Material Adicional

- Review sobre cavidades de microondas y qubits superconductores de este año:[LINK]

Propuestas de artículos para la presentación final

  1. Malekakhlagh, M. M., & Tureci, H. (2016). Origin and Implications of A 2 Contribution in the Quantization of Circuit-Qed Systems. In APS March Meeting Abstracts (Vol. 2016, pp. P52-008).
  2. Wiegand, E., Rousseaux, B., & Johansson, G. (2020). Semiclassical analysis of dark- state transient dynamics in waveguide circuit QEDPhysical Review A101(3), 033801. (Tomás Wehner)
  3. Pekola, J. P., Toppari, J. J., Aunola, M., Savolainen, M. T., & Averin, D. V. (1999). Adiabatic transport of Cooper pairs in arrays of Josephson junctions. Physical Review B60(14), R9931. (Federico Winkel)
  4. Aunola, M., & Toppari, J. J. (2003). Connecting Berry’s phase and the pumped charge in a Cooper pair pump. Physical Review B68(2), 020502. (Francisco Castillo)
  5. Möttönen, M., Pekola, J. P., Vartiainen, J. J., Brosco, V., & Hekking, F. W. (2006). Measurement scheme of the Berry phase in superconducting circuits. Physical Review B73(21), 214523. (Camila Cristiano)
  6. Marxer, F., Vepsäläinen, A., Jolin, S. W., Tuorila, J., Landra, A., Ockeloen-Korppi, C., … & Heinsoo, J. (2023). Long-Distance Transmon Coupler with cz-Gate Fidelity above 99.8%. PRX Quantum4(1), 010314. (Julia Bertero)
  7. Cohen, J., Petrescu, A., Shillito, R., & Blais, A. (2023). Reminiscence of classical chaos in driven transmons. PRX Quantum4(2), 020312. (Adan Garros)
  8. Zhong, J., Dinc, F., & Fan, S. (2022). Detecting the relative phase between different frequency components of a photon using a three-level $\Lambda $ atom coupled to a waveguide. arXiv preprint arXiv:2208.13136.
  9. Busel, O., Laine, S., Mansikkamäki, O., & Silveri, M. (2023). Dissipation and Dephasing of Interacting Photons in Transmon Arrays. arXiv preprint arXiv:2301.07025. (Emanuel Gomez)
  10. Lu, M., Ville, J. L., Cohen, J., Petrescu, A., Schreppler, S., Chen, L., … & Siddiqi, I. (2022). Multipartite Entanglement in Rabi-Driven Superconducting Qubits. PRX Quantum3(4), 040322. (Mariano Apicella)
  11. Gyenis, A., Di Paolo, A., Koch, J., Blais, A., Houck, A. A., & Schuster, D. I. (2021). Moving beyond the transmon: Noise-protected superconducting quantum circuits. PRX Quantum2(3), 030101. (Muriel Bonetto)
  12. Boissonneault, M., Doherty, A. C., Ong, F. R., Bertet, P., Vion, D., Esteve, D., & Blais, A. (2014). Superconducting qubit as a probe of squeezing in a nonlinear resonator. Physical Review A89(2), 022324. (Luciana Rosellini)
  13. Beaudoin, F., Gambetta, J. M., & Blais, A. (2011). Dissipation and ultrastrong coupling in circuit QED. Physical Review A84(4), 043832. (Pedro Schmied)
  14. Gramajo, A. L., Paladino, E., Pekola, J., & Fazio, R. (2023). Fluctuations and stability of a fast-driven Otto cycle. Physical Review B107(19), 195437.
  15. Wilson, C. M., Johansson, G., Pourkabirian, A., Simoen, M., Johansson, J. R., Duty, T., … & Delsing, P. (2011). Observation of the dynamical Casimir effect in a superconducting circuit. nature479(7373), 376-379. (Jean Paul Louys)
  16. Lombardo, F. C., Mazzitelli, F. D., Soba, A., & Villar, P. I. (2016). Dynamical Casimir effect in superconducting circuits: A numerical approach. Physical Review A93(3), 032501. (Tomás Correa)
  17. Johansson, J. R., Johansson, G., Wilson, C. M., & Nori, F. (2009). Dynamical Casimir effect in a superconducting coplanar waveguide. Physical review letters103(14), 147003. (Nicolás Alvez)
  18. Johansson, J. R., Johansson, G., Wilson, C. M., & Nori, F. (2010). Dynamical Casimir effect in superconducting microwave circuits. Physical Review A82(5), 052509. (Nicolás Alvez)
  19. Wustmann, W., & Shumeiko, V. (2013). Parametric resonance in tunable superconducting cavities. Physical Review B87(18), 184501. (Jean Paul Louys)
Print Friendly, PDF & Email