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The van der Waals (vdW) theory of fluids is the first and simplest theory that takes into account
interactions between the particles of a system that result in a phase transition versus temperature.
Combined with Maxwell’s construction, this mean-field theory predicts the conditions for equilib-
rium coexistence between the gas and liquid phases and the first-order transition between them.
However, important properties of the vdW fluid have not been systematically investigated. Here we
report a comprehensive study of these properties. Ambiguities about the physical interpretation of
the Boyle temperature and the influence of the vdW molecular interactions on the pressure of the
vdW gas are resolved. Thermodynamic variables and properties are formulated in reduced units
that allow all properties to be expressed as laws of corresponding states that apply to all vdW fluids.
Lekner’s parametric solution for the vdW gas-liquid coexistence curve in the pressure-temperature
plane and related thermodynamic properties [Am. J. Phys. 50, 161 (1982)] is explained and sig-
nificantly extended. Hysteresis in the first-order transition temperature on heating and cooling is
examined and the maximum degrees of superheating and supercooling determined. The latent heat
of vaporization and the entropy change on crossing the coexistence curve are investigated. The
temperature dependences of the isothermal compressibility, thermal expansion coefficient and heat
capacity at constant pressure for a range of pressures above, at and below the critical pressure
are systematically studied from numerical calculations including their critical behaviors and their
discontinuities on crossing the coexistence curve. Joule-Thomson expansion of the vdW gas is inves-
tigated in detail and the pressure and temperature conditions for liquifying a vdW gas on passing
through the throttle are determined.

PACS numbers: 64.70.F-, 64.60.De, 82.60.Fa, 05.20.Jj
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I. INTRODUCTION

The van der Waals (vdW) fluid is the first, simplest
and most widely known example of an interacting sys-
tem of particles that exhibits a phase transition, in this
case a first-order transition between liquid and gas (va-
por) phases.1,2 For these reasons the vdW fluid and asso-
ciated phase transition are presented in most thermody-
namics and statistical mechanics courses and textbooks
(see, e.g., Refs. 3–5), where, however, the treatment is
often limited to a discussion of the pressure p versus vol-
ume V isotherms and their interpretation in terms of the
Maxwell construction6 to define the regions of coexis-
tence of gas and liquid. In addition, critical exponents
of several thermodynamic properties on approaching the
critical point termininating the p versus temperature T
liquid-gas coexistence curve are well known in the context
of critical phenomena.7,8 On the other hand, for example,
to our knowledge there have been no systematic stud-
ies of the temperature dependences of thermodynamic
properties of the vdW fluid such as the heat capacity at
constant pressure Cp, the isothermal compressibility κT

or the volume thermal expansion coefficient α, and how
those properties are influenced by proximity to the criti-
cal point or by crossing the liquid-gas coexistence curve

in the p-T plane. Therefore the landscape of thermody-
namic properties of the vdW fluid is unclear.

Here a comprehensive analytical and numerical study
of the van der Waals fluid and its thermodynamic prop-
erties is presented. All thermodynamic properties are
formulated in terms of reduced parameters that result in
many laws of corresponding states, which by definition
are the same for any fluid satisfying the assumptions of
the vdW theory. These formulations allow the discussed
thermodynamic properties to describe all vdW fluids.

The first few Secs. II–VII are short introductory sec-
tions. In Sec. II the nomenclature and definitions of
thermodynamics functions and properties used here are
briefly discussed along with the well-known properties
of the ideal gas for reference. The vdW molecular in-
teraction parameters a and b are discussed in Sec. III
in terms of the Lennard-Jones potential where the ratio
a/b is shown to be a fixed value for a particular vdW
fluid which is determined by the depth of the Lennard-
Jones potential well for that fluid. We only consider
here molecules without internal degrees of freedom. The
Helmholtz free energy F , the critical pressure pc, tem-
perature Tc and volume Vc and critical compressibility
factor Zc are defined in terms of a and b Sec. IV, which
then allows the values of a and b for a particular fluid
to be determined from the measured values of pc and
Tc for the fluid. The entropy S, internal energy U and
heat capacity at constant volume CV for the vdW fluid
are written in terms of a, b, the volume V occupied by
the fluid and the number N of molecules in Sec. V and
the pressure and enthalpy H in Sec. VI. The vdW equa-
tion of state is written in terms of dimensionless reduced
variables in Sec. VII and the definition of laws of corre-
sponding states reviewed.

There has been much discussion and disagreement over
the past century about the influence of the vdW molecu-
lar interaction parameters a and/or b on the pressure of
a vdW gas compared to that of an ideal gas at the same
volume and temperature. This topic is quantitatively dis-
cussed in Sec. VII A where it is shown that the pressure
of a vdW gas can either increase or decrease compared to
that of an ideal gas depending on the volume and temper-
ature of the gas. A related topic is the Boyle temperature
TB at which the “compression factor” Z ≡ pV/(NkBTB)
is the same as for the ideal gas as discussed in Sec. VII B,
where kB is Boltzmann’s constant. It is sometimes stated
that at the Boyle temperature the properties of a gas are
the same as for the ideal gas; we show that this inference
is incorrect for the vdW gas because even at this temper-
ature other thermodynamic properties are not the same
as those of an ideal gas. In Secs. VII C and VIII the ther-
modynamic variables, functions and chemical potential µ
are written in terms of dimensionless reduced variables
that are used in the remainder of the paper. Represen-
tative p-V , T -V and µ-T vdW isotherms are presented
in terms of the reduced parameters, where unstable or
metastable regions are present that are removed when
the equilibrium properties are obtained from them.
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The equilibrium values of the pressure and coexist-
ing liquid and gas volumes are calculated in Sec. IX us-
ing traditional methods such as the Maxwell construc-
tion and the equilibrium p-V , T -V and p-T isotherms
and phase diagrams including gas-liquid coexistence re-
gions are presented. An important advance in calculat-
ing the gas-liquid coexistence curve in the p-T plane and
associated properties was presented by Lekner in 1982,
who formulated a parametric solution in terms of the
entropy difference between the gas and liquid phases.9

Lekner’s results were extended by Berberan-Santos et al.
in 2008.10 In Sec. X Lekner’s results are explained and
further extended for the the full temperature region up
to the critical temperature and the limiting behaviors
of properties associated with the coexistence curve for
T → 0 and T → Tc are also calculated. In the topics
and regions of overlap these results agree with the pre-
vious ones.9,10 In Secs. XC and XD the coexisting liq-
uid and gas densities, the difference between them which
is the order parameter for the gas-liquid phase transi-
tion, the temperature-density phase diagram, and the la-
tent heat and entropy of vaporization utilizing Lekner’s
parametrization are calculated and plotted. Tables of
calculated values of parameters and properties obtained
using both the conventional and Lekner parametrizations
are given in Appendix A. Some qualitatively similar nu-
merical calculations of thermodynamic properties of the
vdW fluid were recently reported in 2013 by Swendsen.11

Critical exponents and amplitudes for the vdW fluid
are calculated in Sec. XI, where their values can depend
on the path of approach to the critical point. We express
the critical amplitudes in terms of the universal reduced
parameters used throughout this paper. The asymptotic
critical behavior for the order parameter is found to be
accurately followed from Tc down to about 0.97Tc. In
Sec. XII hysteresis in the transition temperature on heat-
ing and cooling through the first-order equilibrium liquid-
gas phase transition temperature at constant pressure is
evaluated. Numerical calculations of κT, α and Cp ver-
sus temperature at constant pressure for p > pc, p = pc
and p < pc are presented in Sec. XIII, where the fitted
critical exponents and amplitudes for p = pc are found to
agree with the corresponding behaviors predicted analyt-
ically in Sec. XI. The discontinuities in the calculated κT,
α and Cp on crossing the coexistence curve at constant
pressure with p < pc are also shown to be in agreement
with the analytic predictions in Appendix B that were
derived based on Lekner’s parametric solution to the co-
existence curve.

Cooling the vdW gas by adiabatic free expansion and
cooling and/or liquifying the vdW gas by Joule-Thomson
expansion are discussed in Sec. XIV, where the conditions
for liquification of a vdW gas on passing through a throt-
tle are presented. An analytical equation for the inver-
sion curve associated with the Joule-Thomson expansion
of a vdW fluid is derived and found to be consistent with
that previously reported by Le Vent in 2001.12 A brief
summary of the paper is given in Sec. XV.

II. BACKGROUND AND NOMENCLATURE:
THE IDEAL GAS

An ideal gas is defined as a gas of noninteracting par-
ticles in the classical regime where the number density of
the gas is small.4 In this case one obtains an equation of
state called the ideal gas law

pV = NkBT = Nτ, (1a)

where throughout the paper we use the shorthand

τ ≡ kBT. (1b)

For an ideal gas containing molecules with no internal
degrees of freedom, the Helmholtz free energy is

F (τ, V,N) = −Nτ

{
ln

[
nQV

N

]
+ 1

}
, (2a)

where the “quantum concentration” nQ is given by4

nQ =

(
mτ

2πh̄2

)3/2

, (2b)

m is the mass of a molecule and h̄ is Planck’s constant
divided by 2π. Other authors instead use an expression
containing the “thermal wavelength” λT defined by nQ =

λ−3
T . The entropy S is

S

kB
= −

(
∂F

∂τ

)

V,N

= N

[
ln

(
nQV

N

)
+

5

2

]
. (3)

This equation is known as the Sackur-Tetrode equation.
The internal energy U is

U = F + TS =
3

2
Nτ (4)

and the heat capacity at constant volume CV is

CV = kB

(
∂U

∂τ

)

V,N

=
3

2
NkB. (5)

The enthalpy is

H = U + pV =
5

2
Nτ =

5

2
NkBT. (6)

The isothermal compressibility is

κT = − 1

V

(
∂V

∂p

)

T

=
1

p
, (7)

and the volume thermal expansion coefficient is

α =
1

V

(
∂V

∂T

)

p

=
NkB
pV

=
1

T
. (8)

The heat capacity at constant pressure is

Cp = CV +
TV α2

κT
=

3

2
NkB +

pV

T
=

5

2
NkB. (9)



4

-1

0

1

2

0.0 0.5 1.0 1.5 2.0 2.5 3.0

r / r
0

Lennard-Jones Potential

FIG. 1: (Color online) Lennard-Jones potential energy
φLJ versus the distance r between the centers of adjacent
molecules from Eq. (13). The depth of the potential well
is φmin and the zero of the potential energy is at r = r0.

Alternatively,

Cp =

(
∂H

∂T

)

p

(10)

gives the same result.
The chemical potential is

µ =

(
∂F

∂N

)

τ,V

= τ ln

(
N

nQV

)
= τ ln

(
p

nQτ

)
, (11)

where to obtain the last equality we used the ideal gas
law (1a). The Gibbs free energy written in terms of its
natural variables N, p and T or τ is thus

G(N, p, τ) = Nµ(p, τ), (12a)

where the differential of G is

dG = −S dT + V dp+ µ dN. (12b)

III. van der Waals INTERMOLECULAR
INTERACTION PARAMETERS

Interactions between neutral molecules or atoms with
a center of mass separation r are often approximated by
the so-called Lennard-Jones potential energy φLJ, given
by

φLJ = 4φmin

[(r0
r

)12
−
(r0
r

)6]
, (13)

where the first term is a short-range repulsive interaction
and the second term is a longer-range attractive interac-
tion. A plot of φLJ/φmin versus r/r0 is shown in Fig. 1.
The value r = r0 corresponds to φLJ = 0, and the mini-
mum value of φLJ is φLJ/φmin = −1 at

rmin/r0 = 21/6 ≈ 1.122. (14)

By the definition of potential energy, the force between
a molecule and a neighbor in the radial direction from
the first molecule is Fr = −dφLJ/dr, which is positive
(repulsive) for r < rmin and negative (attractive) for r >
rmin.
In the vdW theory of a fluid (gas and/or liquid) dis-

cussed in this paper, one ignores possible internal degrees
of freedom of the molecules and assumes that the in-
teratomic distance between molecules cannot be smaller
than a molecular diameter, a situation called a “hard-core
repulsion” where two molecules cannot overlap. There-
fore the minimum intermolecular distance from center to
center is equal to the diameter d of one molecule. In
terms of the Lennard-Jones potential, we set

d = rmin, (15)

rather than d = r0, because the Lennard-Jones inter-
action between two molecules is repulsive out to a sep-
aration of rmin as shown in Fig. 1. In the vdW theory,
the volume of a molecule (“excluded volume”) is denoted
by the variable b, so the free volume available for the
molecules to move in is V −Nb. Thus in the free energy
of the ideal gas in Eq. (2a) one makes the substitution

V → V −Nb. (16)

In terms of the Lennard-Jones potential, we set

b ≡ d3 = r3min =
√
2 r30 , (17)

where d = rmin is a measure of the hard-core diameter of
a molecule and we have used Eq. (14).
For r > d the force between the gas molecules is as-

sumed to be attractive, and the strength of the attraction
depends on the distance between the molecules. In terms
of the Lennard-Jones potential this occurs for r > rmin

according to Eq. (13) and Fig. 1. One takes into account
this attractive part of the interaction in an average way
as follows, which is a “mean-field” approximation where
one ignores local fluctuations in the number density of
molecules and short range correlations between their po-
sitions. The number density of molecules is N/V . The
number dN of molecules that are at a distance between r
and r+ dr from the central molecule is dN = (N/V )dV ,
where an increment of volume a distance r from the cen-
ter of the central molecule is dV = 4πr2dr. Thus the
total average attractive potential energy summed over
these molecules, φave, is

φave =

(
N

V

)
1

2

∫ ∞

rmin

φ(r)dV =

(
N

V

)
4π

2

∫ ∞

rmin

φ(r)r2dr,

(18)
where the prefactor of 1/2 arises because the potential
energy of interaction between a molecule and a neigh-
boring molecule is shared equally between them. In the
van der Waals theory, one writes the average potential
energy per molecule as

φave = −
(
N

V

)
a (19)
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where the parameter a ≥ 0 is an average value of the
potential energy per unit concentration, given here using
Eq. (18) by

a = −2π

∫ ∞

rmin

φ(r)r2dr. (20)

One can obtain an expression for a in terms of the
Lennard-Jones potential. Substituting the Lennard-
Jones potential in Eq. (13) into (20), one has

a = −8πφmin

∫ ∞

rmin

[(r0
r

)12
−
(r0
r

)6]
r2dr. (21)

Changing variables to x = r/r0 and using Eq. (14) gives

a = −8πφminr
3
0

∫ ∞

21/6

(
1

x10
− 1

x4

)
dx. (22)

The integral is −5/(18
√
2), yielding

a =
20πr30φmin

9
√
2

. (23)

From Eqs. (17) and (23), a and b per molecule are related
to each other according to

a

b
=

5πφmin

9
. (24)

This illustrates the important feature that the ratio a/b
for a given van der Waals fluid is a fixed value that de-
pends on the intermolecular potential function.

IV. HELMHOLTZ FREE ENERGY AND
CRITICAL PARAMETERS IN TERMS OF THE
van der Waals INTERACTION PARAMETERS

The change in the internal energy due to the attrac-
tive part of the intermolecular interaction is the potential
energy Nφave and from Eq. (19) one obtains

∆U = Nφave = −N2a

V
. (25)

When one smoothly turns on interactions in a thought
experiment, effectively one is doing work on the system
and this does not transfer thermal energy. Therefore the
potential energy represented by the parameter a intro-
duces no entropy change and hence the change in the
free energy is ∆F = ∆U −∆(τσ) = ∆U . The attractive
part of the intermolecular potential energy that results
in a change in F compared to the free energy of the ideal
gas is then given by

F → F +∆U = F − N2a

V
. (26)

Making the changes in Eqs. (16) and (26) to the free
energy of the ideal gas in Eq. (2a) gives the free energy
of the van der Waals gas as

F (τ, V,N) = −Nτ

{
ln

[
nQ(V −Nb)

N

]
+ 1

}
− N2a

V
.

(27)
This is a quantum mechanical expression because h̄ is
present in nQ. However, we will see that the thermody-
namic properties of the vdW fluid are classical, where h̄
does not appear in the final calculations. In the limit
N/V → 0 or equivalently a, b → 0, the Helmholtz free
energy becomes that of the ideal gas in Eq. (2a).
The critical pressure pc, the critical volume Vc and

critical temperature τc ≡ kBTc define the critical point
of the van der Waals fluid as discussed later. These are
given in terms of the parameters a, b and N as

pc =
a

27b2
, Vc = 3Nb, τc =

8a

27b
. (28a)

The product of the first two expressions gives an energy
scale

pcVc =
Na

9b
=

3Nτc
8

=
3NkBTc

8
, (28b)

yielding the universal ratio called the critical “compres-
sion factor” Zc as

Zc ≡
pcVc

Nτc
=

3

8
. (28c)

The critical temperatures, pressures and volumes of rep-
resentative gases are shown in Table I. One sees from
the table that the experimental values of Zc are ∼ 30%
smaller that the value of 3/8 predicted by the vdW theory
in Eq. (28c), indicating that the theory does not accu-
rately describe real gases. One can solve Eqs. (28a) for
a, b and N in terms of the critical variables, yielding

a =
27τ2c
64pc

= 27b2pc, b =
τc
8pc

, N =
8pcVc

3τc
. (28d)

Shown in Table I are the van der Waals parameters
a and b per molecule derived from the measured val-
ues of Tc and pc using the first two of Eqs. (28d). The
listed values of a and b are expressed in units associ-
ated with a molecule such as eV and Å, which are more
physically relevant to the molecules composing the fluid
than the common units of these quantities, which are,
e.g., bar (L/mol)2 and L/mol, respectively. Thus the
parameter b is the excluded volume per molecule ex-
pressed in units of Å3, from which the effective diam-
eter per molecule d in Å is obtained here as d = b1/3

as shown in the table. From Eq. (28a), the critical vol-
ume per molecule is Vc/N = 3b, which is only a factor
of three larger than the excluded volume of a molecule
itself. Shown in the last column of Table I is the effective
Lennard-Jones intermolecular potential well depth φmin

in Fig. 1 calculated from a and b using Eq. (24). The



6

TABLE I: Experimental data for representative gases obtained from the Handbook of Chemistry and Physics (CRC Press,
Cleveland, 2013). Shown are the molecular weights (MW), critical temperature Tc, critical pressure pc, critical volume Vc and
the dimenionless critical compression factor Zc ≡ pcVc/(RTc) where R is the molar gas constant. The value of Vc predicted by
the van der Waals theory is Zc = 3/8 = 0.375 according to Eq. (28c), which is ∼ 30% larger than the observed factors listed in
the table. Also shown are the van der Waals parameters a and b per molecule derived from Tc and pc using Eqs. (28d), where
a is a mean-field measure of the attractive force between two molecules and b is the excluded volume per molecule due to the
molecular hard cores. A measure of the van der Waals hard-core molecular diameter is defined here as d ≡ b1/3. Assuming a
Lennard-Jones potential between molecules, the depth φmin of the potential well in Fig. 1 is calculated from a/b using Eq. (24).

Gas MW Tc pc Vc Zc a b d φmin

Name formula (g/mol) (K) (kPa) (cm3/mol) (eV Å3) (Å3) (Å) (meV)

Noble gases

Helium He 4.0030 5.1953 227.46 57 0.300 0.05956 39.418 3.4033 0.8657

Neon Ne 20.183 44.490 2678.6 42 0.304 0.37090 28.665 3.0604 7.414

Argon Ar 39.948 150.69 4863 75 0.291 2.344 53.48 3.768 25.11

Krypton Kr 83.800 209.48 5525 91 0.289 3.987 65.43 4.030 34.91

Xenon Xe 131.30 289.73 5842 118 0.286 7.212 85.59 4.407 48.28

Diatomic gases

Hydrogen H2 2.0160 33.140 1296.4 65 0.306 0.42521 44.117 3.5335 5.5223

Hydrogen fluoride HF 20.006 461.00 6480 69 0.117 16.46 122.8 4.970 76.82

Nitrogen N2 28.014 126.19 3390 90 0.291 2.358 64.24 4.005 21.03

Carbon monoxide CO 28.010 132.86 3494 93 0.294 2.536 65.62 4.034 22.14

Nitric Oxide NO 30.010 180.00 6480 58 0.251 2.510 47.94 3.633 29.99

Oxygen O2 32.000 154.58 5043 73 0.286 2.378 52.90 3.754 25.76

Hydrogen chloride HCl 36.461 324.70 8310 81 0.249 6.368 67.43 4.070 54.11

Fluorine F2 37.997 144.41 5172.4 66 0.284 2.024 48.184 3.6389 24.06

Chlorine Cl2 70.910 417.00 7991 123 0.284 10.92 90.06 4.482 69.49

Polyatomic gases

Ammonia NH3 17.031 405.56 11357 69.9 0.235 7.2692 61.629 3.9500 67.581

Water H2O 18.015 647.10 22060 56 0.230 9.5273 50.624 3.6993 107.83

Carbon dioxide CO2 44.010 304.13 7375 94 0.274 6.295 71.17 4.144 50.68

Nitrous oxide N2O 44.013 309.52 7245 97 0.273 6.637 73.73 4.193 51.58

Carbon oxysulfide COS 60.074 375.00 5880 137 0.258 12.00 110.1 4.792 62.49

Alkanes

Methane CH4 16.043 190.56 4600 99 0.287 3.962 71.49 4.150 31.75

Ethane C2H6 30.070 305.36 4880 146 0.281 9.591 108.0 4.762 50.88

Propane C3H8 44.097 369.9 4250 199 0.275 16.16 150.2 5.316 61.64

Butane C4H10 55.124 425.2 3790 257 0.276 23.94 193.6 5.785 70.85

Pentane C5H12 72.151 469.7 3370 310 0.268 32.86 240.5 6.219 78.27

Hexane C6H14 86.178 507.5 3030 366 0.263 42.67 289.1 6.612 84.57

Heptane C7H16 100.21 540.1 2740 428 0.261 53.44 340.2 6.981 90.00

values of φmin are seen to be smallest for He and H2 and
largest for H2O and the alkanes.

The dependences of a and b on the molecular weight
(MW) of the various gases in Table I are shown in
Figs. 2(a) and 2(b), respectively. For fluids of one of
the types shown, the two parameters a and b do not in-
crease monotonically with molecular weight except for
the alkanes.

V. ENTROPY, INTERNAL ENERGY AND
HEAT CAPACITY AT CONSTANT VOLUME

The entropy of the vdW fluid is calculated using
Eq. (27) to be

S

kB
= −

(
∂F

∂τ

)

V,N

= N

{
ln

[
nQ(V −Nb)

N

]
+

5

2

}
,

(29)
which is smaller than that of the ideal gas in Eq. (3)
because the entropy scales with the free volume, which is
smaller in the van der Waals fluid. In the limits V → ∞
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FIG. 2: (Color online) van der Waals parameters per
molecule (a) a and (b) b versus the molecular weight of no-
ble (monatomic) gases, diatomic, triatomic/polyatomic and
alkane (CnH2n+2) gases in Table I.

or b → 0, Eq. (29) becomes identical to (3).
The internal energy is obtained using Eqs. (27)

and (29) as

U = F + TS =
3

2
Nτ − N2a

V
, (30)

which is lower than that of the ideal gas in Eq. (4) by
the attractive potential energy in the second term on the
right. However, because the interaction parameter a is
independent of temperature, it does not contribute to the
temperature dependence of U given by the first term on
the right side of Eq. (30) which is the same as for the
ideal gas in Eq. (4).
Since the temperature dependence of the internal en-

ergy of the vdW gas is the same as for the ideal gas, the
heat capacity at constant volume is

CV =

(
∂U

∂T

)

V,N

=
3

2
NkB, (31)

which is the same as for the ideal gas in Eq. (5). This heat
capacity is independent of T , so the van der Waals gas
is in the classical limit of a quantum Fermi or Bose gas.
Furthermore, the forms of the thermodynamic functions
are the same for the pure gas and pure liquid phases of

the van der Waals fluid, which only differ in the temper-
ature, pressure and volume regions in which they occur.
Therefore, in particular, the gas and liquid phases dis-
cussed below have the same constant value of CV.

VI. PRESSURE AND ENTHALPY

The pressure p is obtained from the free energy in
Eq. (27) as

p = −
(
∂F

∂V

)

V,N

=
Nτ

V −Nb
− N2a

V 2
, (32)

As discussed above, the volume Nb is the excluded vol-
ume of the incompressible molecules and V − Nb is the
free volume in which the molecules can move. With de-
creasing volume V , the pressure diverges when Nb = V
because then all of the volume is occupied by the total
excluded volume of the molecules themselves, and the
incompressible hard cores of the molecules are touching.
Therefore the minimum possible volume of the system is
Vmin = Nb. Hence the first term on the right is always
positive and the second term negative. The competition
between these two terms in changing the pressure of the
gas, compared to that of an ideal gas at the same tem-
perature and volume, is discussed in Sec. VII A below.
Plots of p(V ) at constant temperature using Eq. (32)

have the shapes shown in Fig. 3 below. At the critical
point τ = τc, p = pc and V = Vc, p(V ) shows an inflec-
tion point where the slope (∂p/∂V )τ and the curvature
(∂2p/∂V 2)τ are both zero. From these two conditions one
can solve for the the critical temperature τc and pressure
pc in terms of the van der Waals parameters a and b,
and then from the equation of state one can solve for the
critical volume Vc in terms of a, b and N as given above
in Eq. (28a).
Using Eqs. (30) and (32), the enthalpy is

H = U + pV = N

(
3τ

2
+

τV

V −Nb
− 2Na

V

)
. (33)

In the limit of large volume V or small interaction pa-
rameters a and b, one obtains Eq. (6) for the enthalpy of
the ideal gas.

VII. THE vdW EQUATION OF STATE,
REDUCED VARIABLES AND LAWS OF

CORRESPONDING STATES

Equation (32) can be written

(
p+

N2a

V 2

)
(V −Nb) = Nτ. (34)

This is the van der Waals equation of state, which reduces
to the ideal gas equation of state (the ideal gas law) pV =
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Nτ when the molecular interaction parameters a and b
are zero.
Using Eqs. (28d), one can write Eq. (34) as

[
p

pc
+

3

(V/Vc)2

](
V

Vc
− 1

3

)
=

8τ

3τc
. (35)

Note that N has disappeared as a state variable from this
equation. Following the notation in Ref. 4, we define the
reduced variables

p̂ ≡ p

pc
, V̂ ≡ V

Vc
, τ̂ ≡ τ

τc
=

T

Tc
. (36)

Then Eq. (35) becomes
(
p̂+

3

V̂ 2

)(
3V̂ − 1

)
= 8τ̂ , (37)

which is the vdW equation of state written in reduced
variables. When two fluids are in “corresponding states”,
they have the same set of three reduced parameters p̂,

V̂ and τ̂ . The differences between pc, Vc and τc of dif-
ferent fluids are subsumed into the reduced parameters

p̂, V̂ and τ̂ . Therefore Eq. (37) is an example of a “law
of corresponding states” which is obeyed by all van der
Waals fluids. Many other laws of corresponding states
are derived below for the vdW fluid. From Eq. (37), the
pressure versus volume and temperature is expressed in
reduced variables as

p̂ =
8τ̂

3V̂ − 1
− 3

V̂ 2
. (38)

Thus with decreasing V̂ , p̂ diverges at V̂ = 1/3, which is
the reduced volume at which the entire volume occupied
by the fluid is filled with the hard-core molecules with no
free volume remaining.

Using Eq. (38), p̂ versus V̂ isotherms at several tem-
peratures τ̂ are plotted in Fig. 3. One notices that for
τ̂ > 1 (τ > τc), the pressure monotonically decreases
with increasing volume. This temperature region corre-
sponds to a “fluid” region where gas and liquid cannot be
distinguished. At τ < τc the isotherms show unphysical
(unstable) behaviors in which the pressure increases with
increasing volume over a certain range of p and V . This
unstable region forms part of the volume region where
liquid and gas coexist in equilibrium as further discussed
below.
The order parameter for the liquid-gas phase transition

is the difference in the number density n = N/V between
the liquid and gas phases.7,17 Using Eq. (28d), one has

n =
N

V
=

8pcVc

3TcV
=

8pc

3TcV̂
, (39a)

where Eq. (36) was used to obtain the last equality. The
value of nc at the critical point is obtained by setting

V̂ = 1, yielding

nc =
8pc
3Tc

. (39b)
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FIG. 3: (Color online) Reduced pressure p̂ ≡ p/pc versus

reduced volume V̂ ≡ V/Vc at several values of reduced tem-
perature τ̂ ≡ τ/τc = T/Tc according to Eq. (38). The region
on the far left corresponds to the liquid phase and the region
to the far right corresponds to the gas or fluid phase depend-
ing on the temperature. The regions of negative pressure and

positive dp̂/dV̂ are unphysical and correspond to regions of
coexistence of the gas and liquid phases that are not taken
into account in this figure.

The reduced form of the number density analogous to
those in Eq. (36) is obtained from Eqs. (39) as

n̂ ≡ n

nc
=

1

V̂
. (40)

Using this expression, one can write Eq. (38) in terms of
the reduced fluid number density as

p̂ =
8τ̂ n̂

3− n̂
− 3n̂2, (41)

with the restriction n̂ < 3 due to the excluded volume of
the fluid. Isotherms of p̂ versus n̂ are shown in Fig. 4.
The unphysical regions where p̂ < 0 and dp̂/dn̂ < 0 cor-
respond to similar regions in Fig. 3.
Volume versus temperature isobars are shown in Fig. 5.

Some of these show unphysical regions as in Figs. 3 and 4
that are associated with coexisting gas and liquid phases
as discussed in Sec. VIII.

A. Influence of the vdW Interactions on the
Pressure of the Gas/Fluid Phase

There has been much discussion in the literature
and books about whether the interactions between the
molecules in the vdW gas increase the pressure or de-
crease the pressure of the gas compared to that of a (non-
interacting) ideal gas at the same temperature and vol-
ume. For example Stanley7 and Berberan-Santos et al.10
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FIG. 4: (Color online) Reduced pressure p̂ ≡ p/pc versus
reduced number density n̂ ≡ n/nc at several values of reduced
temperature τ̂ according to Eq. (41). The region on the far
left corresponds to the gas or fluid phase and the region to
the far right corresponds to the liquid phase depending on the
temperature. As in Fig. 3, the regions of negative pressure
and negative dp̂/dn̂ are unphysical for a homogeneous fluid
and correspond to regions of coexisting gas and liquid.

0

2
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6

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

T / T
c

p/p
c
 = 0.3, 0.4, ..., 1.0

FIG. 5: (Color online) Reduced volume V̂ = V/Vc versus
reduced temperature τ̂ at several values of reduced pressure

p̂ according to Eq. (38). The regions of negative dV̂ /dτ̂ are
unphysical and correspond to regions of coexisting gas and
liquid phases.

state that the pressure decreases below that of the ideal
gas due to the attactive interaction a, whereas Kittel and
Kroemer4 claim that the pressure increases. Others give
no clear opinion.5 Tuttle has reviewed the history of this
controversy, including a quote from van der Waals him-
self who evidently claimed that the pressure decreases.13

Implicit in these statements is that the temperature and

volume of the gas are not relevant to the argument as
long as one is in the gas-phase or supercritical fluid part
of the phase diagram. Here we show quantitatively that
the same vdW interactions a and b can both increase and
decrease the pressure in the same vdW gas compared to
the ideal gas, depending on the temperature and volume
of the gas.
The compression factor Z of a gas is defined in

Eq. (28c) above as

Z ≡ pV

Nτ
. (42)

For the ideal gas one has ZIG = 1. Using Eq. (32), the
compression factor of the vdW gas is

Z =
1

1−Nb/V
− Na

V τ
. (43)

The deviation of Z from ZIG is then

Z − 1 =
Nb/V

1−Nb/V
− Na

V τ
. (44)

In the present discussion the temperature and volume
are constant as the vdW interactions are turned on and
the right side of Eq. (44) becomes nonzero. One sees
from Eq. (44) that increasing b increases the pressure and
increasing a decreases the pressure, where a/b is a fixed
value for a given gas according to Eq. (24). Therefore
a competition occurs between these two effects on the
pressure as the interactions are turned on. In reduced
variables, Eqs. (28d) give

Nb

V
=

1

3V̂
,

Na

V τ
=

9

8V̂ τ̂
. (45)

Inserting these expressions into Eq. (44) gives

Z − 1 =

1

3V̂

1− 1

3V̂

− 9

8V̂ τ̂
. (46)

One has the limits 0 < 1/V̂ < 3. We recall that the first
term on the right side of Eq. (46) arises from the param-
eter b and the second one from a, rewritten in terms of
reduced variables. The right side is zero if a = b = 0.

Shown in Fig. 6(a) are isotherms of Z − 1 versus 1/V̂
plotted using Eq. (46) at several values of 1/τ̂ as indi-

cated. Expanded isotherms at low values of 1/V̂ and 1/τ̂
are shown in Fig. 6(b). One sees from Fig. 6(b) that if τ̂
is below a certain value τ̂max, the pressure of the vdW gas
is smaller than that of the ideal gas for a range of inverse
volumes. There is a crossover at τ̂max where the initial
slope ∂(Z−1)/∂(1/V̂ ) goes from positive to negative with

decreasing values of τ̂ . By solving ∂(Z − 1)/∂(1/V̂ ) = 0
using Eq. (46), the crossover occurs at

τ̂max =
27

8
, (47)
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FIG. 6: (Color online) (a) Isotherms of the quantity

(pV/Nτ ) − 1 versus inverse reduced volume 1/V̂ = Vc/V at
the inverse temperatures 1/τ̂ = Tc/T as indicated. (b) Ex-

panded plots at small values of 1/V̂ for the same values of
1/τ̂ as in (a).

as indicated in Fig. 6. Thus if the temperature of a vdW
gas is less than τ̂max, there is a range of inverse volumes
over which the molecular interactions cause the pressure
to be less than that of the ideal gas, whereas if the tem-
perature is greater than τ̂max, the interactions increase
the pressure irrespective of the value of the inverse vol-
ume. To find this maximum value of the inverse volume
versus τ̂ , one can set Z − 1 = 0 in Eq. (46) and solve for

(1/V̂ )max, yielding

(
1

V̂

)

max

= 3− 8τ̂

9
(τ̂ < τ̂max). (48)

If τ̂ < 1, the possibility of liquifaction of the gas exists
as discussed below, so the discussion here refers only to
the gas phase in this temperature range.
We conclude that the same vdW interaction parame-

ters can give rise to either an increase or a decrease in

the pressure of a vdW gas or supercritical fluid relative to
that of an ideal gas at the same volume and temperature,
depending on the values of the volume and temperature.

B. Boyle Temperature

From Eq. (46), the temperature τ̂B at which Z−1 = 0,
at which the net effect of the molecular interactions on
the compression factor compared to that of the ideal gas
is zero, is

τ̂B =
9

8

(
3− 1

V̂

)
, (49)

where τ̂B is known as the Boyle temperature. At large
volumes the Boyle temperature approaches the limit
τ̂Bmax = τ̂max = 27/8 in Eq. (47) and it decreases mono-
tonically from there with decreasing volume. For the

minimum value of V̂ of 1/3 (at which the free volume
goes to zero), Eq. (49) gives the minimum value of the
Boyle temperature as τ̂Bmin = 0.
It is sometimes stated that the Boyle temperature is

the temperature at which a gas with molecular interac-
tions behaves like an ideal gas. This definition is mislead-
ing, because it only applies to the compression factor and
not to thermodynamic properties like the heat capacity at
constant pressure Cp, the isothermal compressibility κT

or the coefficient of volume expansion α. We show in the
following Sec. VII C that the molecular interactions have
nonzero influences on these thermodynamic properties at
all finite temperatures and volumes of the vdW fluid.

C. Internal Energy, Helmholtz Free Energy,
Entropy, Isothermal Compressibility, Thermal

Expansion Coefficient, Heat Capacity at Constant
Pressure and Latent Heat of Vaporization Expressed

in Reduced Variables

One can write the internal energy in Eq. (30) in terms
of the reduced variables in Eqs. (28) and also in terms of

n̂ = 1/V̂ defined in Eq. (40) as

U

pcVc
= 4τ̂ − 3

V̂
= 4τ̂ − 3n̂. (50)

At the critical point, one obtains

Uc

pcVc
= 1 (τ̂ = V̂ = p̂ = 1). (51)

It is also useful to write F in terms of reduced variables.
We first write the quantum concentration in Eq. (2b) as

nQ = nQc τ̂
3/2, (52)

where

nQc ≡
(

mτc

2πh̄2

)3/2

. (53)
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In terms of the reduced variables, the Helmholtz free
energy in Eq. (27) becomes

F

pcVc
= −8τ̂

3

{
ln
[
xc τ̂

3/2
(
3V̂ − 1

)]
+ 1
}
− 3

V̂
(54a)

where the dimensionless variable xc is

xc ≡
nQcτc
8pc

, (54b)

the entropy in Eq. (29) becomes

S

NkB
= ln

[
xc τ̂

3/2
(
3V̂ − 1

)]
+

5

2
(55)

= ln
[
xc τ̂

3/2 (3− n̂) /n̂
]
+

5

2
,

and the enthalpy in Eq. (33) becomes

H

pcVc
=

4τ̂
(
5V̂ − 1

)

3V̂ − 1
− 6

V̂
=

4τ̂ (5− n̂)

3− n̂
− 6n̂. (56)

The entropy diverges to −∞ at τ̂ → 0, which violates
the third law of thermodynamics and thus shows that
the vdW fluid is in the classical regime just as the ideal

gas is. At the critical point τ̂ = p̂ = V̂ = n̂ = 1, the
enthalpy Hc is given by Eq. (56) as

Hc

pcVc
= 2 (at the critical point). (57)

Equations (50) and (56) are laws of corresponding
states. However Eqs. (54) and (55) are not because
they explicitly depend on the mass m of the molecules
in the particular fluid considered. On the other hand,
the change in entropy per particle ∆S/(NkB) from one
reduced state of a vdW fluid to another is a law of cor-
responding states. Taking the reference state to be the

critical point at which τ̂3/2
(
3V̂ − 1

)
= 2, Eq. (55) yields

∆S

NkB
≡ S(τ̂ , V̂ )− S(1, 1)

NkB
(58)

= ln
[
τ̂3/2

(
3V̂ − 1

)
/2
]

= ln
[
τ̂3/2 (3− n̂) /(2n̂)

]
.

The isothermal compressibility κT is given by Eq. (7).
In the reduced units in Eq. (36) one obtains

1

κTpc
= −V̂

(
∂p̂

∂V̂

)

τ̂

. (59a)

One can write the partial derivative on the right side as7

(
∂p̂

∂V̂

)

τ̂

= −
(
∂p̂

∂τ̂

)

V̂

(
∂τ̂

∂V̂

)

p̂

, (59b)

so Eq. (59a) can also be written

1

κTpc
= V̂

(
∂p̂

∂τ̂

)

V̂

(
∂τ̂

∂V̂

)

p̂

. (59c)

Utilizing the expression for the reduced pressure for
the van der Waals fluid in Eq. (38), Eq. (59a) gives

κTpc =
(3V̂ − 1)2V̂ 2/6

4τ̂ V̂ 3 − (3V̂ − 1)2
. (60a)

In terms of n̂ = 1/V̂ , Eq. (60a) becomes

κTpc =
(3− n̂)2/(6n̂)

4τ̂ − n̂(3− n̂)2
. (60b)

Using Eq. (28c), a Taylor series expansion of Eq. (60a)

in powers of 1/V̂ gives

κT =
3V̂

8τ̂pc

[
1 +

27− 8τ̂

12τ̂ V̂
+O

(
1

V̂ 2

)]
, (60c)

where the prefactor is

3V̂

8τ̂pc
=

V

NkBT
, (60d)

which is the result for the ideal gas in Eq. (7) that κT =

1/p = V/(NkBT ). Thus in the limit V̂ → ∞ one obtains
the expression for the ideal gas.
The volume thermal expansion coefficient α is defined

in Eq. (8). In reduced units one has

ατc
kB

=
1

V̂

(
∂V̂

∂τ̂

)

p̂

. (61)

Comparing Eqs. (59c) and (61) shows that

ατc/kB
κTpc

=

(
∂p̂

∂τ̂

)

V̂

. (62)

Utilizing the expression for the reduced pressure of the
van der Waals fluid in Eq. (38), Eq. (61) gives

ατc
kB

=
4(3V̂ − 1)V̂ 2/3

4τ̂ V̂ 3 − (3V̂ − 1)2
. (63a)

In terms of the reduced number density n̂ = 1/V̂ one
obtains

ατc
kB

=
4(3− n̂)/3

4τ̂ − n̂(3 − n̂)2
. (63b)

A Taylor series expansion of Eq. (63a) in powers of 1/V̂
gives

ατc
kB

=
1

τ̂

[
1 +

27− 4τ̂

12τ̂ V̂
+O

(
1

V̂ 2

)]
. (63c)
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In the limit of large volumes or small concentrations one
obtains

ατc
kB

=
1

τ̂
(V̂ → ∞), (63d)

which agrees with the ideal gas value for the thermal
expansion coefficient in Eq. (8).
Comparing Eqs. (63a) and (60a) shows that the dimen-

sionless reduced values of κT and α are simply related
according to

ατc/kB
κTpc

=
8

3V̂ − 1
=

8n̂

3− n̂
, (64)

which using the expression (38) for the pressure is seen
to be in agreement with the general Eq. (62).
The heat capacity at constant pressure Cp and at con-

stant volume CV are related according to the thermody-
namic relation in Eq. (9). In reduced units, this equation
becomes

Cp − CV = kB

(
pcVc

τc

)
τ̂ V̂ (ατc/kB)

2

(κT pc)
. (65a)

Using Eq. (28c) one then obtains

Cp − CV

NkB
=

3τ̂ V̂ (ατc/kB)
2

8(κT pc)
. (65b)

The expression for CV in Eq. (31) then gives

Cp

NkB
=

3

2
+

3τ̂ V̂ (ατc/kB)
2

8(κT pc)
. (65c)

Utilizing Eqs. (63a) and (64), the heat capacity at con-
stant pressure in Eq. (65c) for the vdW fluid simplifies
to

Cp

NkB
=

3

2
+

1

1− (3V̂−1)2

4τ̂ V̂ 3

. (66a)

The Cp can be written in terms of the reduced number

density n̂ = 1/V̂ as

Cp

NkB
=

3

2
+

4τ̂

4τ̂ − n̂(3− n̂)2
. (66b)

A Taylor series expansion of Eq. (66a) in powers of 1/V̂
gives

Cp

NkB
=

5

2
+

9

4τ̂ V̂
+O

(
1

V̂ 2

)
. (66c)

In the limit V̂ → ∞, this equation gives the ideal gas
expression for Cp in Eq. (9).

As one approaches the critical point with p̂ → 1, V̂ →
1, n̂ → 1 and τ̂ → 1, one obtains κT, α, Cp → ∞.
These critical behaviors will be quantitatively discussed
in Sec. XI below.
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FIG. 7: (Color online) Reduced chemical potential µ/τc ver-

sus reduced volume V̂ ≡ V/Vc at several values of reduced
temperature τ̂ ≡ τ/τc according to Eq. (72). The region on
the far left corresponds to the liquid phase and the region to
the far right corresponds to the gas phase, with a region of
coexistence between them.

The latent heat (enthalpy) of vaporization L is defined
as

L = T∆SX, (67)

where ∆SX is the change in entropy of the system when
liquid is completely converted to gas at constant temper-
ature. Using Eqs. (28c) and (36), L can be written in
dimensionless reduced form as

L

pcVc
=

(
8τ̂

3

)
∆SX

NkB
. (68)

VIII. CHEMICAL POTENTIAL

The vdW fluid contains attractive interactions, and
one therefore expects that it may liquify at sufficiently
low temperature and/or sufficiently high pressure. The
liquid (l) phase is more stable than the gas (g) phase
when the liquid and gas chemical potentials satisfy µl <
µg, or equivalently, when the Gibbs free energy satisfies
Gl < Gg and the gas phase is more stable when µl > µg

or Gl > Gg. The two phases can coexist if µl = µg or
Gl = Gg. For calculations of µ of the vdW fluid, it is
most convenient to calculate it from the Helmholtz free
energy in Eq. (27), yielding

µ(τ, V,N) =

(
∂F

∂N

)

τ,V

(69)

= −τ ln

[
nQ(V −Nb)

N

]
+

Nbτ

V −Nb
− 2Na

V

= −τ ln

[
V −Nb

N

]
+

Nbτ

V −Nb
− 2Na

V
− τ lnnQ.
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FIG. 8: (Color online) Reduced chemical potential µ/τc ver-
sus reduced pressure p̂ ≡ p/pc, with the volume of the system
as an implicit parameter, at several values of reduced temper-
ature τ̂ ≡ τ/τc = T/Tc. The low pressure and high volume
pure gas region is at the lower left and the high-pressure and
low volume pure liquid region is at the upper right. As the
volume decreases on moving upwards along an isotherm, the
pressure increases until the system encounters the intersec-
tion with an unstable or metastable triangle-shaped part of
the isotherm, labeled as the point X. At this point the chem-
ical potentials of the gas and liquid are the same. As the
volume decreases further, if the system is in equilibrium the
pressure remains constant at this point until all the gas is con-
verted to liquid. Then the pressure starts to increase again
when the gas is completely converted to liquid as the volume
of liquid decreases. The fluid phase, where liquid and gas
cannot be distinguished, occurs at temperatures above the
critical temperature T/Tc > 1.

Using Eqs. (28d), one can express µ(τ, V,N) in reduced
variables as

µ

τc
= −τ̂ ln

(
3V̂ − 1

)
+

τ̂

3V̂ − 1
(70a)

− 9

4V̂
− τ̂ lnX,

X ≡ τcnQ

8pc
. (70b)

In terms of the reduced number density n̂ = 1/V̂ ,
Eq. (70a) becomes

µ

τc
= −τ̂ ln

(
3− n̂

n̂

)
+

τ̂ n̂

3− n̂
(70c)

− 9n̂

4
− τ̂ lnX,

The last term in X depends on the particular gas being
considered.

We add and subtract ln(2e−1/2) from the right side of
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FIG. 9: (Color online) (Top panel) A schematic pressure ver-
sus volume (p-V ) isotherm showing coexistence between the
gas and liquid phases such as in Fig. 3. Various points on
the isotherm are labeled. With decreasing volume, in equilib-
rium the system follows the path A-B-C-E-G-H-I. One starts
with pure gas at point A. Liquid starts to form at point C
and all the gas is converted to liquid at point G. The sys-
tem is pure liquid along the path G-H-I. (Bottom panel) A
schematic chemical potential µ versus pressure isotherm such
as shown in Fig. 8, with points labeled as in the top panel.
Starting at low pressure (large volume), in equilibrium the
system follows the path with the lowest chemical potential,
i.e., A-B-(C,G)-H-I. The paths with decreasing volume C-D
and F-G are metastable regions and the region D-E-F is un-
conditionally unstable to phase separation. The temperatures
of the isotherms in the two panels are the same.

Eq. (70a), yielding

µ

τc
= −τ̂ ln

(
3V̂ − 1

2e−1/2

)
+

τ̂

3V̂ − 1
− 9

4V̂
(71)

− τ̂ ln
(
2e−1/2X

)
.

For processes at constant τ̂ , the last (gas-dependent)
term in Eq. (71) just has the effect of shifting the ori-
gin of µ/τc as τ̂ is changed. When plotting µ/τc versus p
or µ/τc versus V isotherms, we set that constant to zero,
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yielding

µ

τc
= −τ̂ ln

(
3V̂ − 1

2e−1/2

)
+

τ̂

3V̂ − 1
− 9

4V̂
. (72)

Including the factor of 2e−1/2 in Eq. (72) causes the µ/τc
versus V̂ isotherms to all cross at V̂ = 1. Isotherms
of µ/τc versus V̂ obtained using Eq. (72) are plotted in
Fig. 7 for the critical temperature and several adjacent
temperatures.

IX. EQUILIBRIUM PRESSURE-VOLUME,
TEMPERATURE-VOLUME AND

PRESSURE-TEMPERATURE PHASE
DIAGRAMS

By combining the data in Figs. 3 and 7, one can plot
µ versus p isotherms with V as an implicit parameter, as
shown in Fig. 8. Since here µ = µ(τ, p) as in Eq. (12a), in
equilibrium the state occurs with the lowest Gibbs free
energy and therefore also the lowest chemical potential.
Following Reif,3 certain points on a p-V isotherm at

τ̂ < 1 are shown in the top panel of Fig. 9 and compared
with the corresponding points on a plot of µ versus p in
the bottom panel. Starting from the bottom left of the
bottom panel of Fig. 9, at low pressure the stable phase
is seen to be the gas phase. As the pressure increases, a
region occurs at which the chemical potential of the gas
and liquid become the same, at the point X at pressure
pX, which signals entry into a triangle-shaped unstable
region of the plot which the system does not enter in ther-
mal equilibrium. The pressure pX is a constant pressure
part of the p-V isotherm at which the gas and liquid co-
exist as indicated by the horizontal line in the top panel.
The system remains at constant pressure at the point X
in the bottom panel as the system volume decreases until
all the gas is converted to liquid. At higher pressures, the
pure liquid has the lower chemical potential as indicated
in the bottom panel.
Essential variables of the calculations of the thermo-

dynamic properties of the van der Waals fluid are the
reduced equilibrium pressure p̂X for coexistence of gas
and liquid phases at a given τ̂ and the associated re-

duced volumes V̂C, V̂D, V̂F, and V̂G in Fig. 9. Using
these values and the equations for the thermodynamic
variables and properties, the equilibrium and nonequilib-
rium properties versus temperature, volume or pressure
can be calculated and the various phase diagrams con-
structed. The condition for the coexistence of the liquid
and gas phases is that their chemical potentials µ(τ̂ , p̂),
temperatures and pressures must be the same at their re-

spective volumes V̂G and V̂C in Fig. 9, where µ(τ̂ , V̂ )/τc
is given in Eq. (72). This requirement allows p̂X to be
determined.
To determine the values of p̂X, V̂C, V̂D, V̂F, and V̂G in

Fig. 9 where gas and liquid phases coexist in equilibrium,
one can use a parametric solution in which p̂ and µ/τc

are calculated at fixed τ̂ using V̂ as an implicit parameter
and thereby express µ/τc versus p̂ at fixed τ̂ . From the
numerical µ(τ̂ , p̂) data, one can then determine the values
of the above four reduced volumes and then the value of
pX from V̂C or V̂G and the vdW equation of state. The
following steps are carried out for each specified value of
τ̂ to implement this sequence of calculations.

1. The two volumes V̂D and V̂F at the maximum and
minimum of the S-shaped region of the p-V plot
in Fig. 9 are determined by solving Eq. (38) for

the two volumes at which dp̂/dV̂ = 0. These two
volumes enclose the unstable region of phase sepa-
ration of the gas and liquid phases since the isother-
mal compressibility is negative in this region.

2. The pressure p̂2 at the volume V̂D is determined
from the equation of state (38).

3. The volume V̂H is determined by solving for the

two volumes at pressure p̂2 (the other one, V̂D, is
already calculated in Step 1). These two volumes
are needed to set the starting values of the numer-

ical calculations of the volumes V̂C and V̂G in the
next step.

4. The volumes V̂C and V̂G are determined by solving
two simultaneous equations which equate the pres-
sure and chemical potential of the gas and liquid
phases at these two volumes at a fixed set temper-
ature, respectively:

p̂(τ̂ , V̂G) = p̂(τ̂ , V̂C), (73a)

µ(τ̂ , V̂G)

τc
=

µ(τ̂ , V̂C)

τc
. (73b)

The FindRoot utility of Mathematica is fast and

accurate in finding the solutions for V̂G and V̂C if
appropriate starting values for these parameters are

given. The starting values we used were 0.97V̂H and

1.1V̂D, respectively, where the volumes V̂H and V̂D

are obtained from Steps 3 and 1, respectively.

5. The pressure p̂X at which the gas and liquid are
in equilibrium at a given temperature is calcu-

lated from either V̂C or V̂G using the equation of
state (38).

Representative values of the above reduced parameters
calculated versus reduced temperature are given in Ta-
ble IV of Appendix A.
By solving for the pressure pX versus temperature

at which the gas and liquid phases coexist as de-
scribed above, one can derive equilibrium pressure-
volume isotherms. Representative isotherms are shown
in Fig. 10 for T/Tc = 1 (critical temperature), 0.95, 0.90,
0.85 and 0.80. The pressure pX at which the horizontal
two-phase line occurs in the upper panel of Fig. 9 can be
shown to satisfy the so-called Maxwell construction as
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FIG. 10: (Color online) Equilibrium pressure versus volume
isotherms showing the pure gas regime on the right, the liquid-
gas coexistence region in the middle and the pure liquid
regime on the left. The dashed curve is the boundary be-
tween the regions of pure liquid, liquid + gas, and pure gas
in the equilibrium p-V phase diagram. The yellow-shaded re-
gion bounded from above by the dashed curve is the region
of coexistence of the liquid and gas phases in the p-V phase
diagram in Fig. 13(a). For temperatures above the critical
temperature T/Tc = 1, there is no phase separation and no
physical distinction between gas and liquid phases; this un-
differentiated phase is denoted as the fluid phase.

follows. According to Eq. (12b) with constant τ and N ,
the differential of the Gibbs free energy is dG = V dp, so
the difference in G between two pressures along a path
in the V -p plane is

∆G = N∆µ = G(p2, V2)−G(p,V1) =

∫ p2

p1

V (p) dp. (74)

As shown in Fig. 11(a), this integral is the integral along
the path from point C to point G. The part of the area
beneath the curve from C to D that lies below the curve
from D to E is cancled out because the latter area is neg-
ative. Similarly, part of the negative area from E to F
that lies below the path from F to G is canceled out by
the positive area below the path from F to G. There-
fore the net area from C to G is the sum of the positive
hatched area to the right of the vertical line and the neg-
ative hatched area to the left of the vertical line that are
shown in Fig. 11(a). Since the vertical line represents
equilibrium between the gas and liquid phases, for which
the chemical potentials and Gibbs free energies are the
same, one has ∆G = 0 and hence the algebraic sum of the
two hatched areas is zero. That means the magnitudes
of the two hatched areas have to be the same. Transfer-
ring this information to the corresponding p-V diagram
in Fig. 11(b), one requires that the magnitudes of the
same two hatched areas shown in that figure have to be
equal. This is Maxwell’s construction. In terms of the
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FIG. 11: (Color online) (a) Reduced volume V̂ = V/Vc

versus reduced pressure p̂ = p/pc at reduced temperature

τ̂ = T/Tc = 0.90, for which V̂G = 0.6034 and V̂C = 2.3488.
The letter designations of points on the curve are the same as
in Fig. 9. The vertical red line at pressure p̂X = 0.6470 is the
equilibrium pressure of liquid-gas coexistence at τ̂ = 0.90.
According to Eq. (74), the net area under the curve from
point C, where the fluid is pure gas, to G, where the fluid is
pure liquid, is proportional to the change ∆µ in the chemical
potential between these two points, which is equal to zero for
the region of liquid-gas coexistence from C to G. This ∆µ is

proportional to the net area of V̂ versus p̂ along the path from
point C to point G, which in turn is the sum of the positive
hatched area to the left of the path C-D-E, and the negative
hatched area to the right of the path E-F-G. Therefore the
magnitudes of the first and second areas must be the same.
This requirement is drawn on the corresponding p-V diagram
in (b), where the magnitudes of the two hatched areas above
and below the horizontal line at p̂X = 0.6470 must be the
same. This is called Maxwell’s construction.

numerical integral of a p̂ versus V̂ isotherm over the two-
phase region at temperature τ̂ , Maxwell’s construction
states that

∫ V̂C

V̂G

[p̂(τ̂ , V̂ )− p̂X(τ̂ )] dV̂ = 0, (75)
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FIG. 12: (Color online) Equilibrium volume versus temper-
ature isobars at the indicated pressures. The dashed curve
separates the pure liquid, liquid + gas and pure gas regions.
The yellow-shaded region is the region of liquid + gas coex-
istence in the V -T phase diagram.

or equivalently

∫ V̂C

V̂G

p̂(τ̂ , V̂ ) dV̂ = p̂X(τ̂ )(V̂G − V̂C). (76)

Equilibrium volume versus temperature isobars are
shown in Fig. 12 for reduced pressures p̂ =
1.1, 1.0, . . . , 0.5. The isobars illustrate the first-order
increase in volume at the liquid to gas transition temper-
ature for each pressure with τ̂ < 1. For τ̂ ≥ 1 only the un-
differentiated fluid phase occurs. The coexistence curves
of pressure versus volume and temperature versus volume
as shown in Figs. 13(a) and 13(b), respectively. Also in-
cluded in Fig. 13(b) are regions in which metastable su-
perheated liquid and supercooled gas occur, as discussed
below in Sec. XII. It may seem counterintuitive that both
dashed lines lie below the equilibrium curve. However, in
Fig. 23(b) below, it is shown that the superheated liquid
has a larger volume without much change in tempera-
ture, resulting in the superheated metastable region in
Fig. 13(b) being below the equilibrium curve.
The pressure-temperature phase diagram derived from

the above numerical data is shown in Fig. 14. Here
there are no metastable, unstable or hysteretic regions.
The gas-liquid coexistence curve has positive slope ev-
erywhere along it and terminates in the critical point at
p = pc, T = Tc, V = Vc above which the gas and liquid
phases cannot be distinguished. We obtained an ana-
lytic parametrization of the coexistence curve as follows.
The ln(p̂X) versus 1/τ̂ data were fitted by the ninth-order
polynomial

ln(p̂X) =

9∑

n=0

cn(1/τ̂)
n, (77)
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FIG. 13: (Color online) Equilibrium phase diagrams of the
van der Waals fluid in the (a) pressure-volume (p-V ) plane
and in the (b) temperature-volume (T -V ) plane. The critical
point is denoted by a filled circle in each panel. In (b), the re-
gions of metastable superheated liquid and supercooled gas,
derived as in Fig. 23, are also shown with boundaries from
the numerical data in Table IV that are defined by the solid
black equilibrium curve and the respective colored dashed
metastable curves as shown.

where the fitted cn coefficients are listed in Table II. To
compare the fit with the p̂X versus τ̂ calculated data one
exponentiates both sides of Eq. (77). The fitted p̂X values
agree with the calculated values to <∼ 0.01% of p̂X over
the temperature range 0.15 ≤ τ̂ ≤ 1 of the fit.

X. LEKNER’S PARAMETRIC SOLUTION OF
THE COEXISTENCE CURVE AND ASSOCIATED

PROPERTIES

Lekner provided an elegant and very useful alternative
parametric solution for the coexistence curve in Fig. 14
and some properties associated with it that is also based
on solving Eqs. (73).9 This solution allows exact calcu-
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FIG. 14: (Color online) Phase diagram in the reduced
pressure-temperature (p̂-τ̂) plane. The coexistence curve be-
tween liquid and gas phases is indicated, which terminates at
the critical point with p = pc, T = Tc, V = Vc. On cross-
ing the curve from left to right or top to bottom, the system
transforms from pure liquid to pure gas. The liquid-gas co-
existence curve is the function p̂X(τ̂), where p̂X is defined in
Fig. 9. A fit of the coexistence curve is given in Eq. (77) with
coefficients cn in Table II. At supercritical temperatures above
Tc, the liquid and gas phases are physically indistinguishable
and the substance is termed a fluid in this region.

TABLE II: Coefficients cn for the parametrization of the re-
duced pressure p̂X versus reduced temperature τ̂ by the ninth-
order polynomial in Eq. (77).

cn value

c0 5.66403835e00

c1 −8.73724257e00

c2 5.14022974e00

c3 −2.92538942e00

c4 1.09108819e00

c5 −2.74194800e-1

c6 4.59922654e-2

c7 −4.92809927e-3

c8 3.04520105e-4

c9 −8.24218733e-6

lations of p̂X versus τ̂ and associated properties to be
easily carried out for both τ̂ → 0 and τ̂ → 1 as well
as numerical calculations in the intermediate tempera-
ture regime. He calculated some critical exponents for
τ̂ → 1.9 Berberan-Santos et al. extended the calcula-
tions to additional properties of the vdW fluid for both
τ̂ → 0 and τ̂ → 1.10 Here we describe and significantly ex-
tend this parametric solution and express the predictions
from it in terms of our dimensionless reduced variables
in Eqs. (28a), (36) and (40).
Lekner expressed the solutions to all properties of the

coexistence curve in terms of the parameter y ≡ ∆s/2,
where ∆s is the entropy difference per particle between
the gas and liquid phases in units of kB. He defined two
functions of y as

f(y) =
2ey

[
(y − 1)e2y + y + 1

]

e4y − 4y e2y − 1
(78a)

=
y cosh y − sinh y

sinh y cosh y − y
, (78b)

g(y) = 1 + 2f(y) coshy + f2(y). (78c)

He then expressed the following properties of the coex-
istence curve in terms of y, f(y) and g(y), which we
augment and write in terms of the critical parameters
in Eq. (28) and reduced variables in Eq. (36) with sub-
script X where appropriate which specifies that the quan-
tity is associated with the coexistence curve. Subscripts
g and l refer to the coexisting gas and liquid phases, re-
spectively. A symbol ẑ means the value of z divided by its
value at the critical point. The symbols are: ∆SX: differ-
ence in entropy between the pure gas and liquid phases
at the two edges of the coexistence region in Fig. 10;
τ̂X: temperature on the coexistence curve; p̂X: pressure

on the coexistence curve; V̂g and V̂l: volumes of the re-

spective coexisting phases; and n̂g = 1/V̂g and n̂l = 1/V̂l:
number densities of the respective coexisting phases. The
expressions are

∆SX

NkB
≡ Sg − Sl

NkB
= 2y, (79a)

τ̂X =
27f(y) [f(y) + cosh y]

4g2(y)
, (79b)

p̂X =
27f2(y)

[
1− f2(y)

]

g2(y)
, (79c)

dp̂X
dτ̂

≡ dp̂X
dτ̂X

=
16y[y coth(y)− 1]

sinh(2y)− 2y
, (79d)

V̂g =
1

3

[
1 +

ey

f(y)

]
, (79e)

V̂l =
1

3

[
1 +

e−y

f(y)

]
, (79f)

V̂X = V̂g + V̂l =
2

3

[
1 +

cosh y

f(y)

]
, (79g)

∆V̂X = V̂g − V̂l =
2 sinh y

3f(y)
, (79h)

n̂g =
3f(y)

ey + f(y)
, (79i)

n̂l =
3f(y)

e−y + f(y)
, (79j)

∆n̂X = n̂l − n̂g =
6f(y) sinh y

g(y)
, (79k)

n̂ave =
n̂l + n̂g

2
=

3f(y)[f(y) + cosh(y)]

g(y)
. (79l)

Since y ≡ ∆s/2, ∆s(τ̂X = 1) = 0 and ∆s(τ̂X = 0) = ∞
as shown below in Sec. XD, the implicit variable y runs
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from 0 to ∞. Hence one can easily calculate the above
properties including τ̂X as functions of y numerically, and
then using y as an implicit parameter evaluate the other
ones as a function of τ̂X or in terms of each other. Our
result for p̂X versus τ̂ (i.e., τ̂X) obtained from the para-
metric solution is of course the same as already plotted
using a different numerical solution in Fig. 14. However,
Lekner’s parametrization allows properties to be accu-
rately calculated to lower temperatures than the conven-
tional parametrization in Sec. IX using the volume as the
implicit parameter.
Expressions for quantitites derived from the above fun-

damental ones as a function of y, along with references
to the above equations originally defining them, are

Ug

pcVc
= 4τ̂X − 3n̂g, (50) (80a)

Ul

pcVc
= 4τ̂X − 3n̂l, (50) (80b)

Ug − Ul

pcVc
= 3(n̂l − n̂g) = 3∆n̂X, (80c)

Hg

pcVc
=

4τ̂X(5− n̂g)

3− n̂g
− 6n̂g, (56) (80d)

Hl

pcVc
=

4τ̂X(5− n̂l)

3− n̂l
− 6n̂l, (56) (80e)

κTgpc =
(3− n̂g)

2/(6n̂g)

4τ̂X − n̂g(3− n̂g)2
, (60b) (80f)

κTlpc =
(3− n̂l)

2/(6n̂l)

4τ̂X − n̂l(3− n̂l)2
, (60b) (80g)

αgτc
kB

=
4(3− n̂g)/3

4τ̂X − n̂g(3− n̂g)2
, (63b) (80h)

αlτc
kB

=
4(3− n̂l)/3

4τ̂X − n̂g(3− n̂l)2
, (63b) (80i)

Cpg

NkB
=

3

2
+

4τ̂X
4τ̂X − n̂g(3− n̂g)2

, (66b) (80j)

Cpl

NkB
=

3

2
+

4τ̂X
4τ̂X − n̂l(3− n̂l)2

, (66b) (80k)

L

pcVc
=

Hg −Hl

pcVc
=

16 y τ̂X
3

, (68) (80l)

where U is the internal energy, H is the enthalpy, L is
the latent heat (enthalpy) of vaporization on crossing the
coexistence curve in Fig. 14, κT is the isothermal com-
pressibility, α is the volume thermal expansion coefficient
and Cp is the heat capacity at constant pressure.
Because a first-order transition occurs on crossing the

coexistence curve at p̂, τ̂ < 1 in Fig. 14, there are dis-
continuities in κT, α and Cp on crossing the curve. One
can calculate the values of these discontinuities versus τ̂X
using Eqs. (80) and the parametric solutions for n̂g, n̂l

and τ̂X with y an implicit parameter. Our analytic ex-
pressions for the discontinuities ∆κTpc ≡ (κTg − κTl)pc,
∆ατc/kB ≡ (αg − αl)τc/kB and ∆Cp/(NkB) ≡ (Cpl −
Cpg)/(NkB) in terms of y derived from Eqs. (79) and (80)
are given in Appendix B.

A. Thermodynamic Behaviors as τ̂X → 1−

To solve for the above properties versus temperature
for small deviations of τ̂X from 1 (y → 0) or 0 (y → ∞)
requires the solution to y(τ̂X) obtained from Eq. (79b)
in the respective limit to some order of approximation as
discussed in this and the following section, respectively.
In this section the relevant quantities are the values of

the parameters minus their values at the critical point.
We define

t0 ≡ 1− τ̂ , t0X ≡ 1− τ̂X, (81)

which are positive for τ̂ , τ̂X < 1. Taylor expanding
Eq. (79b) to 6th order in y gives

t0X =
y2

9
− y4

75
+

946y6

637 875
. (82a)

Solving for y(t0X) to lowest orders gives

y = 3 t0X
1/2 +

81 t0X
3/2

50
+

50 403 t0X
5/2

35 000
. (82b)

Taylor expanding Eqs. (79) about y = 0, substituting
Eq. (82b) into these Taylor expansions and simplifying
gives the y → 0 and t0X → 0 behaviors of the quantities
in Eqs. (79) to lowest orders as
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∆SX

NkB
≡ 2y = 6 t0X

1/2 +
81 t0X

3/2

25
+

50 403 t0X
5/2

17 500
, (83a)

L

pcVc
=

16τ̂X(y) y

3
=

16y

3
− 16y3

27
+

16y5

225
= 16 t0X

1/2 − 184 t0X
3/2

25
− 4198 t0X

5/2

4375
, (83b)

p0X ≡ p̂X − 1 = −4y2

9
+

76y4

675
− 13672y6

637 875
= −4 t0X +

24 t0X
2

5
− 816 t0X

3

875
, (83c)

dp̂X
dτ̂X

= 4− 16y2

15
+

256y4

1575
− 64y6

3375
= 4− 48 t0X

5
+

2448 t0X
2

875
+

56 832 t0X
3

21 875
, (83d)

v0g ≡ V̂g − 1 =
2y

3
+

2y2

5
+

8y3

45
= 2 t0X

1/2 +
18 t0X

5
+

147 t0X
3/2

25
, (83e)

v0l ≡ V̂l − 1 = −2y

3
+

2y2

5
− 8y3

45
= −2 t0X

1/2 +
18 t0X

5
− 147 t0X

3/2

25
, (83f)

v0X ≡ v0g − v0l =
4y

3
+

16y3

45
+

32y5

1575
= 4 t0X

1/2 +
294 t0X

3/2

25
+

196 081 t0X
5/2

8750
, (83g)

V̂X = 2 + v0g + v0l = 2 +
4y2

5
+

68y4

525
+

32y5

1575
= 2 +

36 t0X
5

+
15 984 t0X

2

875
+

864 t0X
5/2

175
, (83h)

n0g ≡ n̂g − 1 = −2y

3
+

2y2

45
+

8y3

135
= −2 t0X

1/2 +
2 t0X
5

+
13 t0X

3/2

25
, (83i)

n0l ≡ n̂l − 1 =
2y

3
+

2y2

45
− 8y3

135
= 2 t0X

1/2 +
2 t0X
5

− 13 t0X
3/2

25
, (83j)

∆n̂X ≡ n̂l − n̂g =
4y

3
− 16y3

135
+

544y5

42 525
= 4 t0X

1/2 − 26 t0X
3/2

25
− 1359 t0X

5/2

8750
, (83k)

n̂aveX ≡ n̂l + n̂g

2
= 1 +

2y2

45
− 2y4

567
+

4y6

18 225
= 1 +

2 t0X
5

+
128 t0X

2

875
+

136 t0X
3

3125
. (83l)

In these expressions, it is important to remember the
definition t0X ≡ 1− τ̂X in Eq. (81). Thus, t0X increases as
τ̂X decreases below the critical temperature. The leading
expression in the last equality of each equation is the
asymptotic critical behavior of the quantity as τ̂ → 1−,
as further discussed in Sec. XI below.

B. Thermodynamic Behaviors as τ̂X → 0

Expanding the hyperbolic functions in the expression
for τ̂X(y) in Eq. (79b) into their constituent exponentials
gives

τ̂X =
27
[
1 + (y − 1)e2y + y

] (
e4y − 4y e2y − 1

)2

4 (e2y − 1) [(2y − 1)e4y + (2− 4y2)e2y − 2y − 1]
2 .

(84)
The method of determining the behavior of τ̂X(y) at low
temperatures where y → ∞ is the same for all thermody-
namic variables and functions. The behaviors of the nu-
merator and denominator on the right side of Eq. (84) are
dominated by the respective exponential with the highest
power of y. Retaining only those exponentials and their

prefactors, Eq. (84) becomes

τ̂X =
27
[
(y − 1)e2y

]
e8y

4e2y [(2y − 1)e4y]
2 =

27(y − 1)

4(2y − 1)2
. (85)

In this case, the exponentials cancel out but for other
quantities they do not. Taylor expanding the expression
on the far right of Eq. (85) in powers of 1/y to order 1/y4

gives

τ̂X(y) =
27

16y
− 27

64y3
− 27

64y4
(y → ∞). (86)

Interestingly, the y−2 term is zero. Solving for y(τ̂X) to
order τ̂2X gives

y =
27

16 τ̂X
− 4 τ̂X

27
− 64 τ̂2X

729
(τ̂X → 0), (87)

where here the τ̂0X term is zero. The entropy and latent
heat for τ̂X → 0 are obtained by substituting Eq. (87) into
Eqs. (79a) and (80l), respectively. The low-temperature
limiting behaviors of the other functions versus y are ob-
tained as above for τ̂X(y). If there is an exponential still
present after the above reduction, it is of course retained.
In that case, only the leading order term of y(τ̂X) is in-
serted into the argument of the exponential, Eq. (87) is
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inserted for y in the exponential prefactor and then a
power series in 1/τ̂X is obtained for the prefactor. The

results for the low-order terms for 1/y → 0 and τ̂X → 0
are

∆SX

NkB
= 2 y =

27

8 τ̂X
− 8 τ̂X

27
− 128 τ̂2X

729
, (88a)

L

pcVc
=

16 τ̂X y

3
= 9− 64 τ̂2X

81
− 1024 τ̂3X

2187
− 8192 τ̂4X

59 049
, (88b)

p̂X =
108(y − 1)2e−2y

(2y − 1)2
=

(
1 594 323

256 τ̂3X
+

98 415

64 τ̂2X
− 5103

4 τ̂X

)
e

−27
8 τ̂X , (88c)

V̂g =
e2y

6(y − 1)
=

(
8 τ̂X
81

+
128 τ̂2X
2187

+
2560 τ̂3X
59 049

)
e

27
8 τ̂X , (88d)

V̂l =
2y − 1

6(y − 1)
=

1

3
+

8 τ̂X
81

+
128 τ̂2X
2187

+
2560 τ̂3X
59 049

, (88e)

n̂g =
1

V̂g

= 6(y − 1)e−2y = 6

(
27

16 τ̂X
− 1− 4 τ̂X

27
− 64 τ̂2X

729

)
e

−27
8 τ̂X , (88f)

n̂l =
1

V̂l

=
6(y − 1)

2y − 1
= 3− 8 τ̂X

9
+

64 τ̂2X
243

− 1024 τ̂3X
6561

, (88g)

n̂aveX =
n̂l

2
=

3(y − 1)

2y − 1
=

3

2
− 4 τ̂X

9
+

32 τ̂2X
243

− 512 τ̂3X
6561

. (88h)

In Eq. (88h), we used the fact that n̂g(τ̂X) approaches
zero exponentially for τ̂X → 0 instead of as a power law
as does n̂l(τ̂X).

C. Coexisting Liquid and Gas Densities, Transition
Order Parameter, Temperature-Density Phase

Diagram

The densities n̂g and n̂g of coexisting gas and liquid
phases obtained from Eqs. (79i) and (79j), respectively,
together with Eq. (79b) are plotted versus reduced tem-
perature T/Tc in Fig. 15(a). At the critical temperature
they become the same. The difference ∆n̂X ≡ n̂l − n̂g

is the order parameter of the gas-liquid transition and is
plotted versus T/Tc in Fig. 15(b).
Data such as in Fig. 15(a) are often plotted with

reversed axes, yielding the temperature-density phase
diagram14 in Fig. 16. The phase diagram and associ-
ated temperature dependences of the coexisting densities
of the liquid and gas phases experimentally determined
for eight different gases are shown in Fig. 17, along with
the prediction for the vdW fluid from Fig. 16. The ex-
perimental data were digitized from Fig. 2 of Ref. 14.
Interestingly, the experimental data follow a law of cor-
responding states,14 although that law does not quanti-
tively agree with the one predicted for the vdW fluid.
A comparison of the high- and low-temperature limits

of the average density n̂ave in Eqs. (83l) and (88h), re-
spectively, of the coexisting gas and liquid phases shows

that n̂ave is not a rectilinear function of temperature,
which was noted by Lekner.9 Shown in Fig. 18 is a plot
of n̂ave versus τ̂ obtained from Eqs. (79b) and (79l), which
instead shows an S-shaped behavior.

D. Latent Heat and Entropy of Vaporization

The normalized latent heat (or enthalpy) of vapor-
ization L/(pcVc) on crossing the liquid-gas coexistence
curve in Fig. 14 is obtained parametrically versus τ̂X from
Eqs. (79b) and (80l) and is plotted in Fig. 19(c). The
low-temperature behavior agrees with the prediction in
Eq. (88b). From Fig. 19(c), one sees that L → 0 as
T → Tc

−, which is required because at temperatures at
and above the critical temperature, the liquid and gas
phases are no longer physically distinguishable. The nor-
malized entropy of vaporization ∆SX/(NkB) is obtained
from Eqs. (79a) and (79b) and is plotted versus τ̂X in
Fig. 20. The entropy difference is seen to diverge for
T → 0, in agreement with Eq. (88a.)

From the p̂X(τ̂ ) data and information about the change
in volume ∆VX = Vgas−Vliquid across the coexistence line
obtained above from numerical calculations, one can also
determine L using the Clausius-Clapeyron equation

dpX
dT

=
L

T ∆VX
, (89a)
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FIG. 15: (Color online) (a) Densities ng/nc and nl/nc of
coexisting gas and liquid phases versus temperature T/Tc

from Eqs. (88f) and (88g), respectively. Here nc is the den-
sity of the fluid at the critical point. (b) Order parameter
∆n̂X ≡ n̂l − n̂g = (nl − ng)/nc of the liquid-gas phase transi-
tion versus T/Tc.

or

L = T ∆VX
dpX
dT

. (89b)

One can write Eq. (89b) in terms of the reduced variables
in Eq. (36) as

L

pcVc
= τ̂∆V̂X

dp̂X
dτ̂

. (89c)

The variation of dp̂X/dτ̂ versus τ̂ obtained from

Eqs. (79b) and (79d) and ∆V̂X from Eqs. (79b) and (79h)
versus τ̂ are shown in Figs. 19(a) and 19(b), respectively.
These behaviors when inserted into Eq. (89c) give the
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FIG. 16: (Color online) Reduced temperature τ̂ = T/Tc ver-
sus reduced density n̂ = n/nc phase diagram for the van der
Waals fluid, constructed by reversing the axes of Fig. 15(a).
This phase diagram is complementary to those in Figs. 10
and 12. The maximum density the system can have is n̂ = 3,
at which there is no free volume left in which the molecules
can move.
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FIG. 17: (Color online) Reduced temperature τ̂ = T/Tc ver-
sus reduced densities n̂ = n/nc of the coexisting gas and liquid
phases of eight different fluids.14 Also shown as the solid curve
is the prediction for the vdW fluid from Fig. 16. The exper-
imental data follow a law of corresponding states,14 but the
one predicted for the vdW fluid does not accurately describe
the data.

same L/(pcVc) versus τ̂X behavior as already obtained
from Lekner’s parametric solution in Fig. 19(c).
The entropy change ∆SX ≡ Sgas − Sliquid on moving

left to right across the p-T liquid-gas coexistence curve
in Fig. 14 is given in reduced units by Eq. (68) as

∆SX(τ̂ )

NkB
=

3

8 τ̂

[
L(τ̂)

pcVc

]
. (90)
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FIG. 18: (Color online) Average number density of coexisting
liquid and gas phases n̂ave = (n̂l + n̂g)/2 versus reduced tem-
perature τ̂ = T/Tc obtained from Eqs. (79b) and (79l). The
curve has an S-shape and is hence not rectilinear.

The quantity in square brackets on the right side is al-
ready plotted in Fig. 19(c). Using these data and Eq. (90)
yields ∆SX/(NkB) versus τ̂ which is the same as already
plotted using Lekner’s solution in Fig. 20. The entropy
change goes to zero at the critical point because gas
and liquid phases cannot be distinguished at and above
the critical temperature. From Fig. 19(a), the derivative
dp̂X/dτ̂ shows no critical divergence. Therefore, accord-
ing to Eq. (89c), ∆SX shows the same critical behavior

for T → Tc as does ∆V̂X (or ∆n̂X, see Sec. XI below).

Since the latent heat becomes constant at low tem-
pertures according to Fig. 19(c), ∆SX diverges to ∞ as
T → 0 according to Eq. (90), as seen in Fig. 20. This di-
vergence violates the third law of thermodynamics which
states that the entropy of a system must tend to a con-
stant value (usually zero) as T → 0. This behavior again
demonstrates that like the ideal gas, the vdW fluid is
classical. This means that the predictions of the thermo-
dynamic properties for either gas are only valid in the
large-volume classical regime where the number density
N/V of the gas is much less than the quantum concen-
tration nQ. Furthermore, the triple points of materials,
where solid, gas and liquid coexist, typically occur at
T/Tc ∼ 1/2, so this also limits the temperature range
over which the vdW theory is applicable to real fluids.
However, study of the vdW fluid at lower temperatures
is still of theoretical interest.

Representative values for the above properties associ-
ated with the coexistence curve that we calculated using
the parametric equations (79) and (80) are listed in Ta-
ble VI in Appendix A.
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FIG. 19: (Color online) (a) The derivative dp̂X/dτ̂ versus τ̂ of
the liquid-gas coexistence curve in Fig. 14. (b) Difference in
normalized volume ∆VX/Vc ≡ (Vgas − Vliquid)/Vc on crossing
the p-T gas-liquid coexistence line in Fig. 14 versus τ̂ . As
also seen in Table IV, ∆VX/Vc diverges for τ̂ → 0. (c) Latent
heat L versus τ̂ obtained from either Eq. (89c) using data
as in panels (a) and (b) or from the parametric solution in
Eq. (80l). Both calculations give identical results to within
their respective numerical accuracies.
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TABLE III: Critical exponents for liquid-gas phase transitions. The parameter dτ̂ ≡ τ̂ − 1 = T
Tc

− 1 measures the fractional
deviation of the temperature from the critical temperature Tc. The unprimed critical exponents are for τ0 > 1 and the primed
ones for τ0 < 1. The prefactors of the powers of τ0 are the critical amplitudes. The critical exponent α is for the heat capacity

at constant volume, β is for the liquid-gas number density difference (order parameter) n̂l − n̂g =
(

1

V̂l
− 1

V̂g

)
on traversing

the liquid-gas coexistence line such as in Fig. 14, γ and γT are for the isothermal compressibility and δ is for the critical p-V

isotherm, which is the p-V isotherm such as in Fig. 10 that passes through the critical point τ̂ = p̂ = V̂ = 1. The experimental
critical exponents of fluids are described well by the exponents for the 3D Ising model as shown.16 The classical mean-field
critical exponents and amplitudes for the van der Waals fluid are in the last two columns. The definitions of the critical
exponents except for γT and γ′

T are from Ref. 7, adapted to the definitions of the dimensionless reduced state variables in
Eq. (91).

exponent definition thermodynamic 3D Ising model van der Waals van der Waals

path exponent exponent amplitude

α CV/(NkB) = a τ−α
0 τ0 > 0; p̂, V̂ = 1 0.110(3) 0 undefined

α′ CV/(NkB) = a′(−τ0)
−α′

τ0 < 0; p̂, V̂ = 1 0 undefined

β n̂l − n̂g = b(−τ0)
β τ0 < 0; p̂-τ̂ coexistence curve 0.326(2) 1

2
b = 4

γ κTpc = g τ−γ
0 τ0 > 0; V̂ = 1 1.239(2) 1 g = 1

6

γ′ κTpc = g′(−τ0)
−γ′

τ0 < 0; p̂-V̂ coexistence curves 1 g′ = 1
12

γp κTpc = gp τ
−γT
0 τ0 > 0; p̂ = 1, V̂ 6= 1 2

3
gp = 1

31/36

γp
′ κTpc = gp

′(−τ0)
−γT

′

τ0 < 0; p̂ = 1, V̂ 6= 1 2
3

gp
′ = 1

31/36

δ p0 = d|n0|
δsgn(n0) τ0 = 0; p0, n0 6= 0 4.80 (derived) 3 d = 3

2
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FIG. 20: (Color online) Entropy change at the first-order
liquid-gas transition ∆SX ≡ Sgas − Sliquid versus reduced
temperature τ̂ = T/Tc in Fig. 14, obtained from either the
data in Fig. 19(c) using Eq. (90) or from the parametric so-
lution in Eq. (79a). According to Eq. (90), ∆SX diverges
to ∞ as T → 0 because the latent heat of vaporization be-
comes constant at low temperatures as shown in Fig. 19(c)
and Eq. (88b).

XI. CRITICAL EXPONENTS

We introduce the following notations that are useful
when considering the approach to the critical point:

τ0 ≡ τ̂ − 1, t0 ≡ −τ0 = 1− τ̂ , v0 ≡ V̂ − 1,

n0 ≡ n̂− 1 p0 ≡ p̂− 1, µ0 ≡ µ− µc

τc
, (91)

where µc is the chemical potential at the critical point.
The notation t0 was previously introduced in Eq. (81) in
the context of the coexistence curve.
The asymptotic critical exponents relate the changes

in a property of a system to an infinitesimal deviation of
a state variable from the critical point. The definitions
of some critical exponents relevant to the thermodynam-
ics of the vdW fluid are given in Table III. Experimental
data (see, e.g., Refs. 15, 16) indicate that the liquid-gas
transition belongs to the universality class of the three-
dimensional Ising model, which is a three-dimensional
(3D) model with short-range interactions and a scalar
order parameter.16 The theoretical values for the critical
exponents α, β, γ and δ for this model are given in Ta-
ble III,16 where the value of δ is obtained from the scaling
law βδ = β+γ.17 Also shown in Table III are well-known
critical exponents for the mean-field vdW fluid.7,17 The
critical exponents γp and γ′

p are not commonly quoted.
One sees that the vdW exponents are in poor agreement
with the 3D Ising model predictions and therefore also
in poor agreement with the experimental values. In the
following we derive the vdW exponents together with the
corresponding amplitudes expressed in our dimensionless
reduced forms that are needed for comparison with our
numerical calculations for temperatures near Tc.
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FIG. 21: (Color online) Log-log plot of p̂− 1 versus n̂− 1 for
the critical p̂ versus n̂ isotherm at τ̂ = 1 in Fig. 4 obtained
from Eq. (41). On the far right, the top red solid curve is for
n/nc > 1 and the bottom blue solid curve is for n/nc > 1.
The predicted asymptotic critical behavior |p̂− 1| = d|n̂− 1|δ

with d = 3/2 and δ = 3 in Eq. (94) is shown by the dashed
green line.

A. Heat Capacity at Constant Volume

The heat capacity at constant volume in Eq. (31) for
the vdW fluid is independent of temperature. Therefore
according to the definitions in Table III one obtains

α = α′ = 0 (92)

and the corresponding amplitudes a and a′ in Table III
are hence both undefined.

B. Critical p̂ versus V̂ Isotherm at τ̂ = 1

For small deviations p0 = p̂−1 and n0 = n̂−1 of p̂ and
n̂ from their critical values of unity and setting τ̂ = 1, a
Taylor expansion of p0 to lowest order in n0 from Eq. (41)
gives

p0 =
3

2
n3
0. (93)

A comparison of this result with the corresponding ex-
pression in Table III yields the critical exponent δ and
amplitude d as

δ = 3, d =
3

2
. (94)

Thus the critical exponent and amplitude are the same
on both sides of the critical point. To determine the tem-
perature region over which the critical behavior approx-
imately describes the critical isotherm, shown in Fig. 21
is a log-log plot of p̂ − 1 versus n̂ − 1. The data are

seen to follow the predicted asymptotic critical behavior
p0 = nδ

0 with amplitude d = 3/2 and exponent δ = 3 for
0.9 <∼ n̂ <∼ 1.1. This region with p̂ ∼ 1 ± 0.001 appears
horizontal on the scale of Fig. 4.

C. Critical Chemical Potential Isotherm versus n̂

From Eq. (70c), there is no law of corresponding states
for the behavior of the chemical potential of a vdW fluid
near the critical point unless one only considers processes
on the critical isotherm for which τ̂ = 1. The value of
the chemical potential at the critical point is

µc

τc
= −

[
ln(2X) +

7

4

]
. (95)

Expanding Eq. (70c) with τ̂ = 1 in a Taylor series to the
lowest three orders in n0 ≡ n̂− 1 gives

µ0 ≡ µ− µc

τc
=

9n3
0

16
− 9n4

0

64
+

81n5
0

320
. (96)

Comparing the first term of this expression with the crit-
ical behavior of the pressure in Eq. (93), one obtains

µ0 =
3p0
8

=
9n3

0

16
. (97)

Thus the critical exponent is the same as δ = 3 in Ta-
ble III for the critical p-V isotherm but the amplitude is
smaller than d = 3

2 by a factor of 3/8.

D. Liquid-Gas Transition Order Parameter

We now determine the critical behavior of the differ-
ence in density between the liquid and gas phases on the
coexistence line, which is the order parameter for the
liquid-gas transition. Equation (83k) gives the asymp-
totic critical behavior as

∆n0X = n0l − n0g = 4
√
−τ0. (98)

Comparison of this expression with the definitions in Ta-
ble III gives the critical exponent and amplitude of the
order parameter of the transition as

β =
1

2
, b = 4. (99)

The exponent is typical of mean-field theories of second-
order phase transitions. The transition at the critical
point is second order because the latent heat goes to zero
at the critical point [see Fig. 19(c) above].
Figure 22(a) shows an expanded plot of the data in

Fig. 15(b) of the difference between the densities of the
coexisting gas and liquid phases versus temperature. One
sees a sharp downturn as T approaches Tc. In Fig. 22(b)
is plotted log10 ∆n0X versus log10(1 − τ̂ ). For 1 − τ̂ <∼
10−3, one obtains ∆n0X = 3.999(1− τ̂ )0.4999, consistent
with the critical exponent and amplitude in Eq. (99).
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FIG. 22: (Color online) (a) Expanded plot from Fig. 15(b)
of the difference ∆n̂ = n̂l − n̂g between the liquid and gas
densities near the critical point T/Tc = 1 versus reduced tem-
perature T/Tc (red curve). ∆n̂ is the order parameter for the
gas-liquid transition. (b) Logarithm to the base 10 of ∆n̂ ver-
sus the logarithm to the base 10 of the difference 1 − T/Tc.
The fitted straight line for the data points on the lower left
with 1 − T/Tc < 10−3 is given by ∆n = b(1 − T/Tc)

β with
b = 3.999 and β = 0.4999, consistent with the amplitude b = 4
and exponent β = 1/2 predicted in Eq. (99). This asymp-
totic critical behavior is shown as the dashed blue curve in
panel (a), where it is seen that this behavior is followed fairly
accurately for τ̂ >

∼ 0.97.

E. Isothermal Compressibility

The critical behaviors of κT for τ̂ → 1± are obtained
using

1

κTpc
= −V̂

(
∂p̂

∂V̂

)

τ̂

∣∣∣∣∣
V̂→1, τ̂→1

. (100)

Differentiating the pressure in Eq. (38) gives

(
∂p̂

∂V̂

)

τ̂

= − 24τ̂

(3V̂ − 1)2
+

6

V̂ 3
. (101)

Writing this expression in terms of the expansion param-
eters in Eqs. (91) and Taylor expanding to lowest orders
gives

(
∂p̂

∂V̂

)

τ̂

= −6τ0 −
9

2
v20 (τ̂ > 1), (102a)

(
∂p̂

∂V̂

)

τ̂

= 6t0 −
9

2
v20 (τ̂ < 1). (102b)

1. Approach to the Critical Point along the Isochore V̂ = 1
with τ̂ > 1

Setting v0 = 0, Eqs. (100) and (102a) immediately give

κTpc =
1

6 τ0
. (103)

Then the definition of the critical behavior of κT in Ta-
ble III gives the critical exponent γ and amplitude g as

γ = 1, g =
1

6
. (104)

2. Approach to the Critical Point along Either Boundary of

the Gas-Liquid Coexistence Curve on a p-V Diagram with

τ̂ < 0

Defining the isothermal compressibility at either the
pure gas or pure liquid coexistence points G or C on the
p-V isotherm in Fig. 9 has been used to define the critical

behavior of κT for τ̂ < 0. The value of (∂p̂/∂V̂ )τ̂ is the
slope of a p-V isotherm at either of those points since
these become the same for τ̂ → 1. Referring to Fig. 9,

the reduced value of the volume VG is what we called V̂l

for the coexisting liquid phase above and VC corresponds

to V̂g for the coexising gas phase. For either the liquid
or gas phases, to lowest order in t0 Eqs. (83) give

v20l,g = 4 t0. (105)

Substituting this value into Eq. (102b) gives

(
∂p̂

∂V̂

)

τ̂

= −12t0. (106)

Then Eq. (100) becomes

κTpc =
1

12 t0
, (107)

so the critical exponent γ′ and amplitude g′ are

γ′ = 1, g =
1

12
. (108)
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Thus the critical exponents are the same for τ̂ > 1
and τ̂ < 1 but the amplitudes are a factor of two
different.7 In the following section the critical exponents
and amplitudes of α and κT are found to be different from
the above values when the critical point is approached
along the critical isobar.

F. Approach to the Critical Point along the
Critical Isobar

In this section we consider the critical exponents and
amplitudes of κT, α and Cp on approaching the critical
point along the critical isobar, i.e. p̂ = 1. We need these
to compare with corresponding numerical calculations in
Sec. XIII below. Setting p̂ = 1, the equation of state (37)
becomes

τ̂ =

(
1 +

3

V̂ 2

)
3V̂ − 1

8
. (109)

The lowest-order Taylor series expansion of this equation
in the variables τ0 and v0 in Eqs. (91) gives

τ0 =
3

8
v30 ,

so v0 =
2τ

1/3
0

31/3
(p̂ = 1). (110)

1. Isothermal Compressibility

For τ̂ > 1, substituting v0 in Eq. (110) into (102) and
using the definition in Eq. (100) gives, after a Taylor
series expansion,

κT pc =
1

31/36
|τ0|−2/3 (p̂ = 1). (111a)

Thus the critical exponents and amplitudes are

γp = γ′

p =
2

3
, gp = g′p =

1

31/36
≈ 0.1156, (111b)

which are the same for τ̂ > 1 and τ̂ < 1 (see the critical
isobar in the V -T plane in Fig. 12).

2. Volume Thermal Expansion Coefficient

From Eq. (62), near the critical point and on a path
with p̂ = 1 one has

ατc
kB

∣∣∣∣
p̂=1

=

(
∂p̂

∂τ̂

)

V̂

∣∣∣∣
V̂ =1

κTpc. (112)

From Eq. (38), the derivative is

(
∂p̂

∂τ̂

)

V̂

∣∣∣∣
V̂ =1

= 4. (113)

Inserting this result and Eqs. (111) into (112) gives

ατc
kB

= 4κTpc =
2

34/3
|τ0|−2/3 ≈ 0.4622|τ0|−2/3 (p̂ = 1).

(114)
Thus ατc/kB has the same critical exponents as κTpc but
with amplitudes four times larger than for κTpc.

3. Heat Capacity at Constant Pressure

Inserting the above expressions for ατc/kB and κTpc
near the critical point into the expression (65c) for Cp

gives

Cp

NkB
=

3

2
+

1

31/3
|τ0|−2/3 ≈ 3

2
+ 0.6934|τ0|−2/3 (p̂ = 1).

(115)
When examining the critical part of Cp, one would re-
move the noncritical part 3/2 due to CV from the right-
hand side.
The above critical exponents and amplitudes of the

vdW fluid are listed in Table III.

XII. SUPERHEATING AND SUPERCOOLING

It is well known that systems exhibiting first-order
phase transitions can exhibit hysteresis in the transition
temperature and therefore in other physical properties
upon cooling and warming, where the transition temper-
ature is lower on cooling (supercooling) and higher on
warming (superheating) than the equilibrium transition
temperature TX. The van der Waals fluid can also exhibit
these properties.

Shown in Fig. 23(a) is a plot of reduced volume V̂
versus reduced temperature τ̂ at fixed pressure p̂ = 0.3
from Fig. 5 that is predicted from the vdW equation of
state (37). Important points on the curve are labeled by
numbers. Points 1 and 9 correspond to pure gas and liq-
uid phases, respectively, and are in the same regions as
points A and I in the p versus V isotherm in the top panel
of Fig. 12. Points 3, 5 and 7 are at the gas-liquid coex-
istence temperature TX/Tc as in Fig. 12. Points 3 and 7
thus correspond to points C and G in Fig. 9. Points 4

and 6 are points of infinite slope of V̂ versus τ̂ . The vol-
umes of points 4 and 6 do not correspond precisely with
those points D and F in Fig. 9 at the same pressure, con-
trary to what might have been expected. The curve 4-5-6
is not physically accessible by the vdW fluid because the
thermal expansion coefficient is negative along this curve.
There is no physical constraint that prevents the sys-

tem from following the path 1-2-3-4 on decreasing the
temperature, where point 4 overshoots the equilibrium
phase transition temperature. When a liquid first nu-
cleates as small droplets on cooling, the surface to vol-
ume ratio is large, and the surface tension (surface free
energy) tends to prevent the liquid droplets from form-
ing. This free energy is not included in the treatment
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FIG. 23: (Color online) (a) Reduced volume V̂ = V/Vc

versus reduced temperature τ̂ = T/Tc at constant pressure
p̂ = p/pc = 0.3. Significant points on the curve are desig-
nated by numbers as discussed in the text. The temperature
TX/Tc is the equilibrium first-order phase transition temper-

ature. (b) The equilibrium behavior of V̂ versus τ̂ is shown
by the heavy black line. The vertical black line is the region
of liquid-gas coexistence as in Fig. 12. The regions of su-
percooled gas with minimum temperature TSC/Tc and super-
heated liquid with maximum temperature TSH/Tc are shown
by dashed blue and red lines, respectively. The dotted green
curve with negative slope is not accessible by the vdW fluid.
The vertical blue and red dotted lines are not equilibrium
mixtures of gas and liquid; these lines represent an irreversible
decrease and increase in volume, respectively.

of the bulk van der Waals fluid, and represents a po-
tential energy barrier that must be overcome by den-
sity fluctuations (homogeneous nucleation) or by inter-
actions of the fluid with a surface or impurities (hetero-
geneous nucleation) before a bulk phase transition can
occur.4 These mechanisms take time to nucleate suffi-
ciently large liquid droplets, and therefore rapid cooling
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FIG. 24: (Color online) Reduced equilibrium phase transi-
tion temperature τ̂X = TX/Tc, maximum superheating tem-
perature τ̂SH = TSH/Tc, minimum supercooling temperature
τ̂SC = TSC/Tc and the difference τ̂SH − τ̂SC versus reduced
pressure p̂ = p/pc from p̂ = 0.01 to 1.

promotes this so-called supercooling. The minimum pos-
sible supercooling temperature τ̂SC = TSC/Tc occurs at
point 4 in Fig. 23(a), resulting in a supercooling curve
given by the dashed blue curve in Fig. 23(b). Similarly,
superheating can occur with a maximum reduced tem-
perature τ̂SH = TSH/Tc at point 6 in Fig. 23(a), resulting
in a superheating curve given by the dashed red curve
in Fig. 23(b). The vertical dotted blue and red lines
in Fig. 23(b) represent nonequilibrium irreversible tran-
sitions from supercooled gas to liquid and from super-
heated liquid to gas, respectively. The latter can be dan-
gerous because this transition can occur rapidly, resulting
in explosive spattering of the liquid as it transforms into
gas with a much higher volume. The dashed supercool-
ing and superheating curves in Fig. 23(b) are included in
the T versus V phase diagram in Fig. 13(b).

The reduced volumes V̂4 and V̂6 in Fig. 23(a) are calcu-
lated for a given pressure p̂ from the equation of state (37)

as the volumes at which dτ̂/dV̂ = 0 (and dV̂ /dτ̂ = ∞).
Then the reduced temperatures τ̂SC = τ̂4 and τ̂SH = τ̂6
are determined from these volumes and the given p̂ using
Eq. (37). The equilibrium first-order transition temper-

ature τ̂X is calculated by first finding the volumes V̂3

and V̂7 at which the chemical potentials in Eq. (72) are
equal, where one also requires that τ̂3 = τ̂6 without ex-
plicitly calculating their values. Once these volumes are
determined, the value of τ̂X = τ̂3 = τ̂6 is determined from
Eq. (37). Plots of τ̂X, τ̂SH, τ̂SC and τ̂SH − τ̂SC are shown
versus p̂ from p̂ = 0.01 to 1 in Fig. 24. One sees that τ̂X
is roughly midway between τ̂SH and τ̂SC over the whole
pressure range, with τ̂SH − τ̂SC decreasing monotonically
with increasing temperature and going to zero at p̂ = 1
as expected.
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FIG. 25: (Color online) Equilibrium isobars of the difference
in entropy from that the critical point ∆S/NkB versus re-
duced temperature τ̂ = T/Tc calculated using Eq. (58) for
(a) p̂ = p/pc ≥ 1 and (b) p̂ ≤ 1. The difference in entropy
is calculated with respect to the entropy at the critical point

τ̂ = V̂ = p̂ = 1.

XIII. NUMERICAL CALCULATIONS AT
CONSTANT PRESSURE OF THE ENTROPY,

INTERNAL ENERGY, ENTHALPY, THERMAL
EXPANSION COEFFICIENT, ISOTHERMAL

COMPRESSIBILITY AND HEAT CAPACITY AT
CONSTANT PRESSURE VERSUS

TEMPERATURE

A. Results for p ≥ pc

The entropy relative to that at the critical point
∆S/NkB versus reduced temperature τ̂ = T/Tc calcu-
lated using Eq. (58) at constant pressure for p̂ = p/pc ≥ 1
is shown in Fig. 25(a). As the pressure decreases towards
the critical point p̂ = 1, an inflection point develops in
∆S versus T with a slope that increases to ∞ at τ̂ = 1,
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FIG. 26: (Color online) Equilibrium isobars of reduced inter-
nal energy U/(pcVc) versus reduced temperature τ̂ = T/Tc

calculated using Eq. (50) for (a) p̂ = p/pc ≥ 1 and (b) p̂ ≤ 1.

signaling entrance into a phase-separated temperature
range with decreasing pressure. The development of an
infinite slope in ∆S versus T with decreasing pressure
results in the onset of a divergence in the heat capacity
at constant pressure at the critical point discussed below.
Similar behaviors are found for the internal energy and
enthalpy using Eqs. (50) and (56), respectively, as shown
in Figs. 26(a) and 27(a), respectively.

The thermal expansion coefficient ατc/kB versus T/Tc

calculated from Eq. (63a) is plotted in Fig. 28(a) for
p/pc = 1 to 1.5 in 0.1 increments. It is interesting that
that the molecular interactions have a large influence on
α (and κT and Cp, see below) even when p is signifi-
cantly larger than pc. The data show divergent behavior
for p̂ = 1 at T → Tc which is found in Fig. 28(b) to be

given by ατc/kB = 0.462(16)
∣∣∣ TTc

− 1
∣∣∣
−0.667(2)

for both

T → T±
c , where the exponent and amplitude are equal
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FIG. 27: (Color online) Equilibrium isobars of reduced en-
thalpy H/(pcVc) versus reduced temperature τ̂ = T/Tc calcu-
lated using Eq. (56) for (a) p̂ = p/pc ≥ 1 and (b) p̂ ≤ 1.

to the analytical values of −2/3 and 2/34/3 in Eqs. (114)
to within the error bars.

The isothermal compressibility κpc versus T/Tc calcu-
lated from ατc/kB and Eq. (64) is plotted in Fig. 28(c)
for p/pc = 1 to 1.5 in 0.1 increments. The data
again show divergent behavior for p̂ = 1 at T → Tc

which is found in Fig. 28(d) to be given by κpc − 1 =

0.114(22)
∣∣∣ TTc

− 1
∣∣∣
−0.668(11)

for both T → T±
c , where the

exponent and amplitude are equal to the analytical val-
ues of −2/3 and 1/(31/36) in Eqs. (111b) to within the
error bars. The noncritical background compressibility
of the ideal gas κTpc = pc/p = 1 in Eq. (7) from the
calculated κpc versus T/Tc data before making the plot
in Fig. 28(d).

The Cp(T ) predicted by Eq. (66a) is plotted for p/pc =
1.0–1.5 in Fig. 29(a). One sees that as p decreases to-
wards pc from above, a peak occurs at a temperature

somewhat above Tc that develops into a divergent be-
havior at T = Tc when p = pc. The critical part of

the divergent behavior
Cp

NkB
− 3

2 for p = pc is plotted

versus
∣∣∣ TTc

− 1
∣∣∣ for both T/Tc < 1 and T/Tc > 1 in a

log-log plot in Fig. 29(b). The same critical behavior

Cp

NkB
− 3

2 = 0.693(12)
∣∣∣ TTc

− 1
∣∣∣
−0.667(1)

is observed at the

critical point for both T → T+
c and T → T−

c , as shown,
where the exponent and amplitude are equal to the ana-
lytical values of −2/3 and 1/31/3 in Eqs. (115) to within
the error bars. From Eq. (65b), this critical exponent
is consistent with the critical exponents of −2/3 deter-
mined above for both α and κT obtained on approaching
the critical point at constant pressure versus temperature
from either side of the critical point.

If instead of approaching the critical point in Fig. 14
horizontally at constant pressure p̂ = 1 versus temper-
ature as above, one approaches it vertically at constant
temperature τ̂ = 1 versus pressure, we find that the criti-
cal behavior of [Cp/(NkB)−3/2], ατc/kB and (κpc−1) all

still follow the same behavior ∝
∣∣∣ TTc

− 1
∣∣∣
−2/3

to within

the error bars of 0.001 to 0.01 on the respective expo-
nents.

B. Results for p ≤ pc

The equilibrium ∆S/NkB versus τ̂ calculated using
Eq. (58) at constant pressure for p̂ ≤ 1, augmented by
the above calculations of the gas-liquid coexistence re-
gion, is shown in Fig. 25(b). For p̂ < 1 a discontinuity
in the entropy occurs at a temperature-dependent tran-
sition temperature TX that decreases with decreasing p̂
according to the pressure versus temperature phase di-
agram in Fig. 14. The change in entropy at the tran-
sition ∆SX/NkB versus the reduced transition tempera-
ture TX/Tc is plotted above in Fig. 20. Similar behaviors
are found for the internal energy and enthalpy as shown
in Figs. 26(b) and 27(b), respectively.

The reduced thermal expansion coefficient ατc/kB and
reduced isothermal compressibility κTpc versus reduced
temperature τ̂ = T/Tc for several values of reduced pres-
sure p̂ = p/pc are plotted in Figs. 30(a) and 30(b), re-
spectively. Both quantities show discontinuous increases
(jumps) at the first-order transition temperature τ̂X < 1
from liquid to gas phases with increasing temperature.
These data are for the pure gas and liquid phases on ei-
ther side of the coexistence curve in Fig. 14. Remarkably,
the jumps vary nonmonically with temperature for both
quantitities. This is confirmed in Fig. 30(c) where the
jumps calculated from the parametric solutions to them
in Eqs. (B2c) and (B1c) are plotted.

The reduced heat capacity at constant pressure
Cp/(NkB) versus reduced temperature τ̂ is shown in
Fig. 31(a) for p̂ = 0.3, 0.4, . . . , 1. The transition from
pure gas to pure liquid on cooling below the reduced tran-
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FIG. 28: (Color online) (a) Dimensionless reduced volume thermal expansion coefficient ατc/kB versus reduced temperature
T/Tc for reduced pressures p/pc = 1 to 1.5 in 0.1 increments obtained from Eq. (63a). The divergence of α for p/pc = 1 is

illustrated in (b) which shows a log-log plot of ατc/kB versus
∣∣∣ T
Tc

− 1
∣∣∣ for both T/Tc < 1 (red) and T/Tc > 1 (blue). Both

data sets show the same divergent behavior ατc/kB ∝
∣∣∣ T
Tc

− 1
∣∣∣
−2/3

for T → Tc. Panels (c) and (d) show the same plots for

the reduced isothermal compressibility κpc versus T/Tc obtained using Eq. (60a) at the same pressures. The critical exponent
in (d) is seen to be the same as for the thermal expansion coefficient in (b) to within the respective error bars.

sition temperature τ̂X = TX/Tc results in a peak in the
heat capacity and a jump ∆Cp/NkB at τ̂X. In addition,
there is a latent heat at the transition that is not consid-
ered here. The heat capacity jump is plotted versus τ̂X
as filled circles in Fig. 31(b), where it is seen to initially
strongly decrease with decreasing τ̂X and then become
much less dependent on τ̂X. The exact parametric so-
lution for ∆Cp/NkB versus τ̂X obtained from Eq. (B3c)
is plotted as the solid red curve in Fig. 31(c), where, in
contrast to the jumps in κT and α in Fig. 30, ∆Cp/NkB
decreases monotonically with decreasing τ̂X and goes lin-
early to zero at T = 0.

Representative values of the jumps versus τ̂X in κT,
α and Cp on crossing the coexistence curve in Fig. 14,
calculated from Eqs. (B1c), (B2c) and (B3c), are listed

in Table VII in Appendix A.

XIV. ADIABATIC FREE EXPANSION AND
JOULE-THOMSON EXPANSION

A. Adiabatic Free Expansion

In an adiabatic free expansion of a gas from an initial
volume V1 to a final volume V2, the heat absorbed by
the fluid Q and the work done by the fluid W during
the expansion are both zero, so the change in the inter-
nal energy U of the fluid obtained from the first law of
thermodynamics is

∆U ≡ U2 − U1 = Q−W = 0. (116)
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FIG. 29: (Color online) (a) Heat capacity at constant pres-
sure Cp/NkB versus temperature T/Tc for reduced pressures
p/pc = 1 to 1.5 in 0.1 increments. The divergence of Cp for
p/pc = 1 is illustrated in (b) which shows a log-log plot of the

critical part
Cp

NkB
− 3

2
versus

∣∣∣ T
Tc

− 1
∣∣∣ for both T/Tc < 1 (red)

and T/Tc > 1 (blue). Both data sets show the same divergent

behavior
Cp

NkB
− 3

2
∝

∣∣∣ T
Tc

− 1
∣∣∣
−2/3

.

From the expression for the reduced internal energy of
the vdW fluid in Eq. (50), one has

U2 − U1

pcVc
= 4(τ̂2 − τ̂1)− 3

(
1

V̂2

− 1

V̂1

)
. (117)

Setting this equal to zero gives

τ̂2 − τ̂1 =
3

4

(
1

V̂2

− 1

V̂1

)
. (118)

By definition of an expansion one has V̂2 > V̂1, yielding

τ̂2 < τ̂1, (119)

so the adiabatic free expansion of a vdW fluid cools it.
This contasts with an ideal gas where τ̂2 = τ̂1 because
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FIG. 30: (Color online) Isobars of the (a) thermal expan-
sion coefficient ατc and (b) isothermal compressibility κTpc
vs temperature τ̂ = T/Tc. The respective discontinuities vs
τ̂X predicted by Eqs. (B2c) and (B1c) are shown in (c).

according to Eq. (4), U does not depend on volume for
an ideal gas.

The above considerations are valid if there is no gas to
liquid phase transition. To clarify this issue, in Fig. 32 are

plotted τ̂ versus V̂ obtained using Eq. (50) at the fixed
values of U/(pcVc) indicated. We have also calculated
the pressure of the gas along each curve using Eq. (38)
(not shown) and compared it with the liquifaction pres-
sure p̂X(τ̂ ) in Fig. 14. For a range of U/(pcVc) approxi-
mately between 0 and 1, we find that the gas liquifies as
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FIG. 31: (Color online) (a) Cp/(NkB) versus τ̂ = T/Tc iso-
bars. (b) Heat capacity jump ∆Cp/NkB versus transition
temperature τ̂X = TX/Tc. Two values of p̂ are indicated. The
data points (filled red circles) are measured from isobars such
as in panel (a). The solid curve is the prediction in Eq. (B3c).
(c) The prediction of Eq. (B3c) for ∆Cp/NkB over the full
temperature range.

it expands and cools. Thus under limited circumstances,
adiabatic free expansion of the van der Waals gas can
liquify it.

We note the caveat discussed by Reif3 that an adia-
batic free expansion is an irreversible “one-shot” expan-
sion that necessarily has to cool the solid container that
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FIG. 32: (Color online) (a) Reduced temperature τ̂ = T/Tc

versus reduced volume V̂ = V/Vc at fixed values of re-
duced internal energy U/(pcVc) as indicated for the ranges
(a) U/(pcVc) = 0 to 10 and (b) −2 to 2. The filled red cir-
cles in (b) denote the phase transtion from pure gas to pure
liquid due to the cooling associated with the free expansion.
In (b), the curves with U/(pcVc) = −2 and −1 terminate be-
cause the calculated pressure becomes negative at the ends of
these plotted curves. For U/(pcVc) = 0 and 1, a wide range of
possible initial and final volumes for the adiabatic expansion
result in the liquification of the expanding gas.

the gas is confined in. The container would likely have
a substantial heat capacity compared to that of the gas.
Therefore the actual amount of cooling of the gas is likely
significantly smaller than calculated above. This limita-
tion is eliminated in the steady-state expansion of a gas
through a “throttle” in a tube from high to low pressure
as discussed in the next section, where in the steady state
the walls of the tube on either side of the throttle have
reached a steady temperature.
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FIG. 33: (Color online) (a) Reduced temperature τ̂ = T/Tc

versus reduced pressure p̂ = p/pc at fixed values of reduced
enthalpy H/(pcVc) as indicated for the range (a) H/(pcVc) =
−2 to 10. The filled blue squares are the inversion points with
zero slope where the gas is first warmed instead of cooled if
the starting pressure it to the right of the squares. The thin
blue line through the blue squares is the analytic prediction
for the inversion point in Eq. (130b). (b) Explanded plots of
τ̂ versus p̂ for H/(pcVc) = 0 to 2. The filled red circle for each
curve is p̂X(τ̂ ) for the given value of H/(pcVc) that separates
the region of pure gas to the right of the circle and pure liquid
to the left.

B. Joule-Thomson Expansion

In Joule-Thomson (or Joule-Kelvin) expansion, gas at
a high pressure p1 passes through a constriction (throttle)
that might be a porous plug or small valve to a region
with low pressure p2 in a thermally insulated tube.3 In
such an expansion, the enthalpy H instead of the internal
energy U is found to be constant during the expansion:

H2(τ̂2, p̂2)

pcVc
=

H1(τ̂1, p̂1)

pcVc
. (120)

Whether heating or cooling of the gas occurs due to the
expansion depends on how p̂ and τ̂ vary at constant H .
Therefore it is useful to plot τ̂ versus p̂ at fixed H to
characterize how the fluid temperature changes on pass-
ing from the high to the low pressure side of the throttle.
From Eq. (56) one can express the temperature in

terms of the enthalpy and volume as

τ̂ =
3V̂ − 1

4(5V̂ − 1)

(
H

pcVc
+

6

V̂

)
. (121)

However, one needs to plot τ̂ versus p̂ instead of versus V̂
at fixed H . Therefore in a parametric solution one cal-

culates τ̂ versus V̂ using Eq. (121) and p̂ versus V̂ using

Eq. (38) and then obtains τ̂ versus p̂ with V̂ as an im-
plicit parameter. We note that according to Eq. (57), a
value of H/(pcVc) = 2 gives rise to a plot of τ̂ versus p̂

that passes through the critical point τ̂ = p̂ = V̂ = 1.
Thus for H/(pcVc) < 2 one might expect that expansion
of the vdW gas through a throttle could liquify the gas
in a continuous steady-state process. This is confirmed
below.
Shown in Fig. 33(a) are plots of reduced temperature

τ̂ versus reduced pressure p̂ at fixed values of reduced
enthalpy H/(pcVc) for H/(pcVc) = −2 to 10. Each curve
has a smooth maximum. The point at the maximum of a
curve is called an inversion point (labeled by a filled blue
square) and the locus of these points versus H is known
as the “inversion curve”. If the high pressure p2 is greater
than the pressure of the inversion point, the gas would
initially warm on expanding instead of cooling, whereas
if p2 is at a lower pressure than this, then the gas only
cools as it expands through the throttle. Thus in using
the Joule-Thomson expansion to cool a gas, one normally
takes the high pressure p2 to be at a lower pressure than
the pressure of the inversion point. The low pressure p1
can be adjusted according to the application.
The slope of T versus p at fixed H is3

(
∂T

∂p

)

H

=
V

Cp
(TαT − 1). (122)

In reduced variables (36), this becomes

(
∂τ̂

∂p̂

)

H

=
3V̂

8[Cp/(NkB)]

[
τ̂

(
αTτc
kB

)
− 1

]
. (123)

Thus the inversion (I) point for a particular plot where
the slope ∂τ̂/∂p̂ at fixed H changes from positive at low
pressures to negative at high pressures is given by setting
the right side of Eq. (123) to zero, yielding

τ̂I(τ̂ , V̂ ) =
1

αTτc/kB
=

3[4τ̂ V̂ 3 − (3V̂ − 1)2]

4(3V̂ − 1)V̂ 2
, (124)

where the second equality was obtained using the ex-
pression for αT in Eq. (63a). Equation (124) allows an
accurate determination of the inversion point by locating
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FIG. 34: (Color online) Reduced inversion temperature τ̂I =
TI/Tc versus reduced pressure p̂ = p/pc for Joule-Thomson
expansion at constant enthalpy obtained using Eqs. (130).

the value of V̂ at which the calculated τ̂ (V̂ ) crosses τ̂I(V̂ )
for the particular value of H .
One can also determine an analytic equation for the

inversion curve of τI versus p̂ and important points along

it. By equating the temperatures τ̂(H, V̂ ) in Eq. (121)
and τ̂I in Eq. (124) one obtains the reduced volume versus
enthalpy at the inversion point as

V̂I =
15 +

√
3(30 + h)

45− h
, (125)

where we have introduced the abbreviation

h ≡ H

pcVc
. (126)

Then τ̂I is given in terms of h by inserting Eq. (125)
into (121), yielding

τ̂I =
1

4

[
42 + h− 4

√
3(30 + h)

]
. (127)

The reduced inversion pressure versus h is obtained by

inserting V̂I(h) in Eq. (125) and τ̂I(h) in Eq. (127) into
the equation of state (38), yielding

p̂ = 3
[
−75− h+ 8

√
3(30 + h)

]
. (128)

Solving this expression for h gives the two solutions

h± = 18 +
9− p̂

3
± 8(9− p̂). (129)

Finally, inserting these two enthalpies into Eq. (127) and
simplifying gives the two-branch solution for the inver-
sion curve of τ̂I(h) versus p̂ as

τ̂I = 3 +
9− p̂

12
+
√
9− p̂ (τ̂I ≥ 3), (130a)

τ̂I = 3 +
9− p̂

12
−
√
9− p̂ (τ̂I ≤ 3). (130b)

The inverse relation was obtained in Ref. 12 as

p̂I = 9

(
3− 2

√
τ̂

3

)(
2

√
τ̂

3
− 1

)
, (131)

which yields Eqs. (130) on solving for τ̂I(p̂).
Important points along the inversion curve are18

p̂max = 9,

τ̂I(p̂ = 0) =
3

4
and

27

4
, h(p̂ = 0) = −3 and 45,

τ̂I(p̂ = p̂max) = 3, h(p̂ = p̂max) = 18. (132)

These points are consistent with the inversion point data
in Fig. 33(a). A plot of τ̂I versus p̂ obtained using
Eq. (130b) is shown in Fig. 33(a) and a plot using both
of Eqs. (130) is shown in Fig. 34. One notes from Fig. 34
that the curve is asymmetric with respect to a horizontal
line through the apex of the curve.
Expanded plots of τ̂ versus p̂ for H/(pcVc) = 0 to 2 are

shown in Fig. 33(b) to emphasize the low-temperature
and low-pressure region. On each curve is appended the
data point (τ̂ , p̂X) (filled red circle) which is the corre-
sponding point on the coexistence curve p̂X(τ) in Fig. 14.
If the final pressure is to the left of the red circle for the
curve, the fluid on the low-pressure side of the throttle
is in the liquid phase, whereas if the final pressure is to
the right of the red circle, the fluid is in the gas phase.
Thus using Joule-Thomson expansion, one can convert
gas into liquid as the fluid cools within the throttle if one
appropriately chooses the operating conditions.

XV. SUMMARY

The van der Waals theory of fluids is a mean-field the-
ory in which attractive molecular interactions give rise
to a first-order phase transition between gas and liquid
phases. The theory can be solved exactly analytically or
to numerical accuracy for all thermodynamic properties
versus temperature, pressure and volume. Here new un-
derstandings of these properties are provided, which also
necessitated review of important results about the vdW
fluid already known.
The main contributions of this work include resolving

the long-standing contentious question about the influ-
ence of the vdW interaction parameters a and b on the
pressure of the vdW gas with respect to that of an ideal
gas at the same temperature and volume, and resolving a
common misconception about the meaning of the Boyle
temperature. The calculation of the coexistence region
between gas and liquid using the conventional paramet-
ric solution with volume as the implicit parameter is de-
scribed in detail. Lekner’s elegant parametric solution9

of gas-liquid coexistence of the vdW fluid using the en-
tropy difference between the gas and liquid phases as the
implicit parameter is developed in detail, including de-
termining the limiting behaviors of thermodynamic prop-
erties as the temperature approaches zero and the crit-
ical temperature to augment the corresponding results
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of Refs. 9 and 10. Using Lekner’s formulation, analytic
solutions are presented in Appendix B for the disconti-
nuities on crossing the p-T gas-liquid coexistence curve
of the isothermal compressibilty κT, thermal expansion
coefficient α and heat capacity at constant pressure Cp.

Although it is well known that hysteresis in the tran-
sition temperature can occur for first-order phase tran-
sitions, this aspect of the vdW fluid has been little dis-
cussed. Quantitative numerical calculations are given of
the maximum superheating and minimum supercooling
temperatures on heating and cooling through the equi-
librium transition temperature, respectively.

Numerical values of thermodyanic quantities versus
temperature, volume, or entropy from the above stud-
ies are given in tables in Appendix A.

The critical exponents of the vdW fluid are calculated
for several thermodynamic properties on approach to the
critical point and within the region of overlap they agree
with previous well-known results.7 The critical ampli-
tudes are also calculated in terms of our reduced parame-
ters. The critical exponent and/or amplitude for a given
property depend, in general, on the path of approach to
the critical point.

The temperature dependences of κT, α and Cp of the
vdW fluid not associated with the critical point have
been little studied previously. A systematic numerical
investigation at constant pressure is presented of κT, α
and Cp versus temperature where the pressure is either
greater than, equal to, or less than the critical pressure.
For pressures above the critical pressure, these properties
are strongly influenced by proximity to the critical point
even at pressures significantly above the critical pressure.
At the critical pressure, the numerical critical behaviors
near the critical point agree with the predictions of ana-
lytic theory discussed above. Below the critical pressure,
the numerical values of the discontinuities of κT, α and
Cp on crossing the coexistence curve are in agreement
with the above analytic results. The latent heat and en-
tropy change on crossing the liquid-gas coexistence curve
in the pressure-temperature plane were also thoroughly
discussed.

Expansion of a continuous flow of a non-ideal gas at
high pressure through a throttle to a lower-pressure re-
gion, called Joule-Thomson expansion, can be used to
cool or liquify the gas. This process occurs at constant
enthalpy when the temperature on the high-pressure side
is below the so-called inversion temperature. Isenthalps
in the temperature-pressure plane for the vdW gas were
generated numerically and the inversion points deter-
mined. Formulas for the two branches of the inversion
temperature versus pressure were derived analytically
and found to be consistent with an earlier calculation
by Le Vent.12 Conditions under which liquid can be pro-
duced by Joule-Thomson expansion of a vdW gas are
described.

Appendix A: Tables of Values
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TABLE IV: Phase coexistence points in the p-V -T phase space of the vdW fluid. The data columns versus temperature are
labeled by the pressure and volume notations in Fig. 9.

T/Tc pX/pc VG/Vc VF/Vc VD/Vc VC/Vc

∣∣∣ T/Tc pX/pc VG/Vc VF/Vc VD/Vc VC/Vc

1 1 1 1 1 1 0.57 6.419e-02 0.4241 0.5246 3.158 2.191e+01

0.99 9.605e-01 0.8309 0.8946 1.128 1.243e+00 0.56 5.764e-02 0.4214 0.5209 3.232 2.411e+01

0.98 9.219e-01 0.7755 0.8561 1.189 1.376e+00 0.55 5.158e-02 0.4188 0.5173 3.308 2.661e+01

0.97 8.843e-01 0.7376 0.8283 1.240 1.496e+00 0.54 4.598e-02 0.4163 0.5137 3.387 2.947e+01

0.96 8.476e-01 0.7082 0.8059 1.287 1.612e+00 0.53 4.081e-02 0.4138 0.5102 3.469 3.274e+01

0.95 8.119e-01 0.6841 0.7870 1.330 1.727e+00 0.52 3.607e-02 0.4114 0.5068 3.553 3.652e+01

0.94 7.771e-01 0.6637 0.7704 1.372 1.844e+00 0.51 3.174e-02 0.4091 0.5034 3.641 4.089e+01

0.93 7.432e-01 0.6459 0.7556 1.412 1.963e+00 0.50 2.779e-02 0.4068 0.5000 3.732 4.598e+01

0.92 7.102e-01 0.6302 0.7422 1.451 2.087e+00 0.49 2.420e-02 0.4045 0.4967 3.827 5.195e+01

0.91 6.782e-01 0.6161 0.7299 1.490 2.215e+00 0.48 2.097e-02 0.4023 0.4934 3.925 5.897e+01

0.90 6.470e-01 0.6034 0.7186 1.529 2.349e+00 0.47 1.806e-02 0.4002 0.4902 4.028 6.729e+01

0.89 6.167e-01 0.5918 0.7080 1.567 2.489e+00 0.46 1.545e-02 0.3981 0.4870 4.134 7.722e+01

0.88 5.874e-01 0.5811 0.6981 1.605 2.636e+00 0.45 1.313e-02 0.3960 0.4838 4.246 8.915e+01

0.87 5.589e-01 0.5712 0.6888 1.644 2.791e+00 0.44 1.108e-02 0.3940 0.4807 4.362 1.036e+02

0.86 5.312e-01 0.5620 0.6800 1.682 2.955e+00 0.43 9.283e-03 0.3921 0.4776 4.483 1.212e+02

0.85 5.045e-01 0.5534 0.6717 1.721 3.128e+00 0.42 7.710e-03 0.3901 0.4746 4.611 1.429e+02

0.84 4.786e-01 0.5453 0.6637 1.760 3.311e+00 0.41 6.347e-03 0.3883 0.4716 4.744 1.698e+02

0.83 4.535e-01 0.5377 0.6561 1.800 3.506e+00 0.40 5.175e-03 0.3864 0.4686 4.883 2.036e+02

0.82 4.293e-01 0.5306 0.6489 1.840 3.714e+00 0.39 4.175e-03 0.3846 0.4656 5.030 2.465e+02

0.81 4.059e-01 0.5238 0.6419 1.880 3.936e+00 0.38 3.332e-03 0.3828 0.4627 5.184 3.015e+02

0.80 3.834e-01 0.5174 0.6352 1.921 4.172e+00 0.37 2.627e-03 0.3811 0.4597 5.346 3.729e+02

0.79 3.616e-01 0.5113 0.6288 1.963 4.426e+00 0.36 2.044e-03 0.3794 0.4568 5.518 4.670e+02

0.78 3.406e-01 0.5055 0.6225 2.005 4.698e+00 0.35 1.567e-03 0.3777 0.4540 5.699 5.926e+02

0.77 3.205e-01 0.5000 0.6165 2.049 4.990e+00 0.34 1.183e-03 0.3761 0.4511 5.890 7.631e+02

0.76 3.011e-01 0.4947 0.6107 2.092 5.304e+00 0.33 8.785e-04 0.3745 0.4483 6.093 9.986e+02

0.75 2.825e-01 0.4896 0.6051 2.137 5.643e+00 0.32 6.401e-04 0.3729 0.4455 6.308 1.330e+03

0.74 2.646e-01 0.4848 0.5996 2.183 6.009e+00 0.31 4.569e-04 0.3713 0.4426 6.537 1.806e+03

0.73 2.475e-01 0.4801 0.5943 2.229 6.406e+00 0.30 3.188e-04 0.3698 0.4399 6.781 2.506e+03

0.72 2.311e-01 0.4756 0.5891 2.277 6.835e+00 0.29 2.170e-04 0.3683 0.4371 7.041 3.560e+03

0.71 2.154e-01 0.4713 0.5841 2.326 7.302e+00 0.28 1.437e-04 0.3668 0.4343 7.321 5.193e+03

0.70 2.005e-01 0.4672 0.5792 2.376 7.811e+00 0.27 9.225e-05 0.3654 0.4315 7.620 7.801e+03

0.69 1.862e-01 0.4632 0.5744 2.427 8.366e+00 0.26 5.723e-05 0.3639 0.4288 7.943 1.211e+04

0.68 1.726e-01 0.4593 0.5698 2.479 8.973e+00 0.25 3.417e-05 0.3625 0.4260 8.291 1.951e+04

0.67 1.597e-01 0.4556 0.5652 2.532 9.639e+00 0.24 1.953e-05 0.3612 0.4233 8.668 3.276e+04

0.66 1.475e-01 0.4520 0.5608 2.587 1.037e+01 0.23 1.063e-05 0.3598 0.4205 9.077 5.767e+04

0.65 1.358e-01 0.4485 0.5564 2.644 1.118e+01 0.22 5.477e-06 0.3585 0.4178 9.524 1.071e+05

0.64 1.249e-01 0.4451 0.5522 2.702 1.207e+01 0.21 2.647e-06 0.3571 0.4150 10.01 2.116e+05

0.63 1.145e-01 0.4419 0.5480 2.761 1.305e+01 0.20 1.189e-06 0.3558 0.4122 10.55 4.485e+05

0.62 1.047e-01 0.4387 0.5439 2.823 1.415e+01 0.19 4.909e-07 0.3546 0.4095 11.14 1.032e+06

0.61 9.550e-02 0.4356 0.5399 2.886 1.537e+01 0.18 1.836e-07 0.3533 0.4067 11.80 2.615e+06

0.60 8.687e-02 0.4326 0.5359 2.951 1.673e+01 0.17 6.113e-08 0.3521 0.4039 12.54 7.416e+06

0.59 7.878e-02 0.4297 0.5321 3.018 1.826e+01 0.16 1.773e-08 0.3508 0.4011 13.37 2.406e+07

0.58 7.123e-02 0.4269 0.5283 3.087 1.997e+01 0.15 4.360e-09 0.3496 0.3982 14.31 9.174e+07
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TABLE V: Representative phase coexistence points in the p-V -T phase space of the vdW fluid. The data columns versus
reduced pressure p/pc are labeled by the temperature and volume notations in Fig. 23.

p/pc TSC/Tc TX/Tc TSH/Tc V7/Vc V3/Vc V5/Vc V8/Vc V4/Vc V6/Vc V2/Vc

0.0002 0.0183 0.2880 0.8438 0.3680 3.836e+03 3.542 0.3352 1.221e+02 0.6667 1.125e+04

0.0004 0.0259 0.3062 0.8438 0.3707 2.038e+03 3.308 0.3359 8.627e+01 0.6667 5.624e+03

0.0006 0.0317 0.3180 0.8438 0.3726 1.410e+03 3.172 0.3365 7.037e+01 0.6667 3.749e+03

0.0008 0.0365 0.3270 0.8439 0.3740 1.087e+03 3.075 0.3370 6.090e+01 0.6667 2.812e+03

0.0100 0.1274 0.4341 0.8450 0.3929 1.135e+02 2.243 0.3470 1.698e+01 0.6677 2.243e+02

0.0120 0.1393 0.4446 0.8453 0.3949 9.656e+01 2.185 0.3483 1.547e+01 0.6679 1.868e+02

0.0140 0.1502 0.4539 0.8455 0.3968 8.425e+01 2.136 0.3496 1.429e+01 0.6681 1.600e+02

0.0160 0.1603 0.4622 0.8458 0.3985 7.487e+01 2.095 0.3509 1.335e+01 0.6683 1.400e+02

0.0180 0.1697 0.4698 0.8460 0.4001 6.748e+01 2.058 0.3520 1.256e+01 0.6685 1.243e+02

0.0200 0.1786 0.4768 0.8463 0.4016 6.148e+01 2.025 0.3531 1.190e+01 0.6687 1.118e+02

0.0300 0.2174 0.5057 0.8475 0.4081 4.298e+01 1.901 0.3581 9.648e+00 0.6697 7.433e+01

0.0400 0.2496 0.5283 0.8488 0.4134 3.333e+01 1.814 0.3624 8.305e+00 0.6707 5.558e+01

0.0500 0.2777 0.5473 0.8500 0.4181 2.735e+01 1.749 0.3664 7.388e+00 0.6717 4.433e+01

0.0600 0.3028 0.5637 0.8513 0.4224 2.327e+01 1.696 0.3701 6.711e+00 0.6728 3.682e+01

0.0700 0.3257 0.5783 0.8526 0.4264 2.029e+01 1.652 0.3736 6.184e+00 0.6738 3.147e+01

0.0800 0.3468 0.5915 0.8539 0.4301 1.801e+01 1.614 0.3770 5.758e+00 0.6749 2.745e+01

0.0900 0.3665 0.6037 0.8552 0.4337 1.621e+01 1.581 0.3802 5.406e+00 0.6759 2.432e+01

0.1000 0.3849 0.6150 0.8564 0.4371 1.474e+01 1.552 0.3834 5.107e+00 0.6770 2.182e+01

0.1200 0.4188 0.6354 0.8590 0.4436 1.251e+01 1.502 0.3895 4.626e+00 0.6792 1.806e+01

0.1400 0.4496 0.6536 0.8616 0.4498 1.087e+01 1.461 0.3953 4.251e+00 0.6814 1.538e+01

0.1800 0.5039 0.6855 0.8669 0.4614 8.633e+00 1.395 0.4067 3.696e+00 0.6860 1.180e+01

0.2000 0.5283 0.6997 0.8695 0.4671 7.828e+00 1.368 0.4122 3.483e+00 0.6884 1.055e+01

0.2200 0.5512 0.7130 0.8722 0.4726 7.159e+00 1.343 0.4178 3.299e+00 0.6908 9.524e+00

0.2400 0.5728 0.7255 0.8749 0.4781 6.595e+00 1.322 0.4233 3.138e+00 0.6933 8.668e+00

0.2600 0.5933 0.7374 0.8776 0.4835 6.111e+00 1.302 0.4288 2.995e+00 0.6959 7.943e+00

0.2800 0.6128 0.7486 0.8803 0.4890 5.691e+00 1.283 0.4343 2.868e+00 0.6985 7.321e+00

0.3000 0.6314 0.7594 0.8831 0.4944 5.323e+00 1.267 0.4399 2.753e+00 0.7011 6.781e+00

0.3200 0.6491 0.7698 0.8859 0.4999 4.997e+00 1.251 0.4455 2.649e+00 0.7039 6.308e+00

0.3400 0.6661 0.7797 0.8886 0.5053 4.707e+00 1.237 0.4511 2.553e+00 0.7067 5.890e+00

0.3600 0.6824 0.7892 0.8915 0.5109 4.446e+00 1.223 0.4568 2.466e+00 0.7095 5.518e+00

0.3800 0.6981 0.7985 0.8943 0.5165 4.210e+00 1.210 0.4627 2.385e+00 0.7125 5.184e+00

0.4000 0.7132 0.8074 0.8971 0.5221 3.996e+00 1.198 0.4686 2.310e+00 0.7155 4.883e+00

0.4400 0.7418 0.8245 0.9029 0.5337 3.620e+00 1.176 0.4807 2.174e+00 0.7218 4.362e+00

0.4800 0.7685 0.8406 0.9088 0.5457 3.301e+00 1.157 0.4934 2.055e+00 0.7285 3.925e+00

0.5200 0.7936 0.8558 0.9148 0.5583 3.025e+00 1.139 0.5068 1.948e+00 0.7357 3.553e+00

0.5600 0.8170 0.8704 0.9209 0.5715 2.785e+00 1.122 0.5209 1.852e+00 0.7433 3.232e+00

0.6000 0.8391 0.8843 0.9271 0.5856 2.571e+00 1.107 0.5359 1.763e+00 0.7516 2.951e+00

0.6400 0.8600 0.8977 0.9334 0.6006 2.380e+00 1.093 0.5522 1.682e+00 0.7605 2.702e+00

0.6800 0.8796 0.9106 0.9399 0.6169 2.207e+00 1.080 0.5698 1.607e+00 0.7702 2.479e+00

0.7200 0.8982 0.9230 0.9465 0.6347 2.049e+00 1.068 0.5891 1.535e+00 0.7810 2.277e+00

0.7600 0.9157 0.9350 0.9533 0.6545 1.903e+00 1.056 0.6107 1.468e+00 0.7930 2.092e+00

0.8000 0.9322 0.9466 0.9603 0.6769 1.766e+00 1.046 0.6352 1.403e+00 0.8066 1.921e+00

0.8400 0.9478 0.9579 0.9676 0.7027 1.636e+00 1.035 0.6637 1.339e+00 0.8224 1.760e+00

0.8800 0.9624 0.9688 0.9750 0.7338 1.510e+00 1.026 0.6981 1.276e+00 0.8414 1.605e+00

0.9200 0.9761 0.9795 0.9828 0.7733 1.382e+00 1.017 0.7422 1.210e+00 0.8655 1.451e+00

0.9600 0.9887 0.9899 0.9910 0.8300 1.245e+00 1.008 0.8059 1.137e+00 0.8998 1.287e+00

1 1 1 1 1 1 1 1 1 1 1
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TABLE VI: Representative values for the quantities listed, calculated in terms of the implicit parameter y using Lekner’s
parametric solution.9 The subscript X refers to a property associated with the coexistence curve in Fig. 14. τ̂X and p̂X
are the coordinates of the curve; ∆V̂X is the difference in volume of the coexisting gas and liquid phases; n̂g and n̂l are the
number densities of the two coexisting phases, ∆n̂X is the difference in density between the coexisting phases, which is the order
parameter for the gas-liquid transition; n̂ave is the average of n̂g and n̂l; ∆SX/(NkB) = (Sg−Sl)/(NkB) is the entropy difference
between the coexisting phases; and L/(pcVc) is the latent heat (enthalpy) of vaporization. These data are complementary to
those in Table IV.

y τ̂X p̂X dp̂X/dτ̂X ∆V̂X n̂g n̂l ∆n̂X n̂ave Sg − Sl L/(pcVc)

= TX/Tc = pX/pc = (Vg − Vl)/Vc = ng/nc = nl/nc = n̂l − n̂g =
n̂g+n̂l

2
NkB

0 1 1 4 0 1 1 0 1 0 0

0.10000 0.99889 9.9557e-01 3.9893e+00 1.3369e-01 9.3384e-01 1.0671 0.13321 1.0004 0.20000 0.53274

0.11220 0.99860 9.9442e-01 3.9866e+00 1.5011e-01 9.2584e-01 1.0753 0.14944 1.0006 0.22440 0.59757

0.12589 0.99824 9.9298e-01 3.9831e+00 1.6857e-01 9.1689e-01 1.0845 0.16762 1.0007 0.25179 0.67025

0.14125 0.99779 9.9118e-01 3.9788e+00 1.8934e-01 9.0688e-01 1.0949 0.18801 1.0009 0.28251 0.75169

0.15849 0.99722 9.8891e-01 3.9733e+00 2.1274e-01 8.9569e-01 1.1065 0.21085 1.0011 0.31698 0.84292

0.17783 0.99650 9.8606e-01 3.9664e+00 2.3911e-01 8.8318e-01 1.1196 0.23644 1.0014 0.35566 0.94510

0.19953 0.99560 9.8248e-01 3.9578e+00 2.6887e-01 8.6921e-01 1.1343 0.26510 1.0018 0.39905 1.0595

0.22387 0.99446 9.7801e-01 3.9469e+00 3.0251e-01 8.5363e-01 1.1508 0.29717 1.0022 0.44774 1.1874

0.25119 0.99304 9.7240e-01 3.9333e+00 3.4059e-01 8.3626e-01 1.1693 0.33305 1.0028 0.50238 1.3304

0.28184 0.99126 9.6540e-01 3.9163e+00 3.8382e-01 8.1693e-01 1.1901 0.37315 1.0035 0.56368 1.4900

0.31623 0.98902 9.5666e-01 3.8949e+00 4.3301e-01 7.9544e-01 1.2134 0.41793 1.0044 0.63246 1.6680

0.35481 0.98622 9.4579e-01 3.8683e+00 4.8920e-01 7.7161e-01 1.2395 0.46786 1.0055 0.70963 1.8663

0.39811 0.98272 9.3231e-01 3.8350e+00 5.5365e-01 7.4523e-01 1.2687 0.52346 1.0070 0.79621 2.0865

0.44668 0.97835 9.1564e-01 3.7935e+00 6.2800e-01 7.1611e-01 1.3013 0.58524 1.0087 0.89337 2.3307

0.50119 0.97291 8.9514e-01 3.7420e+00 7.1432e-01 6.8408e-01 1.3378 0.65372 1.0109 1.0024 2.6006

0.56234 0.96615 8.7007e-01 3.6784e+00 8.1535e-01 6.4900e-01 1.3784 0.72941 1.0137 1.1247 2.8976

0.63096 0.95779 8.3964e-01 3.6000e+00 9.3476e-01 6.1078e-01 1.4235 0.81273 1.0171 1.2619 3.2231

0.70795 0.94748 8.0304e-01 3.5040e+00 1.0776e+00 5.6940e-01 1.4734 0.90404 1.0214 1.4159 3.5774

0.79433 0.93485 7.5951e-01 3.3872e+00 1.2507e+00 5.2494e-01 1.5284 1.0035 1.0267 1.5887 3.9604

0.89125 0.91947 7.0849e-01 3.2465e+00 1.4642e+00 4.7765e-01 1.5887 1.1111 1.0332 1.7825 4.3705

1.0000 0.90088 6.4971e-01 3.0787e+00 1.7324e+00 4.2793e-01 1.6543 1.2264 1.0411 2.0000 4.8047

1.1220 0.87864 5.8343e-01 2.8812e+00 2.0769e+00 3.7642e-01 1.7251 1.3487 1.0508 2.2440 5.2579

1.2589 0.85233 5.1066e-01 2.6528e+00 2.5310e+00 3.2401e-01 1.8008 1.4768 1.0624 2.5179 5.7228

1.4125 0.82165 4.3327e-01 2.3938e+00 3.1471e+00 2.7183e-01 1.8806 1.6088 1.0762 2.8251 6.1900

1.5849 0.78646 3.5408e-01 2.1075e+00 4.0108e+00 2.2124e-01 1.9638 1.7425 1.0925 3.1698 6.6477

1.7783 0.74684 2.7672e-01 1.8004e+00 5.2677e+00 1.7374e-01 2.0489 1.8751 1.1113 3.5566 7.0831

1.9953 0.70320 2.0516e-01 1.4831e+00 7.1752e+00 1.3083e-01 2.1345 2.0036 1.1326 3.9905 7.4830

2.2387 0.65627 1.4305e-01 1.1693e+00 1.0211e+01 9.3795e-02 2.2188 2.1250 1.1563 4.4774 7.8358

2.5119 0.60711 9.2953e-02 8.7509e-01 1.5309e+01 6.3517e-02 2.3003 2.2368 1.1819 5.0238 8.1333

2.8184 0.55698 5.5764e-02 6.1578e-01 2.4410e+01 4.0272e-02 2.3773 2.3370 1.2088 5.6368 8.3722

3.1623 0.50721 3.0600e-02 4.0325e-01 4.1824e+01 2.3679e-02 2.4485 2.4249 1.2361 6.3246 8.5544

3.5481 0.45904 1.5218e-02 2.4302e-01 7.7868e+01 1.2777e-02 2.5133 2.5006 1.2631 7.0963 8.6867

3.9811 0.41346 6.7958e-03 1.3318e-01 1.5943e+02 6.2571e-03 2.5714 2.5651 1.2888 7.9621 8.7788

4.4668 0.37112 2.6990e-03 6.5526e-02 3.6357e+02 2.7476e-03 2.6227 2.6200 1.3127 8.9337 8.8412

5.0119 0.33233 9.4325e-04 2.8554e-02 9.3610e+02 1.0678e-03 2.6678 2.6668 1.3344 10.024 8.8833

5.6234 0.29716 2.8653e-04 1.0860e-02 2.7617e+03 3.6204e-04 2.7073 2.7069 1.3538 11.247 8.9122

6.3096 0.26545 7.4573e-05 3.5467e-03 9.4880e+03 1.0539e-04 2.7418 2.7417 1.3710 12.619 8.9327

7.0795 0.23699 1.6350e-05 9.7698e-04 3.8647e+04 2.5875e-05 2.7720 2.7720 1.3860 14.159 8.9479

7.9433 0.21148 2.9615e-06 2.2247e-04 1.9043e+05 5.2513e-06 2.7985 2.7985 1.3992 15.887 8.9594

8.9125 0.18867 4.3334e-07 4.0941e-05 1.1610e+06 8.6131e-07 2.8217 2.8217 1.4108 17.825 8.9682

10.000 0.16828 4.9947e-08 5.9361e-06 8.9845e+06 1.1130e-07 2.8421 2.8421 1.4211 20.000 8.9751

11.220 0.15007 4.4071e-09 6.5899e-07 9.0807e+07 1.1012e-08 2.8601 2.8601 1.4300 22.440 8.9804

12.589 0.13381 2.8826e-10 5.4240e-08 1.2379e+09 8.0783e-10 2.8759 2.8759 1.4380 25.179 8.9846

14.125 0.11930 1.3482e-11 3.1924e-09 2.3598e+10 4.2376e-11 2.8899 2.8899 1.4450 28.251 8.9879

15.849 0.10636 4.3290e-13 1.2901e-10 6.5518e+11 1.5263e-12 2.9023 2.9023 1.4511 31.698 8.9904
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TABLE VII: Representative values of the jumps in three prop-
erties on crossing the coexistence curve in Fig. 14. The re-
duced temperatures τ̂X (and y values) are the same as in Ta-
ble VI. The quantities listed are the jumps in the reduced
isothermal compressibility κT, thermal expansion coefficient α
and heat capacity at constant pressure Cp calculated from
Eqs. (B1c), (B2c) and (B3c), as shown in Figs. 30 and 31.

τ̂X ∆κTpc ∆α τc/kB ∆Cp/(NkB)

= (κTg − κTl)pc =
(αg−αl)τc

kB
=

Cpl−Cpg

NkB

0.99889 1.8110e+01 12.035 1.2007e+01

0.99860 1.6164e+01 10.734 1.0703e+01

0.99824 1.4418e+01 9.5642 9.5408e+00

0.99779 1.2882e+01 8.5343 8.5053e+00

0.99722 1.1513e+01 7.6148 7.5827e+00

0.99650 1.0297e+01 6.7967 6.7607e+00

0.99560 9.2177e+00 6.0688 6.0283e+00

0.99446 8.2611e+00 5.4214 5.3760e+00

0.99304 7.4144e+00 4.8460 4.7950e+00

0.99126 6.6665e+00 4.3350 4.2776e+00

0.98902 6.0077e+00 3.8815 3.8169e+00

0.98622 5.4293e+00 3.4795 3.4069e+00

0.98272 4.9242e+00 3.1238 3.0420e+00

0.97835 4.4860e+00 2.8096 2.7175e+00

0.97291 4.1097e+00 2.5329 2.4290e+00

0.96615 3.7913e+00 2.2899 2.1726e+00

0.95779 3.5282e+00 2.0776 1.9449e+00

0.94748 3.3190e+00 1.8933 1.7428e+00

0.93485 3.1645e+00 1.7347 1.5636e+00

0.91947 3.0676e+00 1.5998 1.4048e+00

0.90088 3.0351e+00 1.4872 1.2642e+00

0.87864 3.0789e+00 1.3958 1.1398e+00

0.85233 3.2197e+00 1.3250 1.0295e+00

0.82165 3.4926e+00 1.2747 9.3181e-01

0.78646 3.9586e+00 1.2451 8.4488e-01

0.74684 4.7256e+00 1.2374 7.6714e-01

0.70320 5.9936e+00 1.2531 6.9701e-01

0.65627 8.1520e+00 1.2947 6.3297e-01

0.60711 1.2003e+01 1.3654 5.7362e-01

0.55698 1.9313e+01 1.4688 5.1776e-01

0.50721 3.4261e+01 1.6090 4.6451e-01

0.45904 6.7577e+01 1.7899 4.1347e-01

0.41346 1.4940e+02 2.0145 3.6480e-01

0.37112 3.7328e+02 2.2849 3.1908e-01

0.33233 1.0636e+03 2.6019 2.7714e-01

0.29716 3.4944e+03 2.9662 2.3968e-01

0.26545 1.3415e+04 3.3788 2.0700e-01

0.23699 6.1168e+04 3.8425 1.7898e-01

0.21148 3.3768e+05 4.3618 1.5514e-01

0.18867 2.3077e+06 4.9427 1.3490e-01

0.16828 2.0021e+07 5.5928 1.1765e-01

0.15007 2.2691e+08 6.3207 1.0288e-01

0.13381 3.4691e+09 7.1361 9.0177e-02

0.11930 7.4175e+10 8.0499 7.9206e-02

0.10636 2.3100e+12 9.0743 6.9692e-02
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Appendix B: Discontinuities in Isothermal
Compressibility, Thermal Expansion and Heat

Capacity versus Temperature at Constant Pressure
on Crossing the Liquid-Gas Coexistence Curve

The following equations for the discontinuities in the
isothermal compressibility κT, volume thermal expansion

coefficient α and heat capacity at constant pressure Cp

versus reduced temperature τ̂X are obtained from the cal-
culation of these properties in terms of the parameter y
together with τ̂X(y) with y being an implicit parameter.

κTgpc =
4e6y sinh2(y)[2y2 − 1 + cosh(2y)− 2y sinh(2y)]2

27[1 + e2y(y − 1) + y]2[e6y + e2y(7 − 4y)− 2y − 3 + e4y(−5 + 6y − 8y2)]
, (B1a)

κTlpc =
−e−y sinh2(y)[1 − 2y2 − cosh(2y) + 2y sinh(2y)]2

54[y cosh(y)− sinh(y)]2
{
(4y2 − 1 + y) cosh(y)− (y − 1) cosh(3y)− 2y[3 + 2y + cosh(2y)] sinh(y) + 8 sinh3(y)

}

(B1b)

∆κTpc ≡ (κTg − κTl)pc =
∆κ

(1)
T

∆κ
(2)
T

, (B1c)

∆κ
(1)
T = 4 sinh4(y){2y[2 + cosh(2y)]− 3 sinh(2y)}[2y2 − 1 + cosh(2y)− 2y sinh(2y)]2

∆κ
(2)
T = 27[y cosh(y)− sinh(y)]2

{
42 + 12y2 + 32y4 − (61 + 48y2) cosh(2y) + (22 + 36y2) cosh(4y)− 3 cosh(6y)

− 128y3 cosh3(y) sinh(y)− 16y[9 cosh(y)− cosh(3y)] sinh3(y)
}
,

αgτc
kB

=
α
(1)
g

α
(2)
g

, (B2a)

α(1)
g = 8 sinh2(y)[2y2 − 1 + cosh(2y)− 2y sinh(2y)]2

α(2)
g = 27[y cosh(y)− sinh(y)][2y − sinh(2y)]

{
[y(4y − 1)− 1] cosh(y) + (1 + y) cosh(3y)

+ [6 + y(4y − 5)] sinh(y)− (2 + y) sinh(3y)
}
,

αlτc
kB

=
α
(1)
l

α
(2)
l

, (B2b)

α
(1)
l = 8 sinh2(y)[2y2 − 1 + cosh(2y)− 2y sinh(2y)]2,

α
(2)
l = 27[y cosh(y)− sinh(y)]

{
(y − 1 + 4y2) cosh(y)− (y − 1) cosh[3y]

− 2y[3 + 2y + cosh(2y)] sinh(y) + 8 sinh3(y)
}
[2y − sinh(2y)]

∆αlτc
kB

≡ (αg − αl)τc
kB

=
∆α(1)

∆α(2)
, (B2c)

∆α(1) = 64 sinh3(y)[1− 2y2 − cosh(2y) + 2y sinh(2y)]2[2 cosh(2y)− y sinh(2y)− 2− 2y2],

∆α(2) = 27[y cosh(y)− sinh(y)]
{
42 + 12y2 + 32y4 − (61 + 48y2) cosh(2y) + (22 + 36y2) cosh(4y)

− 3 cosh(6y)− 128y3 cosh3(y) sinh(y) + 16y[cosh(3y)− 9 cosh(y)] sinh3(y)
}
[2y − sinh(2y)].

Cp g

NkB
=

3

2
+

(e2y − 1)2(e2y − 2y − 1)

e6y + e2y(7− 4y)− 2y + e4y(−5 + 6y − 8y2)− 3
, (B3a)

Cp l

NkB
=

3

2
+

(e2y − 1)2[1 + e2y(2y − 1)]

1 + e6y(2y − 3) + e4y(4y + 7)− e2y(8y2 + 6y + 5)
. (B3b)
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∆Cp

NkB
≡ Cp l − Cp g

NkB
=
(
e2y − 1

)2
[

1− e2y + 2y

e6y + e2y(7 − 4y)− 2y − 3 + e4y(−5 + 6y − 8y2)
(B3c)

+
1 + e2y(−1 + 2y)

1 + e6y(−3 + 2y) + e4y(7 + 4y)− e2y(5 + 6y + 8y2)

]
.

These quantities are calculated versus τ̂X using Eq. (79b)
with y as an implicit parameter.
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