.e. l/(gN7l\x\)- Thus, the Lagrangian for the Z7(l) gauge
field has the form (Marston and Affleck, 1989; Wen, 2002a)

where C is an O(l) constant. Such a Lagrangian describes an artificial light in our
SU(Nf) spin model. Comparing the above to the standard Lagrangian (10.6.18),
we find that the speed of the artificial light is of order ca ~ log /N/ and the fine-
structure constant a is of order I/TV/.

In momentum space, the fermion hopping Hamiltonian (10.7.9) has the form
(note that UQ = 0 for the ground state)

where

and TI = r3 ® r°, r2 = r1 <g> r3, and T3 = r1 ® r1. Here r1'2'3 are the Pauli
matrices and r° is the 2 x 2 identity matrix. The momentum summation J^ is over
a range 
25ij, i, j = 1, 2, 3, we find that the fermions have the dispersion

We see that the dispersion has two nodes at k — 0 and k = (0,0, vr). Thus,
eqn (10.7.9) will give rise to 2Nf massless four-component Dirac fermions in the
continuum limit.

and
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After including the f/(l) gauge fluctuations, the massless Dirac fermions inter-
act with the f/( l) gauge field as fermions with unit charge. Therefore, the total
effective theory of our SU(Nf) spin model is a QED with 2Nf families of Dirac
fermions of unit charge. We will call these fermions artificial electrons. The
continuum effective theory has the form

7/iU=o,i,2,3 are 4 x 4 Dirac matrices, and V'/,a = V-'j,a7°- Here </•'!,« and ^2,« are
Dirac fermion fields, which form a fundamental representation of SU(Nf). We
would like to point out that, although both the speed of the artificial light, c0, and
the speed of the artificial electrons, Vf, are of order l^g/Nf, the two speeds do not
have to be the same in our model. Thus, Lorentz symmetry is not guaranteed.

Equation (10.7.13) describes the low-energy dynamics of the SU(Arf) model
in a quantum-ordered phase—the 7r-flux phase. The fermions and the gauge boson
are massless and interact with each other. Here we would like to address an impor-
tant question: after integrating out high-energy fermion and gauge fluctuations,
do the fermions and the gauge boson remain massless? In general, the interaction
between massless excitations will generate a mass term for them, unless the mass-
lessness is protected by symmetry, or something else. For our SU(Nf) model, the
ground state breaks no symmetry. So we cannot use spontaneously broken sym-
metry to explain the massless excitations. The massless excitations are protected
by the PSG that characterizes the quantum order (or string-net condensation) in
the ground state (see Section 9.10 and Wen (2002a)).

10.7.4 Remarks: some historic remarks about gauge theory and Fermi statistics

• There are two ways to view a gauge field, namely as a geometric object of
local phase invariance, or as a collective mode of a correlated system.

• The meaning of 'gauge'.

• Gauge fields and fermion fields do not imply gauge bosons and fermions as
low-energy quasiparticles.

The first systematic gauge theory was Maxwell's theory for electromagnetism. Although
the vector potential A^ was introduced to express the electric field and the magnetic field,
the meaning of A^ was unclear.

The notion of a gauge field was introduced by Weyl in 1918, who also suggested
that the vector potential Ati is a gauge field. Weyl's idea is motivated by Einstein's the-
ory of gravity and is an attempt to unify electromagnetism and gravity. In Einstein's general

where
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relativistic theory, the coordinate invariance leads to gravity. So Weyl thought that the invari-
ance of another geometrical object may lead to electromagnetism. He proposed the scale
invariance.

Consider a physical quantity that has a value /. We know that the numerical value
/ itself is meaningless unless we specify the unit. Let us use u to denote the unit. The
physical quantity is really given by fu. This is the relativity in scale. Now let us assume that
the physical quantity is defined at every point in space (so we are considering a physical
field). We would like to know how to compare the physical quantity at different points x^ and
x1'- + dx'\ We cannot just compare the numerical values f(x^) and f(x^ + dxp') because
the unit w may be different at different points. For the nearby points XM and x'J + dx'\ the
two units only differ by a factor close to 1. We can express such a factor as 1 + S^dx^. The
difference in the physical quantity at XM and x^ + dx* is not given by f(x>* + cteM) - f(x^) =

 but by f(x'J + dx^(l + S^dx^) - f(x») = (3M + S^fdx*. Weyl showed that the
local scale invariance requires that only the curl of S^ is physically meaningful, just like
only the curl of A^ is meaningful in Maxwell's theory. Thus, Weyl identified S^ as the vector
potential A,,,. Weyl called the local scale invariance 'Eich Invarianz', which was translated
to 'gauge invariance'.

However, Weyl's idea is wrong and the vector potential A^ cannot be identified as the
'gauge field'S^. On the other hand, Weyl was almost right. If we think of our physical field as
the amplitude of a complex wave function78 and the unit ui as a complex phase, i.e. u = 1,
then the difference between the amplitudes at different points is given by (<9M + iS^fdx1',
where the units at different points differ by a factor (1+ iS^dx^). It is such an 5M that can be
identified as the vector potential. So A^ should really be called the 'phase field', and 'gauge
invariance' should be called 'phase invariance'. However, the old name has stuck.

This part of history is an attempt to give the unphysical vector Afl. some physical (or
geometrical) meaning. It views the vector potential as a connection of a fibre bundle. This
picture is widely accepted. We now call the vector potential the gauge field, and Maxwell's
theory is called gauge theory. However, this does not mean that we have to interpret the
vector potential as a geometrical object from the local phase invariance. After all, the phase
of a quantum wave function is unphysical.

There is another point of view about the gauge theory. Many thinkers in theoretical
physics were not happy with the redundancy of the gauge potential A,,. It was realized in
the early 1970s that one could use gauge-invariant loop operators to characterize different
phases of a gauge theory (Wegner, 1971; Wilson, 1974; Kogut and Susskind, 1975). Later,
people found that one can formulate the entire gauge theory using closed strings (Banks
etal., 1977; Foerster, 1979; Gliozzi etal., 1979; Mandelstam, 1979; Polyakov, 1979; Savit,
1980). These studies revealed the intimate relationship between gauge theories and closed-
string theories—a point of view which is very different from the geometrical notion of vector
potential.

In a related development in condensed matter physics, people found that gauge fields
can emerge from a local bosonic model, if the bosonic model is in certain quantum phases.
This phenomenon is also called the dynamical generation of gauge fields. The emergence
of gauge fields from local bosonic models has a long and complicated history. The emergent
U(l) gauge field was introduced in the quantum-disordered phase of the (l+l)-dimensional
CPN model (D'Adda et a/., 1978; Witten, 1979). In condensed matter physics, the (/(I)
gauge field has been found in the slave-boson approach to spin-liquid states of bosonic

The notion of a complex wave function was introduced in 1925, seven years after Weyl's 'gauge
theory'.

7
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spin models on a square lattice (Affleck and Marston, 1988; Baskaran and Anderson, 1988).
The slave-boson approach not only has a U(l) gauge field, but it also has gapless fermion
fields. However, due to the instanton effect and the resulting confinement of the (7(1) gauge
field in 1 + 1 and 1 + 2 dimensions (Polyakov, 1975), none of the above gauge fields and
gapless fermion fields lead to gauge bosons and gapless fermions that appear as low-
energy physical quasiparticles. Even in the large-N limit where the instanton effect can
be ignored, the marginal coupling between the U(l) gauge field and the massless Dirac
fermions in 2 + 1 dimensions destroys the quasiparticle poles in the fermion and gauge
propagators. This led to the opinion that the (7(1) gauge field and the gapless fermion fields
are just an unphysical artifact of the 'unreliable' slave-boson approach. Thus, the key to
finding emergent gauge bosons and emergent fermions is not to write down a Lagrangian
that contains gauge fields and Fermi fields, but to show that gauge bosons and fermions
actually appear in the physical low-energy spectrum. In fact, for any given physical system,
we can always design a Lagrangian with a gauge field of arbitrary choice to describe that
system. However, a gauge field in a Lagrangian may not give rise to a gauge boson that
appears as a low-energy quasiparticle. Only when the dynamics of the gauge field are
such that the gauge field is in the deconfined phase can the gauge boson appear as a
low-energy quasiparticle. Thus, many researchers, after the initial findings of D'Adda et al.
(1978), Witten (1979), Baskaran and Anderson (1988), and Affleck and Marston (1988),
have been trying to find the deconfined phase of the gauge field.

In high-energy physics, a (3+ l)-dimensional local bosonic model with emergent decon-
fined [7(1) gauge bosons was constructed by Foerster ef al. (1980). It was suggested that
light in nature may be emergent. In condensed matter physics, it was shown that, if we
break the time-reversal symmetry in a two-dimensional spin-1/2 model, then the [7(1) gauge
field from the slave-boson approach can be in a deconfined phase due to the appearance
of the Chern-Simons term (Khveshchenko and Wiegmann, 1989; Wen et al., 1989). The
deconfined phase corresponds to a spin-liquid state of the spin-1/2 model (Kalmeyer and
Laughlin, 1987), which is called the chiral spin liquid. A second deconfined phase was found
by breaking the (7(1) gauge structure down to a Z2 gauge structure. Such a phase contains
a deconfined Z2 gauge theory (Read and Sachdev, 1991; Wen, 1991 a), and is called a Z-2

spin liquid (or a short-ranged RVB state). Both the chiral spin liquid and the Z2 spin liquid
have some amazing properties. The quasiparticle excitations carry spin-1/2 and correspond
to one-half of a spin flip. These quasiparticles can also carry fractional statistics or Fermi
statistics, despite our spin-1/2 model being a purely bosonic model. These condensed mat-
ter examples illustrate that both gauge fields and Fermi statistics can emerge from local
bosonic models.

We would like to point out that the spin liquids are not the first example of emergent
fermions from local bosonic models. The first example of emergent fermions, or, more
generally, emergent anyons, is given by the FQH states. Although Arovas et al. (1984)
only discussed how anyons can emerge from a fermion system in a magnetic field, the
same argument can easily be generalized to show how fermions and anyons can emerge
from a boson system in a magnetic field. Also, in 1987, in a study of resonating valence
bound (RVB) states, emergent fermions (the spinons) were proposed in a nearest-neighbor
dimer model on a square lattice (Kivelson era/., 1987; Rokhsar and Kivelson, 1988; Read
and Chakraborty, 1989). However, according to the deconfinement picture, the results by
Kivelson et al. (1987) and Rokhsar and Kivelson (1988) are valid only when the ground
state of the dimer model is in the Z2 deconfined phase. It appears that the dimer liquid on
a square lattice with only nearest-neighbor dimers is not a deconfined state (Rokhsar and
Kivelson, 1988; Read and Chakraborty, 1989), and thus it is not clear if the nearest-neighbor
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dimer model on a square lattice (Rokhsar and Kivelson, 1988) has fermionic quasiparticles
or not (Read and Chakraborty, 1989). However, on a triangular lattice, the dimer liquid
is indeed a Z2 deconfined state (Moessner and Sondhi, 2001). Therefore, the results of
Kivelson et al, (1987) and Rokhsar and Kivelson (1988) are valid for the triangular-lattice
dimer model, and fermionic quasiparticles do emerge in a dimer liquid on a triangular lattice.

All of the above models with emergent fermions are (2 + l)-dimensional models, where
the emergent fermions can be understood from binding flux to a charged particle (Arovas
etal., 1984). Recently, it was pointed out by Levin and Wen (2003) that the key to emergent
fermions is a string structure. Fermions can generally appear as ends of open strings in any
dimensions. The string picture allows the construction of a (3 + l)-dimensional local bosonic
model that has emergent fermions (Levin and Wen, 2003). Since both gauge bosons and
fermions can emerge as a result of string-net condensation, we may say that string-net
condensation provides a way to unify gauge bosons and fermions.

Generalizing the bosonic SU(N) spin model on a two-dimensional square lattice
(Affleck and Marston, 1988), both gapless deconfined (7(1) gauge bosons and gapless
fermions were found to emerge from a bosonic SU(N) spin model on a three-dimensional
cubic lattice (Wen, 2002a). In 1 + 3 dimensions, the two kinds of gapless excitations can be
separated because they interact weakly at low energies. The (7(1) gauge bosons and gap-
less fermions behave in every way like photons and electrons. Thus, the bosonic SU(N)
spin model not only contains artificial light, but it also contains artificial electrons.

After about one hundred years of gauge theory and Fermi statistics, we are now facing
the following questions. What is the origin of the gauge field—geometrical or dynamical?
What is the origin of Fermi statistics—given or emergent? In this book, we favor the dynam-
ical and emergent origin of gauge bosons and fermions. The gauge bosons and the Fermi
statistics may just be collective phenomena of quantum many-boson systems, and nothing
more.
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Fermi liquid theory, 203
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fermion propagator, 153
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fractional quantum Hall state, 287, 338
fractional statistics, 278, 372

in FQH state, 289
friction (quantum theory), 58

gap equation, 235, 237, 241



INDEX 503

gauge 'symmetry', 250
gauge 'symmetry' breaking, 250
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path integral, 17
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