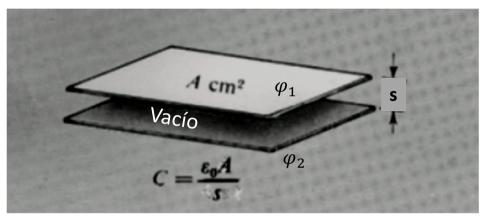


Física 2 para ciencias químicas a distancia FCEN – UBA - 1 Cuatrimestre 2020

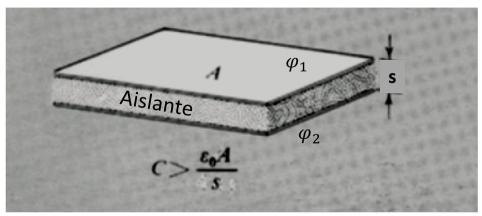
Dieléctricos

Experiencia con condensadores en vacío y con dieléctricos

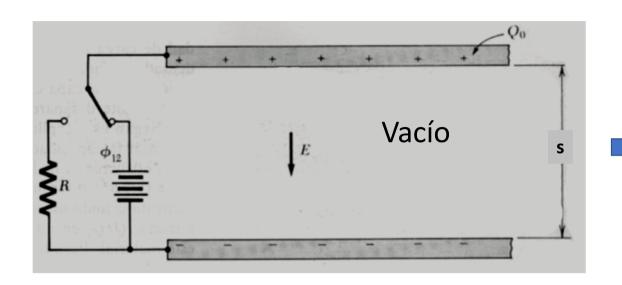


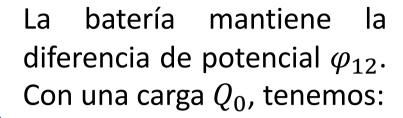
• En el vacío: dos conductores aislados uno del otro. Para uno plano:

$$C = \frac{Q}{\varphi_1 - \varphi_2} = \frac{\epsilon_0 A}{S}$$



- Cuando metemos un material aislante entre las placas, manteniendo la diferencia de potencial, tenemos una capacidad mayor.
- Esto se debe a una mayor cantidad de carga en las placas.

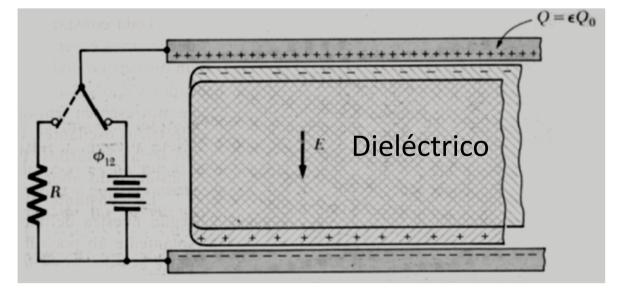




$$Q_0 = C_0 \varphi_{12}$$

El campo eléctrico desplaza en el aislante las cargas positivas hacia abajo y las negativas hacia arriba. Capas no compensadas se ubican junto a las placas. En las placas hay ahora una carga mayor

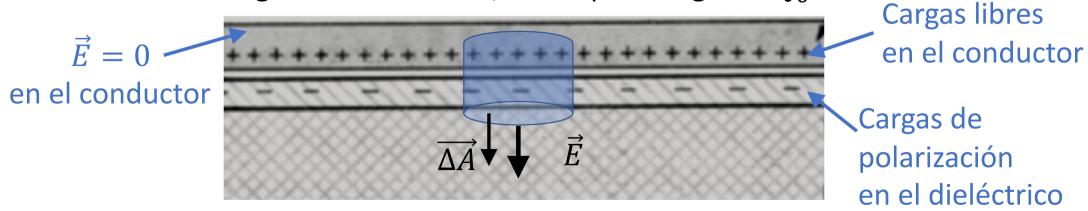
$$Q = \kappa Q_0 \quad \kappa > 1$$



Cargas libres y de polarización

- En el vacío, el campo es $E = \frac{\varphi_{12}}{s}$
- Cuando metemos el dieléctrico, en todo el espacio, la diferencia de potencial es la misma (por acción de la batería) y la distancia es la misma con lo cual *E* no cambia.

• Esto quiere decir que la carga en el conductor Q, más la carga en el borde contiguo del dieléctrico, tiene que ser igual a Q_0 .



Cargas libres y de polarización

• Entonces definiendo $\kappa>1$ tal que $Q=\kappa Q_0$, la carga en el borde contíguo del dieléctrico es

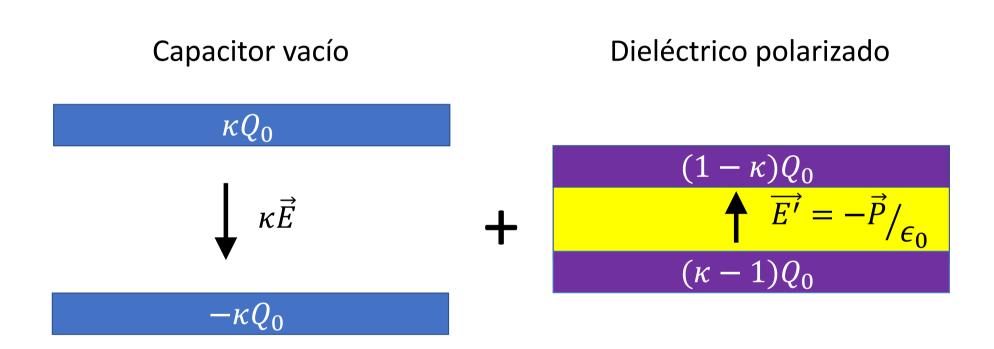
$$Q' = -(\kappa Q_0 - Q_0) = (1 - \kappa)Q_0$$

- κ es la constante dieléctrica
 - Adimensional
 - Normalmente > 1

Tabla 10.1 Constantes dieléctricas de varias substancias

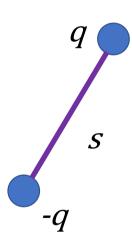
Substancia	Condiciones	Constante dieléctrica
Aire	Gas, 0° C, 1 atm	1,00059
Metano	Gas, 0° C, 1 atm	1,00088
Ácido clorhídrico, HCl	Gas, 0° C, 1 atm	1,0046
Agua H ₂ O	Gas, 110° C, 1 atm	1,0126
	Líquido, 20° C	80
Benceno, C ₆ H ₆	Líquido, 20° C	2,28
Metanol CH ₃ OH	Liquido, 20° C	33,6
Amoníaco, NH ₃	Líquido, — 34° C	22
Aceite de transformador	Líquido, 20° C	2,24
Cloruro sódico, NaCl	Cristal, 20° C	6,12
Azufre, S	Sólido, 20° C	4,0
Silicio, Si	Sólido, 20° C	11.7
Polietileno	Sólido, 20° C	2,25-2 3
Porcelana	Sólido, 20° C	6,0-8,0
Cera de parafina	Sólido, 20° C	2,1-2,5
Vidrio pyrex 7070	Sólido, 20° C	4,00

Superposición



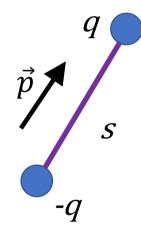
Caso general: \vec{P} es usualmente generado en respuesta a \vec{E}

 Supongamos un dipolo de dos cargas opuestas de módulo q separadas por una varilla rígida no conductora de largo s.



 Supongamos un dipolo de dos cargas opuestas de módulo q separadas por una varilla rígida no conductora de largo s.

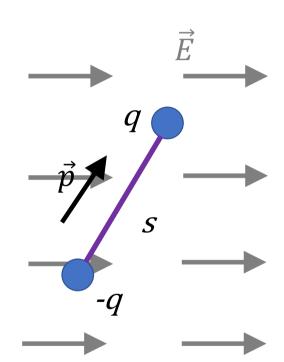
• El momento dipolar es simplemente $\vec{p}=qs~\hat{p}$.



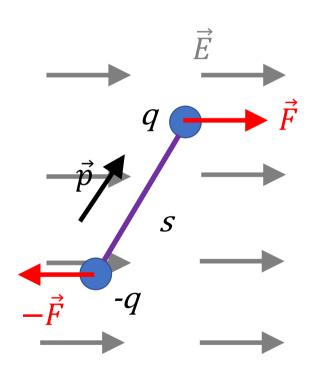
 Supongamos un dipolo de dos cargas opuestas de módulo q separadas por una varilla rígida no conductora de largo s.

• El momento dipolar es simplemente $\vec{p}=qs~\hat{p}$.

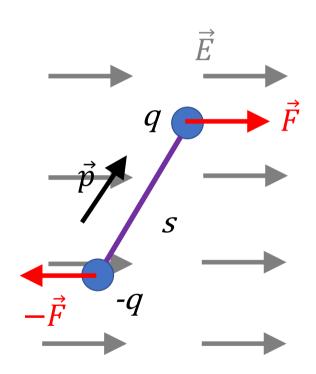
• Nos interesa saber qué pasa cuando el dipolo se encuentra en un **campo unifome** \overrightarrow{E} (no nos interesa el campo del dipolo).



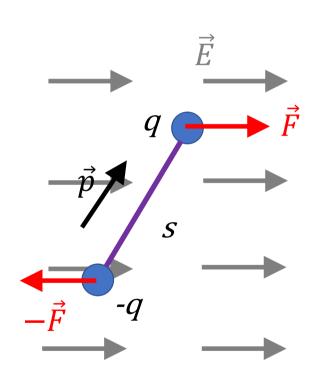
• Las cargas del dipolo sentirán fuerzas opuestas de módulo F=qE



- Las cargas del dipolo sentirán fuerzas opuestas de módulo F=qE
- La fuerza resultante será nula, con lo cual el dipolo entero no se va a acelerar.

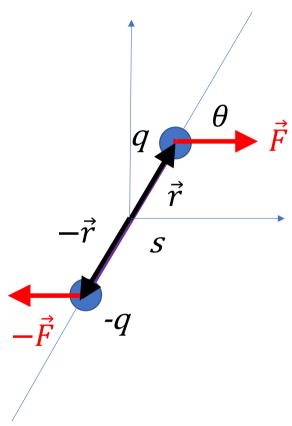


- Las cargas del dipolo sentirán fuerzas opuestas de módulo F=qE
- La fuerza resultante será nula, con lo cual el dipolo entero no se va a acelerar.
- Sin embargo, si el dipolo no está alineado con el campo habrá un torque



• El torque es

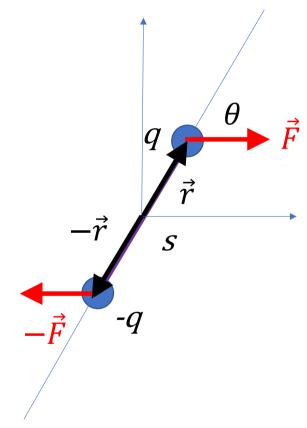
$$\vec{N} = \vec{r} \times \vec{F} + (-\vec{r} \times (-\vec{F})) = 2 \vec{r} \times \vec{F}$$



• El torque es

$$\vec{N} = \vec{r} \times \vec{F} + (-\vec{r} \times (-\vec{F})) = 2 \vec{r} \times \vec{F}$$

• Como $|\vec{r}| = \frac{s}{2}$, \vec{N} apunta hacia adentro de la pantalla y tiene módulo $|\vec{N}| = sqE \, |\sin \theta|$.

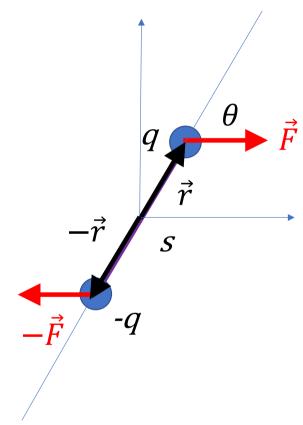


• El torque es

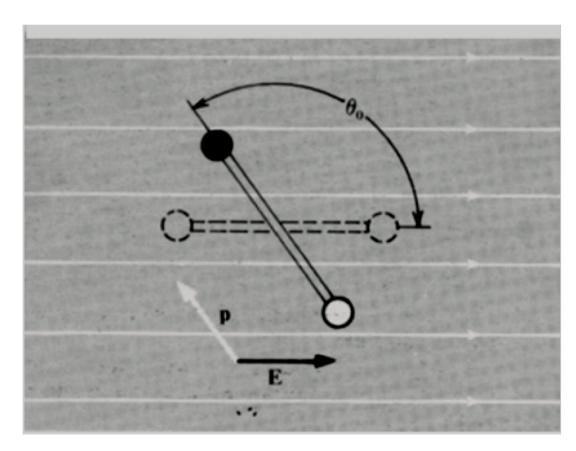
$$\vec{N} = \vec{r} \times \vec{F} + (-\vec{r} \times (-\vec{F})) = 2 \vec{r} \times \vec{F}$$

- Como $|\vec{r}| = \frac{s}{2}$, \vec{N} apunta hacia afuera de la pantalla y tiene módulo $|\vec{N}| = sqE |\sin \theta|$.
- Pero eso simplemente es

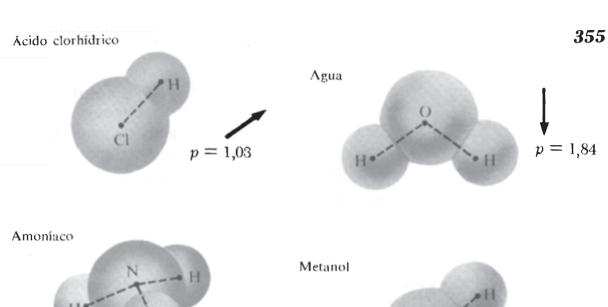
$$\vec{N} = \vec{p} \times \vec{E}$$

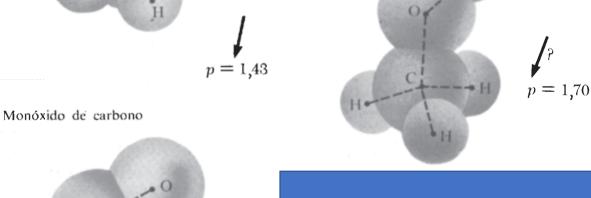


Esto quiere decir que un dipolo en medio de un campo eléctrico uniforme va a tender a alinearse con él a fin de adoptar la configuración de mínima energía



Algunos Dipolos moleculares permanentes



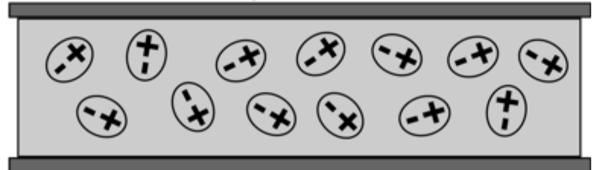


p = 0.10

Valores de p en Debyes (D) $1D = 3,33564 \times 10^{-30} C m$

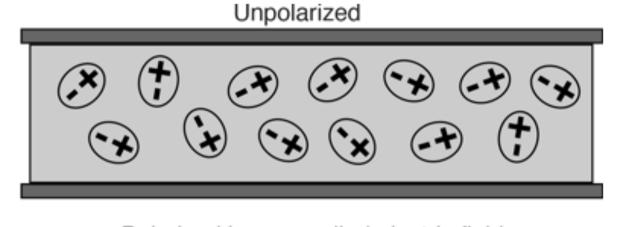
Descanso

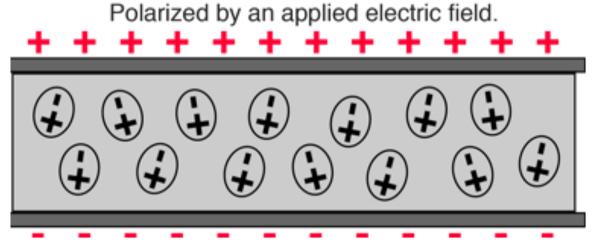
Moléculas dipolares orientadas desordenadamente



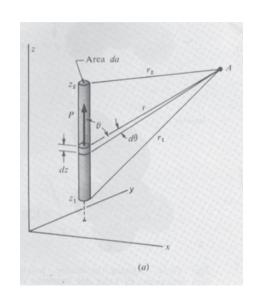
Moléculas dipolares orientadas desordenadamente

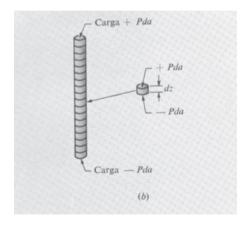
La presencia de un campo uniforme orienta los dipolos



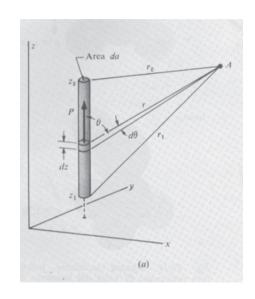


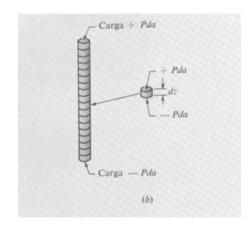
• Supongamos un bloque de materia que reuna un grán número de moléculas de momentos dipolares \vec{p}



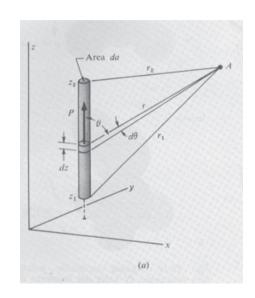


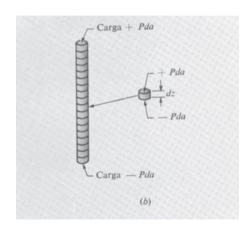
- Supongamos un bloque de materia que reuna un grán número de moléculas de momentos dipolares individuales permanentes \vec{p}
- Supongamos que están todas polarizadas en la misma dirección.



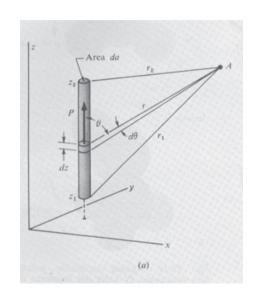


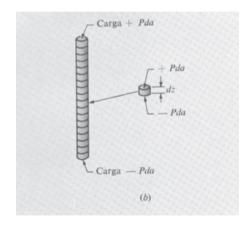
- Supongamos un bloque de materia que reuna un grán número de moléculas de momentos dipolares \vec{p}
- Supongamos que están todas polarizadas en la misma dirección.
- Supongamos un número muy grande N de dipolos por unidad de volumen



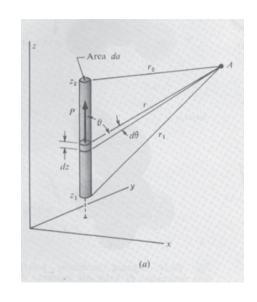


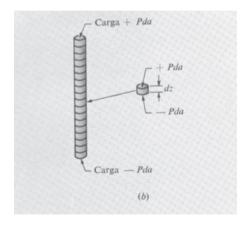
• Supongamos N tan grande como para que aún haya muchos dipolos en un diferencial de volumen dv macroscópico



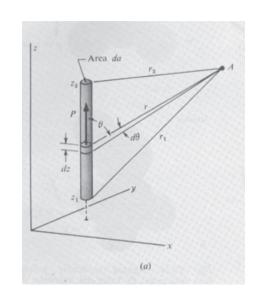


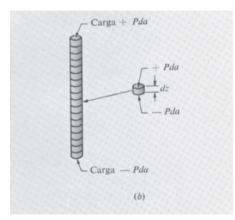
- Supongamos N tan grande como para que aún haya muchos dipolos en un diferencial de volumen dv macroscópico
- En tal volumen la intensidad del momento dipolar es $\vec{p}N\ dv$



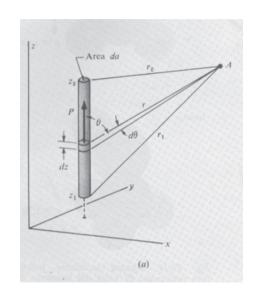


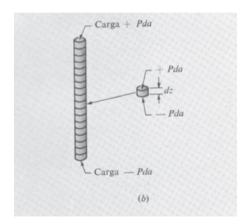
- Supongamos N tan grande como para que aún haya muchos dipolos en un diferencial de volumen dv macroscópico
- En tal volumen la intensidad del momento dipolar es $\vec{p}N\ dv$
- En cualquier punto lejano respecto al tamaño de dv , el campo electrostático puede aproximarse por el campo de un solo dipolo de intensidad $\vec{p}N\ dv$





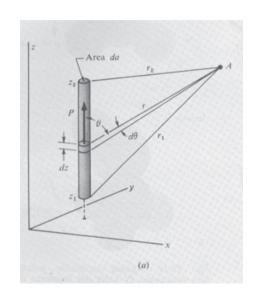
• Definamos la densidad dipolar como $\vec{P} = \vec{p}N$.

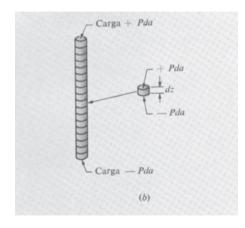




- Definamos la densidad dipolar como $\vec{P} = \vec{p}N$.
- Entonces el momento dipolar del elemento de volumen dv será:

 $\vec{P}dv$



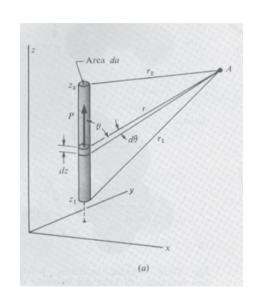


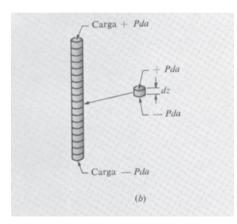
- Definamos la densidad dipolar como $\vec{P} = \vec{p}N$.
- Entonces el momento dipolar del elemento de volumen dv será:

$$\vec{P}dv$$

• En una columna delgada a lo largo de \vec{P} de sección da y altura dz:

$$dv = da dz$$

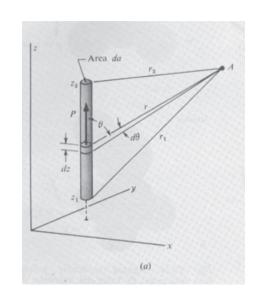


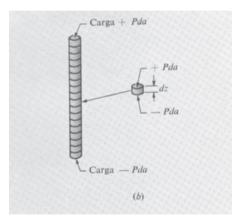


• La contribución de $\vec{P}dv$ al potencial en el punto A, lejos de la columna (a una distancia r y una dirección θ) es:

$$d\varphi_A = \frac{P \ da \ dz \ \cos \theta}{4\pi\epsilon_0 r^2}$$

$$\varphi_A = \frac{1}{4\pi\varepsilon_0} P da \int_{z_1}^{z_2} \frac{dz \cos \theta}{r^2}$$

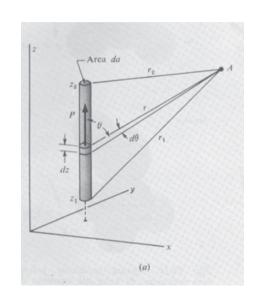


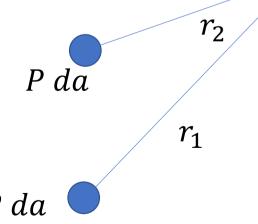


• Reemplazando $dr = dz \cos \theta$

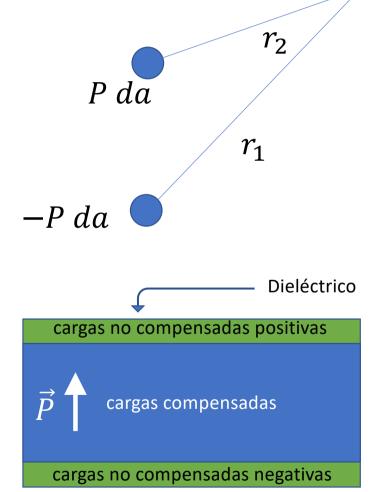
$$\varphi_A = \frac{P \ da}{4\pi\varepsilon_0} \left(\frac{1}{r_2} - \frac{1}{r_1} \right)$$

• Es como el potencial de dos cargas puntuales, una positiva con carga P da en la parte superior de la columna, y otra negativa -P da en la base.





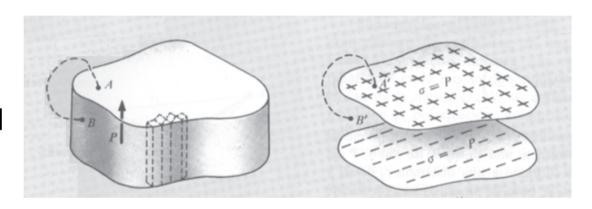
- Esto dice que la concatenación de bloques verticales hace que en las juntas en cada par de bloques las cargas positivas y negativas se compensen.
- Sin embargo las cargas en el extremo superior y en la base de la columna no son compensadas.
- Esto extendido a un bloque compuesto por muchas columnas da una capa de cargas de un signo en un extremo y de signo opuesto en la otra



- Lo anterior implica que en una de las tapas aparece una densidad superficial de carga $\sigma = P$ y en la otra una densidad opuesta $\sigma = -P$.
- Se puede demostrar que el campo eléctrico debido a la polarización del material será:

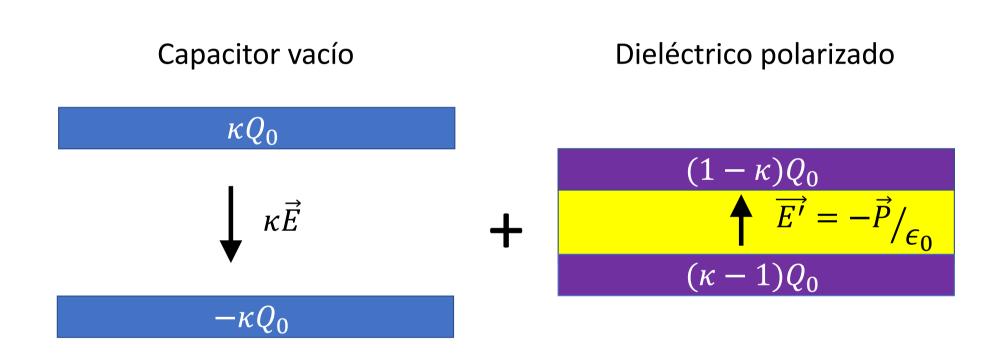
$$-ec{P}/_{m{\epsilon}_0}$$

• Atención: Es antiparalelo a \vec{P}

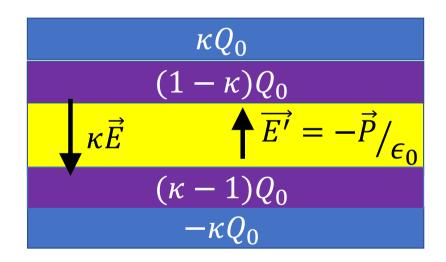


$$\vec{P} \downarrow \qquad \uparrow \vec{E'} = -\vec{P}/\epsilon_0$$

Planteo del problema por superposición



Planteo del problema por superposición



El campo real entre las placas es
$$\vec{E} = \kappa \vec{E} - \frac{\vec{P}}{\epsilon_0}$$

Susceptibilidad eléctrica

• La ecuación anterior (unidimensional) puede reescribirse como:

$$\frac{P}{\epsilon_0 E} = (\kappa - 1) = \chi_e$$
 (P es proporcional al campo total)

- χ_e es la susceptibilidad eléctrica del material.
- Como dijimos antes, la respuesta de la gran mayoría de los dieléctricos es lineal respecto al campo externo y que si este último desaparece, también desaparece la polarización.