Materia oscura concentrada


En la última clase vimos el teorema del virial. Este es un teorema muy útil, tanto en la versión de Mecánica Estadística como en su versión de Mecánica Clásica. Pero también es un teorema que puede ser fácilmente aplicado a situaciones en las que no se cumplen sus hipótesis, para darnos cualquier resultado. Recuerden que las partículas en el sistema deben estar confinadas por el potencial. A continuación les doy dos ejemplos de aplicaciones (aunque no les voy a dar la fórmula para fabricar materia oscura concentrada, y todos sabemos que no es dos partes de quarks plutónicos, una parte de cesio, y una botella de agua).

Comencemos con el gas ideal. Hemos visto que el teorema del virial puede escribirse como

donde las coordenadas r son las posiciones de las partículas, F son las fuerzas sobre cada partícula, N es el número de partículas, y T la temperatura. La suma es sobre todas las partículas. Para un gas ideal, la única fuerza que tenemos está asociada a la presión P. Usando que la fuerza total, sumada sobre todas las partículas, es ∑ r · F = – ∫ r · n P dA (donde n es la normal externa a la pared, y dA el diferencial de superficie), después de hacer algunas cuentas se puede llegar (usando el teorema de Gauss) a que el término de la izquierda es 3PV (con V el volúmen). ¡Por lo que recuperamos la ecuación de estado de un gas ideal: PV = NkT!

Veamos ahora una aplicación más oscura. Consideremos un clúster de N galaxias (es decir, una acumulación de galaxias en el universo), cada una con masa m y con masa total M = Nm. Por ejemplo, podría ser el cúmulo de Coma, un clúster con más de 1000 galaxias identificadas a 321 millones de años luz de la Tierra:

Las galaxias en el clúster están confinadas por la fuerza gravitatoria. Nos conviene ahora escribir el teorema del virial, para una fuerza que decae como el cuadrado de la distancia, como

donde U es la energía cinética y V ahora es la energía potencial. Asumiendo que el clúster es esférico, para la fuerza gravitatoria V = -3GM2/(5R), donde G es la constante de gravitación universal, y R el radio del clúster. Por otro lado la energía cinética media es <U> = M<v2>/2. De estas dos relaciones podemos estimar la masa del clúster como

La velocidad cuadrática media de las galaxias en el clúster se puede medir, por ejemplo, por corrimiento Doppler. Y la masa del clúster se puede estimar de forma independiente a esta fórmula a partir de la luminosidad del clúster, usando relaciones bien calibradas en astronomía. Y aquí comienzan los problemas: la fórmula obtenida con el teorema del virial da una masa M mayor que la que se estima con la luminosidad, sugiriendo que falta una fracción de materia que no estamos observando cuando miramos la luminosidad de las galaxias. Este argumento puede ser ampliado para considerar otras formas de energía (por ejemplo, la energía en el campo magnético de las galaxias y del clúster), pero esto no cambia el resultado central: hay una diferencia significativa en la masa estimada por diferentes medios.

Para el caso particular del clúster coma, los primeros estudios que indicaron esta discrepancia entre las masas estimadas de diferentes formas fueron realizados por Fritz Zwicky en 1933. Más tarde, Vera Rubin estudió en detalle la curva de rotación de galaxias individuales, y luego de estudios muy exhaustivos para muchas galaxias, encontró una discrepancia entre la dependencia radial de la velocidad de rotación esperada y la observada, indicando nuevamente una discrepancia entre la masa esperada y la masa observada. Los trabajos de Vera Rubin pusieron en claro la existencia de un problema en cosmología que continúa abierto hasta nuestros días.

Si bien estos no son los únicos argumentos a favor de la existencia de materia oscura, en conjunto con otros resultados nos indican que cerca del 85% de la materia en el universo tiene que ser materia oscura. Y para el caso particular del cúmulo de Coma, estimaciones usando mediciones astronómicas y el teorema del virial indican que cerca del 90% de la materia en el cúmulo es materia oscura.

La termodinámica y la mecánica estadística tiene aplicaciones en muchas otras áreas de la cosmología, y también en el estudio de agujeros negros. En el Departamento de Física, Guillermo Pérez Nadal, Gastón Giribet (@GastonGiribet) y el grupo de Física teórica de Altas Energías trabajan, entre otros temas, en el estudio de la entropía de agujeros negros.