Full Metal Jacket (1987) es una película de Stanley Kubrick sobre la guerra de Vietnam. La película es famosa por mostrar, con un humor bastante peculiar, el maltrato físico y verbal que sufre un grupo de cadetes por parte del sargento de artillería Hartman. Ronald Lee Ermey, un ex-instructor de la marina y que Kubrick había contratado como asesor técnico, audicionó y se quedó con el papel de Hartman. Muchas de las escenas en las que el sargento insulta a los cadetes, hablando rápido y a los gritos, fueron improvisadas o basadas en las experiencias previas de Lee Ermey como instructor en la marina. Se estima que cerca de la mitad de sus diálogos no estaban en el guión original, y fueron inventados a medida que se filmaba la película.
El título de la película no se refiere a un chaleco antibalas, sino a un tipo de munición. Y no solo las municiones se hacen de metal. Se puede hacer termodinámica con bolas de acero. En teoría cinética de los gases definimos el tensor de presión de un gas a partir del tensor de flujo de momento asociado a las fluctuaciones térmicas. El siguiente video ilustra cómo se relaciona la presión con el momento entregado por los choques de partículas contra las paredes de un recipiente. Y lo hace en forma muy visual, usando bolas de acero (bastante grandes) que se sacuden al azar dentro de un tubo:
Pueden hacer el experimento equivalente (numérico en lugar de en el laboratorio) con el notebook con el modelo del gas ideal de esferas rígidas. Cada vez que una esfera rígida choca contra una pared, la componente normal de la velocidad cambia de signo. Por ejemplo, cuando una partícula con velocidad vx choca contra una pared con normal x, su velocidad cambia a -vx. Y como resultado, el cambio total en el momento lineal de la partícula (en valor absoluto) es -2mvx. Luego, la pared absorve un momento igual a 2mvx.
Usando esto, y contando la cantidad de choques contra una pared, se puede calcular la fuerza que las partículas ejercen sobre la pared como resultado de los choques.
Relacionado con este tema, en clase también vimos cómo el límite macroscópico de la ecuación de Boltzmann nos da las ecuaciones de los fluidos para un gas muy diluido, y cómo el retorno al equilibrio del sistema puede caracterizarse, macroscópicamente, con coeficientes de transporte. La validez del límite hidrodinámico puede verse también en simulaciones numéricas usando pelotitas, y a veces la ecuación de Boltzmann o ecuaciones de dinámica molecular para un número muy grande de partículas se usan para simular la dinámica macroscópica de gases y líquidos. El Colab que usamos nosotros para estudiar un gas ideal usa apenas 400 partículas, pero con tiempo y paciencia pueden hacerse cosas más grandes. Tomemos como ejemplo el caso de una instabilidad macroscópica que ocurre en gases y líquidos cuando existe un gradiente tangencial en el momento del fluido: la intestabilidad de Kelvin-Helmholtz.
La inestabilidad de Kelvin-Helmholtz ocurre cuando dos fluidos (usualmente con densidad diferente) se mueven en dirección contraria. En la superficie que separa los dos fluidos el gradiente de velocidad es muy grande. Esta superficie es inestable frente a pequeñas perturbaciones, y al intestabilizarse se genera un patrón de vórtices conocidos como vórtices de Kármán. La intestabilidad que se desarrolla intenta recobrar una distribución homogénea del momento, y resulta en un mezclado y transporte eficiente entre las dos regiones del fluido. Pueden ver un ejemplo macroscópico en la siguiente foto de unas nubes, noten “las crestas” en el borde superior de las nubes, que resultan en el transporte y mezclado del gas en la parte mas baja con el gas en la parte superior.
Esta misma inestabilidad puede verse en una simulación de dinámica molecular de la mezcla de dos gases usando 9.000.000.000 de partículas (¡comparen este número con las 400 que usamos en clase en el Colab!). Observen cómo se forman las mismas estructuras que en la foto, cómo la mezcla se vuelve cada vez más homogénea como resultado de las colisiones y el transporte, y cómo un flujo macroscópico emerge de la dinámica molecular microscópica:
P.D.: Para todos los que sigan pensando en cómo la flecha del tiempo emerge en sistemas físicos y su relación con la entropía, les dejo el link a este excelente paper publicado en Physical Review X del grupo de investigación en Inglaterra de una graduada del DF, Natalia Ares. El trabajo mide en el laboratorio el costo termodinámico de medir el tiempo, y muestra que cuanto más se intenta mejorar la precisión de un reloj, más aumento de la entropía produce la medición del tiempo. Así, el paper vincula lo que mide un reloj (el tiempo) con el aumento de la entropía.