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I. INTRODUCTION
It gives me great pleasure to have the opportunity to join my colleagues John
Bardeen and Leon Cooper in discussing with you the theory of superconduct-
ivity. Since the discovery of superconductivity by H. Kamerlingh Onnes in
1911, an enormous effort has been devoted by a spectrum of outstanding scien-
tists to understanding this phenomenon. As in most developments in our branch
of science, the accomplishments honored by this Nobel prize were made
possible by a large number of developments preceding them. A general under-
standing of these developments is important as a backdrop for our own contri-
bution.

On December 11, 1913, Kamerlingh Onnes discussed in his Nobel lecture ( 1)
his striking discovery that on cooling mercury to near the absolute zero of tem-
perature, the electrical resistance became vanishingly small, but this dis-
appearance “did not take place gradually but abruptly.” His Fig. 17 is re-
produced as Fig. 1. He said, “Thus, mercury at 4.2 K has entered a new state

0 . 0 0 2

0.0015

0.0010

0.0005

Pig. 1



98 Physics 1972

which owing to its particular electrical properties can be called the state of
superconductivity.” He found this state could be destroyed by applying a
sufficiently strong magnetic field, now called the critical field Hc. In April -
June, 1914, Onnes discovered that a current, once induced in a closed loop of
superconducting wire, persists for long periods without decay, as he later graphi-
cally demonstrated by carrying a loop of superconducting wire containing a
persistent current from Leiden to Cambridge.

In 1933, W. Meissner and R. Ochsenfeld (2) discovered that a superconductor
is a perfect diamagnet as well as a perfect conductor. The magnetic field van-
ishes in the interior of a bulk specimen, even when cooled down below the
transition temperature in the presence of a magnetic field. The diamagnetic
currents which flow in a thin penetration layer near the surface of a simply
connected body to shield the interior from an externally applied field are stable
rather than metastable. On the other hand, persistent currents flowing in a
multiply connected body, e.g., a loop, are metastable.

An important advance in the understanding of superconductivity occurred
in 1934, when C. J. Gorter and H. B. G. Casimir (3) advanced a two fluid
model to account for the observed second order phase transition at T c and
other thermodynamic properties. T hey proposed that the total density of
electrons Q could be divided into two components

(1)

where a fraction es/en of the electrons can be viewed as being condensed into a
“superfluid,” which is primarily responsible for the remarkable properties of
superconductors, while the remaining electrons form an interpenetrating
fluid of “normal” electrons. The fraction es/en grows steadily from zero at Tc

to unity at 7 = 0, where “all of the electrons” are in the superfluid condensate.
A second important theoretical advance came in the following year, when

Fritz and Hans London set down their phenomenological theory of the electro-
magnetic properties of superconductors, in which the diamagnetic rather than
electric aspects are assumed to be basic. They proposed that the electrical
current density js carried by the superfluid is related to the magnetic vector
potential A at each point in space by

(2)

where A is a constant dependent on the material in question, which for a free
electron gas model is given by ∆  = m/ese2,  m and e  being the electronic mass
and charge, respectively. A is to be chosen such that v . A = 0 to ensure cur-
rent conservation. From (2) it follows that a magnetic field is excluded from a
superconductor except within a distance

which is of order 10-6 cm in typical superconductors for T well below T c.
Observed values of λ are generally several times the London value.

In the same year (1935) Fritz London (4) suggested how the diamagnetic
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property (2) might follow from quantum mechanics, if there was a “rigidity”
or stiffness of the wavefunction ψ of the superconducting state such that ψ was
essentially unchanged by the presence of an externally applied magnetic field.
This concept is basic to much of the theoretical development since that time,
in that it sets the stage for the gap in the excitation spectrum of a supercon-
ductor which separates the energy of superfluid electrons from the energy of
electrons in the normal fluid. As Leon Cooper will discuss, this gap plays a
central role in the properties of superconductors.

In his book published in 1950, F. London extended his theoretical conjec-
tures by suggesting that a superconductor is a “quantum structure on a macro-
scopic scale [which is a] kind of solidification or condensation of the average
momentum distribution” of the electrons. This momentum space condensation
locks the average momentum of each electron to a common value which ex-
tends over appreciable distance in space. A specific type of condensation in
momentum space is central to the work Bardeen, Cooper and I did together.
It is a great tribute to the insight of the early workers in this field that many
of the important general concepts were correctly conceived before the micro-
scopic theory was developed. Their insight was of significant aid in our own
work.

The phenomenological London theory was extended in 1950 by Ginzburg
and Landau (5) to include a spatial variation of es. They suggested that
es/e  be written in terms of a phenomenological condensate wavefunction y(r)

as edr)/e  = JY(~)(~ and that the free energy difference dF between the
superconducting and normal states at temperature T be given by

where i, m, a and b are phenomenological constants, with a( ir,)  = 0.
They applied this approach to the calculation of boundary energies between

normal and superconducting phases and to other problems.
As John Bardeen will discuss, a significant step in understanding which forces

cause the condensation into the superfluid came with the experimental discov-
ery of the isotope effect by E. Maxwell and, independently, by Reynolds, et al.
(6). Their work indicated that superconductivity arises from the interaction
of electrons with lattice vibrations, or phonons. Quite independently, Herbert
Fröhlich (7) developed a theory based on electron-phonon interactions which
yielded the isotope effect but failed to predict other superconducting properties.
A somewhat similar approach by Bardeen (8) stimulated by the isotope effect
experiments also ran into difficulties. N. Bohr, W. Heisenberg and other
distinguished theorists had continuing interest in the general problem, but met
with similar difficulties.

An important concept was introduced by A. B. Pippard (9) in 1953. On the
basis of a broad range of experimental facts he concluded that a coherence
length 5 is associated with the superconducting state such that a perturbation
of the superconductor at a point necessarily influences the superfluid within a
distance E of that point. For pure metals, 5 N 10~~ cm. for T < Tc. He gener-
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alized the London equation (3) to a non-local form and accounted for the
fact that the experimental value of the penetration depth is several times
larger than the London value. Subsequently, Bardeen (10) showed that
Pippard’s non-local relation would likely follow from an energy gap model.

A major problem in constructing a first principles theory was the fact that
the physically important condensation energy ∆ F amounts typically to only
10-8 electron volts (e.V.) per electron, while the uncertainty in calculating
the total energy of the electron-phonon system in even the normal state
amounted to of order 1 e.V. per electron. Clearly, one had to isolate those
correlations peculiar to the superconducting phase and treat them accurately,
the remaining large effects presumably being the same in the two phases and
therefore cancelling. Landau’s theory of a Fermi liquid (11), developed to
account for the properties of liquid He 3

, formed a good starting point for such a
scheme. Landau argued that as long as the interactions between the particles
(He 3 atoms in his case, electrons in our case) do not lead to discontinuous
changes in the microscopic properties of the system, a “quasi-particle” de-
scription of the low energy excitations is legitimate; that is, excitations of the
fully interacting normal phase are in one-to-one correspondence with the
excitations of a non-interacting fermi gas. The effective mass m  and the Fermi
velocity UF of the quasi-particles differ from their free electron values, but aside
from a weak decay rate which vanishes for states at the Fermi surface there is
no essential change. It is the residual interaction between the quasi-particles
which is responsible for the special correlations characterizing superconductivi-
ty. The ground state wavefunction of the superconductor y0 is then represented
by a particular superposition of these normal state configurations, 0%.

A clue to the nature of the states @‘n  entering strongly in y0 is given by com-
bining Pippard’s coherence length 6 with Heisenberg’s uncertainty principle

(4)
where pF is the Fermi momentum. Thus, luO is made up of states with quasi-
particles (electrons) being excited above the normal ground state by a
momentum of order op. Since electrons can only be excited to states which are
initially empty, it is plausible that only electronic states within a momentum
1 0-4 p  F of the Fermi surface are involved significantly in the condensation,
i.e., about 10-4 of the electrons are significantly affected. This view fits nicely
with the fact that the condensation energy is observed to be of order 10 -4.
kBT c. Thus, electrons within an energy ~ upA@ ‘V kTc of the Fermi surface
have their energies lowered by of order kTc in the condensation. In summary,
the problem was how to account for the phase transition in which a condensa-
tion of electrons occurs in momentum space for electrons very near the Fermi
surface. A proper theory should automatically account for the perfect conduc-
tivity and diamagnetism, as well as for the energy gap in the excitation
spectrum.

II. THE PAIRING CO N C E P T

In 1955, stimulated by writing a review article on the status of the theory
of superconductivity, John Bardeen decided to renew the attack on the problem.
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He invited Leon Cooper, whose background was in elementary particle physics
and who was at that time working with C. N. Yang at the Institute for Advanced
Study to join in the effort starting in the fall of 1955. I had the good fortune
to be a graduate student of Bardeen at that time, and, having finished my
graduate preliminary work, I was delighted to accept an invitation to join them.

We focused on trying to understand how to construct a ground state !f’,,
formed as a coherent superposition of normal state configurations Qn,

(5)

such that the energy would be as low as possible. Since the energy is given in
terms of the Hamiltonian H by

(6)

we attempted to make E0, minimum by restricting the coefficients uB so that only
states which gave negative off-diagonal matrix elements would enter (6). In
this case all terms would add in phase and E0 would be low.

By studying the eigenvalue spectrum of a class of matrices with off-diagonal
elements all of one sign (negative), Cooper discovered that frequently a single
eigenvalue is split off from the bottom of the spectrum. He worked out the
problem of two electrons interacting via an attractive potential-V above a
quiescent Fermi sea, i.e., the electrons in the sea were not influenced by V and
the extra pair was restricted to states within an energy &0D above the Fermi
surface, as illustrated in Fig. 2. As a consequence of the non-zero density of
quasi-particle states N(O) at the Fermi surface, he found the energy eigenvalue
spectrum for two electrons having zero total momentum had a bound state
split off from the continuum of scattering states, the binding energy being

if the matrix elements of the potential are constant equal to V in the region of
interaction. This important result, published in 1956 (12), showed that, re-
gardless of how weak the residual interaction between quasi-particles is, if the
interaction is attractive the system is unstable with respect to the formation of
bound pairs of electrons. Further, if E B is taken to be of order kBTc,  the un-
certainty principle shows the average separation between electrons in the bound
state is of order 10-4 cm.

While Cooper’s result was highly suggestive, a major problem arose. If,
as we discussed above, a fraction 10-4 of the electrons is significantly involved
in the condensation, the average spacing between these condensed electrons
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is roughly 10-6 cm. Therefore, within the volume occupied by the bound state
of a given pair, the centers of approximately ( 10 -4/ 10 -6) 3 zz 10 6 other pairs will
be found, on the average. Thus, rather than a picture of a dilute gas of strongly
bound pairs, quite the opposite picture is true. The pairs overlap so strongly
in space that the mechanism of condensation would appear to be destroyed
due to the numerous pair-pair collisions interrupting the binding process of
a given pair.

Returning to the variational approach, we noted that the matrix elements
(Qnt,  H&) in (6) alternate randomly in sign as one randomly varies n and n1

over the normal state configurations. Clearly this cannot be corrected to obtain
a low value of E 0, by adjusting the sign of the an‘s since there are N2 matrix
elements to be corrected with only N parameters an. We noticed that if the
sum in (6) is restricted to include only configurations in which, if any quasi-
particle state, say k, s, is occupied (s = T or i is the spin index), its “mate”
state k, s is also occupied, then the matrix elements of H between such states
would have a unique sign and a coherent lowering of the energy would be
obtained. This correlated occupancy of pairs of states in momentum space is
consonant with London’s concept of a condensation in momentum.

In choosing the state i, 2 to be paired with a given state k, s, it is important
to note that in a perfect crystal lattice, the interaction between quasi-particles
conserves total (crystal) momentum. Thus, as a given pair of quasi-particles
interact, their center of mass momentum is conserved. To obtain the largest
number of non-zero matrix elements, and hence the lowest energy, one must
choose the total momentum of each pair to be the same, that is

(8)
States with q # 0 represent states with net current flow. The lowest energy

state is for q = 0, that is, the pairing is such that if any state kT is occupied in
an admissible @n,  so is--kL occupied. The choice of 1T spin pairing is not
restrictive since it encompasses triplet and singlet paired states.

Through this reasoning, the problem was reduced to finding the ground state
of the reduced Hamiltonian

(9)

The first term in this equation gives the unperturbed energy of the quasi-
particles forming the pairs, while the second term is the pairing interaction
in which a pair of quasi-particles in (kT, -ki) scatter to (k”/, -k’T).  The
operators b; = c,+; c-k;, being a product of two fermion (quasi-particle)
creation operators, do not satisfy Bose statistics, since b k

+2 = 0. This point is
essential to the theory and leads to the energy gap being present not only for
dissociating a pair but also for making a pair move with a total momentum
different from the common momentum of the rest of the pairs. It is this feature
which enforces long range order in the superfluid over macroscopic distances.

III. THE GROUND ST A T E

In constructing the ground state wavefunction, it seemed clear that the average
occupancy of a pair state (kT, -kl) should b e unity for k far below the Fermi



J.R. Schrieffer 103

surface and 0 for k far above it, the fall off occurring symmetrically about kF
over a range of momenta of order

One could not use a trial Y,, as one in which each pair state is definitely oc-
cupied or definitely empty since the pairs could not scatter and lower the
energy in this case. Rather there had to be an amplitude, say Uk,  that (kT,
-ki) is occupied in Y0 and consequently an amplitude uk = Al -r,,k2  that the

pair state is empty. After we had made a number of unsuccessful attempts
to construct a wavefunction sufficiently simple to allow calculations to be
carried out, it occurred to me that since an enormous number ( N 10le)  of pair
states (k’T,  -k’L) are involved in scattering into and out of a given pair state
(kT, -kL),  the “instantaneous” occupancy of this pair state should be essen-
tially uncorrelated with the occupancy of the other pair states at that “instant”.
Rather, only the average occupancies of these pair states are related.

On this basis, I wrote down the trial ground state as a product of operators
- one for each pair state-acting on the vacuum (state of no electrons),

with respect to l’k,  I found that vk was given by

1
where

(12)

and the parameter dk satisfied what is now called the energy gap equation:

From this expression, it followed that for the simple model
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and the condensation energy at zero temperature is

(15)

The idea occurred to me while I was in New York at the end of January,
1957, and I returned to Urbana a few days later where John Bardeen quickly
recognized what he believed to be the essential validity of the scheme, much to
my pleasure and amazement. Leon Cooper will pick up the story from here to
describe our excitement in the weeks that followed, and our pleasure in un-
folding the properties of the excited states.

IV.  QUANTUM PHENOMENA ON A MACROSCOPIC SC A L E

Superconductors are remarkable in that they exhibit quantum effects on a
broad range of scales. The persistence of current flow in a loop of wire many
meters in diameter illustrates that the pairing condensation makes the super-
fluid wavefunction coherent over macroscopic distances. On the other hand,
the absorption of short wavelength sound and light by a superconductor is
sharply reduced from the normal state value, as Leon Cooper will discuss.
I will concentrate on the large scale quantum effects here.

The stability of persistent currents is best understood by considering a cir-
cular loop of superconducting wire as shown in Fig. 3. For an ideal small
diameter wire, one would use the eigenstates et@, (m = 0, ± 1, ± 2, . . .), of the
angular momentum L z about the symmetry axis to form the pairing. In the
ground state no net current flows and one pairs mT with -ml, instead of kT
with -kL as in a bulk superconductor. In both cases, the paired states are
time reversed conjugates, a general feature of the ground state. In a current
carrying state, one pairs (m+~)‘/ w i t h  (-m+~)l, (v = 0, ±1, ±2 . . .), so
that the total angular momentum of each pair is identical, 2h Y. It is this com-
monality of the center of mass angular momentum of each pair which preserves
the condensation energy and long range order even in states with current flow.
Another set of flow states which interweave with these states is formed by
pairing (m+y)T w i t h  (-m+v+l)l,  (Y = O,&l,f2  . . .), w i t h  t h e  p a i r
angular momentum being (2+-1)fi.  The totality of states forms a set with all
integer multiples n of ti for allowed total angular momentum of pairs. Thus,
even though the pairs greatly overlap in space, the system exhibits quantiza-
tion effects as if the pairs were well defined.

There are two important consequences of the above discussion. First, the
fact that the coherent condensate continues to exist in flow states shows that
to scatter a pair out of the (rotating) condensate requires an increase of energy.



Crudely speaking, slowing down a given pair requires it ot give up its binding
energy and hence this process will occur only as a fluctuation. These fluctua-
tions average out to zero. The only way in which the flow can stop is if all pairs
simultaneously change their pairing condition from, say, v to v - 1. In this
process the system must fluctate to the normal state, at least in a section of the
wire, in order to change the pairing. This requires an energy of order the
condensation energy AF. A thermal fluctuation of this size is an exceedingly
rare event and therefore the current persists.

The second striking consequence of the pair angular momentum quantization
is that the magnetic flux @ trapped within the loop is also quantized,

This result follows from the fact that if the wire diameter d is large compared
to the penetration depth λ, the electric current in the center of the wire is
essentially zero, so that the canonical angular momentum of a pair is

(17)

where rpair
is the center of mass coordinate of a pair and A is the magnetic

vector potential. If one integrates Lpair, around the loop along a path in the
center of the wire, the integral is nh, while the integral of the right hand side of

A similar argument was given by F. London (4b) except that he considered
only states in which the superfluid flows as a whole without a change in its
internal structure, i.e., states analogous to the (m+~) T, (--m+v)  i set. He found
0~ = n.hc/e. The pairing (m+v)T, (m+v+l)i  cannot be obtained by adding
v to each state, yet this type of pairing gives an energy as low as the more
conventional flow states and these states enter experimentally on the same basis
as those considered by London. Experiments by Deaver and Fairbank (13),
and independently by Doll and Näbauer (14) confirmed the flux quantization
phenomenon and provided support for the pairing concept by showing that
2e rather than e enters the flux quantum. Following these experiments a clear
discussion of flux quantization in the pairing scheme was given by Beyers and
Yang (15).

The idea that electron pairs were somehow important in superconductivity
has been considered for some time (16, 17). Since the superfluidity of liquid
H e4 is qualitatively accounted for by Bose condensation, and since pairs of
electrons behave in some respects as a boson, the idea is attractive. The
essential point is that while a dilute gas of tightly bound pairs of electrons might
behave like a Bose gas (18) this is not the case when the mean spacing between
pairs is very small compared to the size of a given pair. In this case the inner
structure of the pair, i.e., the fact that it is made of fermions, is essential;
it is this which distinguishes the pairing condensation, with its energy gap for
single pair translation as well as dissociation, from the spectrum of a Bose con-
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densate, in which the low energy exictations are Bose-like rather than Fermi-
like as occurs in acutal superconductors. As London emphasized, the con-
densation is an ordering in occupying momentum space, and not a space-like
condensation of clusters which then undergo Bose condensation.

In 1960, Ivar Giaever (19) carried out pioneering experiments in which elec-
trons in one superconductor (S,) tunneled through a thin oxide layer (~ 20-
30 A) to a second superconductor (S,) as shown in Fig. 4. Giaever’s experi-
ments were dramatic evidence of the energy gap for quasi-particle excitations.
Subsequently, Brian Josephson made a highly significant contribution by
showing theoretically that a superfluid current could flow between S1 and S2

with zero applied bias. Thus, the superfluid wavefunction is coherent not only
in S1 and S 2 separately, but throughout the entire system, S1-0-S2, under
suitable circumstances. While the condensate amplitude is small in the oxide,
it is sufficient to lock the phases of S1 and S2 together, as has been discussed in
detail by Josephson (20) and by P. W. Anderson (21).

To understand the meaning of phase in this context, it is useful to go back
to the ground state wavefunction Y,,, (10). Suppose we write the parameter vk
as lUk[ exp ig, and choose uk to be real. If we expand out the k-product in YO,
we note that the terms containing N pairs will have a phase factor exp (i NV),
that is, each occupied pair state contributes a phase v to Y,,. Let this wavefunc-
tion, say Y,,(l) represent S1, and have phase vl. Similarly, let Y0t2) represent S2

and have phase angle pZ. If we write the state of the combined system as a
product

(18)

then by expanding out the double product we see that the phase of that part of
Y,,(r,*)  which has N1 pairs in S1 and N 2 pairs in S2 is N1 cpl+N,p,,.  For a truly
isolated system, 2(&+N,) = 2N is a fixed number of electrons; however N 1

and N2, are not separately fixed and, as Josephson showed, the energy of the
combined system is minimized when qr = pz due to tunneling of electrons
between the superconductors. Furthermore, if v1 = pZ,  a current flows between
S 1 and S2

(19)
If vl-vZ = p is constant in time, a constant current flows with no voltage

applied across the junction. If a bias voltage is V applied between S 1 and S2,
then, according to quantum mechanics, the phase changes as
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Hence a constant voltage applied across such a junction produces an
alternating current of frequency

These effects predicted by Josephson were observed experimentally in a
series of beautiful experiments (22) by many scientists, which I cannot discuss
in detail here for lack of time. I would mention, as an example, the work of
Langenberg and his collaborators (23) at the University of Pennsylvania on
the precision determination of the fundamental constant e/h using the fre-
quency-voltage relation obeyed by the alternating Josephson supercurrent.
These experiments have decreased the uncertainty in our experimental knowl-
edge of this constant by several orders of magnitude and provide, in combina-
tion with other experiments, the most accurate available value of the Sommerfeld
fine structure constant. They have resulted in the resolution of several dis-
crepancies between theory and experiment in quantum electrodynamics and
in the development of an “atomic” voltage standard which is now being used
by the United States National Bureau of Standards to maintain the U.S. legal
volt.

V .  C O N C L U S I O N

As I have attempted to sketch, the development of the theory of superconduct-
ivity was truly a collaborative effort, involving not only John Bardeen, Leon
Cooper and myself, but also a host of outstanding scientists working over a
period of half a century. As my colleagues will discuss, the theory opened up
the field for many exciting new developments, both scientific and technological,
many of which no doubt lie in the future. I feel highly honored to have played
a role in this work and I deeply appreciate the honor you have bestowed on me
in awarding us the Nobel prize.
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