Antes de comenzar con el último tema de la materia, y aprovechando el fin de semana largo, hagamos una pausa para discutir un tema muy poco serio, pero que no podía quedar afuera de Física Teórica 3: el propulsor de improbabilidad infinita. Así que tomen sus toallas y prepárense para un viaje por la galaxia (luego de este viaje, y para prepararse para la próxima teórica, vean este posteo de Guillem sobre fluidos supercríticos, porque con esto comenzaremos la clase del miércoles).
El propulsor de improbabilidad infinita forma parte de The Hitchhiker’s Guide to the Galaxy, una serie de novelas humorísticas de ciencia ficción, radionovelas, programas de TV, y películas escritas por Douglas Adams. La novela narra (con ligeros cambios en los otros medios) las aventuras de un humano (Arthur Dent) acompañado por dos extraterrestres (Ford Prefect y Zaphod Beeblebrox) luego que la Tierra es destruida. Deben tener en cuenta que la primer radionovela fue emitida por la BBC en 1978, cuando todavía estaba activo Monty Python, por lo que esta no es una típica historia de ciencia ficción. Entre otras nociones memorables, The Hitchhiker’s Guide to the Galaxy nos dijo que la respuesta a la pregunta final sobre la vida, el universo y todo lo demás es “42″ (¡prueben escribir “What is the answer to the ultimate question of life the universe and everything?” en Google!).
El tema que nos convoca es el poco probable uso de las probabilidades que hace esta saga. En The Hitchhiker’s, los personajes viajan en una nave espacial que cruza el universo (violando todas las leyes de la física) gracias al propulsor de improbabilidad infinita. El propulsor se presenta como un método nuevo y maravilloso para cruzar distancias interestelares en forma instantánea, sin “tediosas tonterías en el hiperespacio”. Fue descubierto por casualidad, y su funcionamiento se basa en aumentar la improbabilidad de ciertos sucesos hasta alcanzar valores infinitos. La fuente de aleatoriedad del propulsor es un productor de movimiento browniano (es decir, una taza de té caliente). Una vez encendido, la nave pasa por cada punto concebible de cada universo concebible, simultáneamente. Como resultado del viaje, también pueden ocurrir otras cosas altamente improbables.
Esto es solo un breve resumen de cinco libros en los que nada tiene sentido. Pero hagamos el ejercicio de tratar de tomar seriamente a este propulsor. ¿Qué es la improbabilidad? Si P(x) es la probabilidad de que un evento x ocurra, podríamos asociar la improbabilidad de un evento a la probabilidad de que el suceso no ocurra. Cuando comenzó la materia, vimos que esta probabilidad está dada por:
Esto sería peligrosísimo. Si una máquina convirtiera P en I localmente, le asignaría probabilidad 1 a todas las cosas que no pueden ocurrir. Es genial; podríamos aparecer en otros lugares, pero hay muchas otras cosas malas que podrían pasar. Imaginen si tuviéramos diez crisis como la de COVID-19 en simultáneo.
En realidad la situación es peor, y esta definición no es correcta. La improbabilidad I(x) está acotada entre 0 y 1. Pero Douglas Adams nos dice claramente en The Hitchhiker’s que la improbabilidad puede ser infinita (en caso contrario, la máquina se llamaría el propulsor de improbabilidad unitaria, algo que de todas formas hubiera sido más correcto). Así que en el contexto de la novela puede ser más correcto definir I(x) como:
Esto tiene una serie de problemas aún más grandes. Pero Douglas Adams parece comprender algunos. Cada vez que los personajes usan el propulsor, los efectos secundarios incluyen cambios temporarios (y a veces permanentes) en el medio ambiente, en la estructura morfológica de los personajes, alucinaciones, y la aparición espontánea de ballenas en medio del espacio. Así que si no tenían nada para leer en estos días, pueden mirar el primer libro de esta saga.
En la segunda definición de I(x) no sería mejor proponer I(x) = (1/P(x)) – 1? De la forma en que está definida la improbabilidad se hace 1 cuando la probabilidad es 1 y eso parece incurrir en una paradoja (una paradoja más encima de todas las que ya acarreábamos).
Es una propuesta interesante. El problema es ¿queremos que los sucesos que tienen probabilidad 1 tengan probabilidad cero al prender el propulsor? Porque los personajes en las novelas siguen existiendo mientras el propulsor está prendido. Y si la probabilidad se hace cero ¿dejarían de existir?