Entrega práctica computacional

Recuerden que mañana, 7/7, es la fecha límite de entrega de la práctica computacional. Mándennosla por mail a mí y a Nahuel. Nos pueden mandar o bien el link de su colab (con permiso para que lo podamos ver), o bien el notebook de jupyter. Tienen hasta las 23:59hs para entregarla.

Segundo parcial/consultas recuperatorios

Les recuerdo que el próximo lunes, 3/7, tenemos el segundo parcial. Será a las 17hs en el aula 8 del pabellón 1 (noten que no es la misma aula de la cursada).

Como siempre, se puede traer hoja de fórmulas (una carilla) y no se admiten consultas durante el parcial, sólo de enunciado y desde el banco.

También les digo que, de cara a los recuperatorios, tendremos dos sesiones de consultas, una para cada recuperatorio, los miércoles 5/7 y 12/7 a las 17hs en el bar del pabellón 1.

Reflexión final de la teórica


Terminaron las clases teóricas de la materia. Hace tres años, durante la pandemia, decidí que un tema que no suele discutirse explícitamente en el aula (aunque sí implícitamente), debía ser discutido abiertamente. Estoy hablando de la ética científica, y de una forma de encarar y atacar los problemas que encontramos, de entender qué pueden responder nuestros conocimientos y qué no, y de aceptar nuestros errores y limitaciones. Y aquel cuatrimestre, al terminar el curso, escribí una carta a todos los estudiantes que en buena medida (pero con algunas actualizaciones considerando a este curso en particular) reproduzco a continuación.

Todavía hoy se sienten los efectos educativos de la pandemia. No voy a ocultar mi opinión sobre la importancia de la presencialidad en la educación universitaria: el aula real (como oposición al aula virtual) permite tener discusiones y una serie de preguntas y respuestas abiertas, espontáneas e impredecibles que no pueden ocurrir mirando videos online de clases grabadas. Como profesor, la presencialidad me permite saber mejor qué temas están entendiendo y cuáles no durante las explicaciones. La presencialidad expone mejor qué temas están flojos, cuáles requieren refuerzos, y cuáles se comprenden. El aula le permite a ustedes interactuar de otra forma con los docentes del curso, sacarse dudas, y corregir errores. No voy a negar la comodidad de mirar las clases desde sus casas, o de escuchar explicaciones a la hora más conveniente. La pandemia trajo cambios al aula que son valiosos, y el día que no pueden asistir a clases el material disponible online es útil para que no se atrasen. Pero hay una combinación razonable de ambas modalidades que puede funcionar para el aprendizaje, y este cuatrimestre eso se notó fuertemente.

Tan importante como esto es el hecho de que la presencialidad también permite que, solo con la gestualidad o en la forma en la que los docentes explicamos o reaccionamos a ciertas preguntas, podamos enseñar más cosas que las que aparecen en el pizarrón, o al menos intentarlo. Porque hay un conjunto importante de conocimientos que no forman parte explícita de los contenidos de las materias, pero que se aprenden informalmente, y que no pueden compartirse ni enseñarse si no se hace en forma presencial.

Existe un conjunto de normas, una ética científica, que esperamos que aprendan a lo largo de la carrera. No hay una materia específica para esto, se aprende en los pasillos, en las conversaciones con compañeros y docentes, en indicaciones mínimas que se dan en el aula. Cuando cursaron Laboratorio 1, probablemente les dijeron que nunca debían falsificar o inventar un dato. Si rindieron finales presenciales, en algún final les habrá llamado la atención que los dejaron escribir sus notas solos: esperamos que sepan que en ciencia es inaceptable copiarse. En alguna materia les habrán dicho que es importante reconocer lo que uno no sabe, o los errores que uno comete. Y en esta materia, tan vasta en sus aplicaciones, uno de los contenidos no escritos es aprender los límites de lo que sabemos, las limitaciones de las aproximaciones, y cómo aplicarlas correctamente desde nuestro lugar como físicos. A lo largo de la materia vimos, en las clases o en la página web del curso, aplicaciones en economía, en biología y epidemias, meteorología, teoría de la información, cosmología, astrofísica, dinámica de fluidos, física de altas energías, y materia condensada. Es claro que las últimas aplicaciones pertenecen al área del conocimiento abarcada por la física. Algunas de las primeras no. Las herramientas de la materia sirven para estudiar (en forma parcial) a estos temas, y no está mal que los consideremos, y que tratemos de aprender cosas nuevas. ¿Pero significa eso que sabemos de esos temas? ¿O que podemos opinar como expertos?

Hace unos pocos años, la pandemia de COVID puso al sistema científico mundial, y a muchos científicos individuales en particular, en una disyuntiva similar. Y, a tono personal, puedo deciles que creo que muchos científicos no aprobaron el examen con éxito (de hecho, algunos en Argentina y en el mundo han protagonizado papelones importantes, dañando la credibilidad general de la ciencia). Tal vez ustedes en el futuro se encuentren en una situación parecida trabajando en la academia. O se encuentren trabajando para una empresa que evalúa riesgo bursátil o cualquier otra cosa para el sector privado, o colaborando con colegas de otras áreas en grupos interdisciplinarios. La tentación de usar un conjunto de herramientas que sabemos que funcionan en muchísimos casos para opinar como expertos es grande. Pero la ciencia a lo largo de los siglos generó un conjunto de buenas prácticas que nos guían sobre cómo debemos comportarnos en esas situaciones. Y nos enseñan a defender con seguridad lo que sabemos, pero también a escuchar a los expertos de otros temas en sus áreas del conocimiento. Y sobre todo, a comunicar (tanto a nuestros colegas, como al público general) primero lo que no sabemos, para luego poder informar responsablemente lo que aprendimos.

Esto probablemente sea aún más importante para las generaciones futuras de científicos, como ustedes. Que vivamos en una sociedad moderna, con problemas complejos, y en los que la ciencia juega un rol central, no significa que la ciencia o los científicos deban ser los instauradores de la verdad. En una sociedad democrática el rol de la ciencia es (entre otros) el de presentar datos y asesorar a la sociedad en la toma de decisiones, pero no tomar decisiones por ella, ignorar la opinión de otros expertos, ubicarse en una posición de privilegio, o perder su independencia a cambio de financiación. La lucha contra las noticias falsas no puede implicar acallar las opiniones, o negarlas solo con argumentos de autoridad. Y muchos menos puede autorizarnos a jugar con las mismas reglas que los que diseminan noticias falsas, y presentar datos parciales o editados con el fin de imponer una postura, por más convencidos de su validez que estemos. Esto no significa que ustedes no puedan o deban involucrarse en causas sociales, políticas, religiosas o culturales que los interpelen. Pero es importante aclarar desde qué lugar hablan en esos casos, y no mezclar sus deseos o creencias con el trabajo que puedan hacer o con la opinión que puedan dar como científicos. También es muy importante que entendamos cómo se genera el conocimiento científico, que comprendamos que en física no hay teoremas que nos den seguridad plena porque la física es una ciencia natural, y que la forma en la que creamos teorías se inicia en la observación y la experimentación, y se verifica con la predicción y la validación de esas predicciones.

En un famoso discurso Richard Feynman dijo que esperamos que los estudiantes aprendan todo esto en las aulas “por osmosis” (y probablemente esta sea la mejor forma). Se que a algunos estudiantes poner en discusión este tipo de cosas les gusta y a otros les molesta, pero creo que una parte importante del trabajo en el aula involucra justamente esto: enseñar, con las limitaciones que cada uno de los profesores tenemos, cómo se hace ciencia, cuáles son las buenas prácticas científicas, qué cosas no se hacen, qué cosas nos preguntamos, y cuales están fuera de nuestra área del conocimiento y son conversaciones de café. Esto incluye comprender la metodología de la física, el manejo honesto de los datos, aceptar el error, aprender a no engañarnos a nosotros mismos, no exagerar la relevancia de nuestros resultados, ser cuidadosos en la comunicación de la ciencia, no usar argumentos de autoridad, y muchas otras prácticas que son centrales para sostener la credibilidad de la ciencia en general, y de nuestro trabajo en particular.

Mucho mejor que cualquier otra cosa que yo pueda escribir sobre buenas prácticas científicas es leer ese famoso discurso de Feynman. Así que les recomiendo fuertemente que lean el discurso sobre ciencias, pseudo-ciencias y ética científica que Feynman dio a los graduados de Caltech en 1974:

Aunque todo su discurso no tiene desperdicio, solo voy a resaltar cuatro párrafos que me parecen relevantes, y que traduzco a continuación:

  • Esa es la idea que esperamos que hayan aprendido al estudiar ciencias: nunca les dijimos explícitamente cuál es, pero esperamos que lo hayan descubierto a partir de todos los ejemplos de investigación científica. Es interesante, por lo tanto, mencionarla ahora y hablar de esto explícitamente. Es un tipo de integridad científica, un principio de pensamiento científico que corresponde a un tipo de honestidad absoluta, y tomando distancia. Por ejemplo, si están haciendo un experimento, deben informar todo lo que creen que podría invalidarlo, no solo lo que creen que es correcto.
  • El primer principio es que no debes engañarte a ti mismo, y eres la persona más fácil de engañar. Así que debes tener mucho cuidado con esto. Después de que no te hayas engañado, es más fácil no engañar a otros científicos.
  • Me gustaría agregar algo que no es esencial para la ciencia, pero es algo que creo: no debes engañar a la persona común cuando hablas como científico. No estoy diciendo que no engañes a tu pareja cuando no estás tratando de ser científico. Esos son problemas para ustedes y sus rabinos. Estoy hablando de un tipo específico de integridad adicional que consiste no solo en no mentir, sino en hacer el esfuerzo de tomar distancia para mostrar cómo tal vez estás equivocado, y que debes hacer cuando actúas como científico. Y esta es nuestra responsabilidad, ciertamente para con los otros científicos, y también al hablar con la gente común.
  • Así que solo tengo un deseo para ustedes: que tengan la buena suerte de estar en un lugar donde sean libres de mantener el tipo de integridad que he descrito, y donde no se sientan forzados a perder la integridad para mantener su posición en una organización, o el apoyo financiero, u otras cosas. Ojalá tengan esa libertad.

Como dijo Ben Parker, “con grandes poderes vienen grandes responsabilidades” (y admitamos que saber contar microestados tampoco es un poder tan grande). No hagan daño, sean honestos, trabajen y esfuércense, colaboren, compartan con transparencia sus datos, piensen cómo usan el método científico, no sean soberbios, no usen argumentos de autoridad ni se proclamen expertos, aclaren cuándo hablan como científicos y cuándo desde sus creencias, digan siempre explícitamente cuáles son sus conflictos de interés, y no se pongan a ustedes mismos en situaciones en las que tengan que faltar a la ética científica.

Si esta es la última Física Teórica que cursan, y si no van a hacer la materia optativa que daré el próximo cuatrimestre, es probable que no nos volvamos a encontrar en un aula (al menos mientras sean estudiantes de grado). Les agradezco la paciencia en este cuatrimestre, y espero que hayan disfrutado la materia. Para mí, es la materia más linda de toda la carrera. Y a todo el resto, espero verlos nuevamente en algún aula. Mucha suerte en el parcial, y a todos los que aprueben los veré en el examen final. Cuídense, y no defrauden nunca a la vocación que los llevó a elegir una carrera científica.

La primera regla es…


La primera regla del Club de la Pelea es que no se habla sobre el Club de la Pelea. Dirigida por David Fincher (director de Mank, disponible en Netflix), la película de 1999 consigue construir el orden (y el desorden) a lo largo de 139 minutos partiendo de 8 simples reglas. ¿Podemos explicar el orden y el desorden de las transiciones de fase y los fenómenos críticos partiendo de unas pocas reglas?

En posteos anteriores vimos que el orden (o desorden) macroscópico de un sistema no se obtiene trivialmente partiendo de las reglas físicas microscópicas que describen al sistema. El orden macroscópico puede no ser computable, o en el mejor de los casos, “more is different” y requiere nuevos métodos y aproximaciones. Por eso cuando se consiguieron explicar los fenómenos críticos con una teoría física, fue claro que se estaba realizando un gran avance en el entendimiento de los sistemas físicos extensos. De hecho, la teoría de fenómenos críticos marcó buena parte de la física de los últimos 50 años. No tiene sentido hacer una competencia entre áreas que obtuvieron más premios Nobel, o considerar que la importancia de un área de la física o de una teoría depende de si sus autores están listados entre los laureados con un premio. Hacer esto ignoraría la cantidad de resultados cruciales para la física que fueron valorados mucho más tarde, o que permearon la física tan profundamente que los olvidamos (la física tal como la conocemos no existiría sin el cálculo infinitesimal, y sin embargo, Newton es conocido popularmente por la gravedad y la manzana).

Sin embargo, hacer el ejercicio inverso sí tiene algún sentido: mirar la lista de premios Nobel da información sobre algunos temas que marcaron épocas en la física (de la misma forma que mirar la lista de selecciones que ganaron mundiales da información sobre estilos de fútbol, técnicos y jugadores que marcaron épocas). Y desde 1982 hasta la fecha, muchos premios Nobel tuvieron que ver con el desarrollo de la mecánica estadística, y con el estudio directo o indirecto de las transiciones de fase. Comencemos el repaso de estos premios con Wilson:

El uso del grupo de renormalización para comprender fenómenos críticos fue introducido en la segunda mitad del siglo 20 por Leo Kadanoff, Kenneth Wilson y Michael Fisher. Wilson ganó el premio Nobel en 1982 por su teoría de fenómenos críticos en conexión con transiciones de fase (Kadanoff y Fisher ganaron otros premios). Wilson falleció en junio de 2013, y en conmemoración de esa fecha la American Physical Society publicó en 2019 este breve artículo que resume varias de sus contribuciones:

Al final de ese artículo van a encontrar la referencia al paper original de Wilson de 1971 por el que ganó el premio Nobel. Los dos artículos de Wilson de 1971 sobre grupo de renormalización y su relación con fenómenos críticos están disponibles (con acceso abierto) en Physical Review B:

Desde 1982 a la fecha, al menos en otras siete ocasiones se entregaron premios Nobel en temas relacionados con mecánica estadística y transiciones de fase. El más reciente (en 2021) ya lo mencionamos cuando hablamos de vidrios de spin y redes neuronales, y fue para Giorgio Parisi, Klaus Hasselmann and Syukuro Manabe por sus contribuciones a la teoría de sistemas complejos. El anterior fue para David Thouless, Duncan Haldane, y Michael Kosterlitz (que estuvo conversando con estudiantes del DF hace unos años), y se otorgó en 2016 por avances teóricos en el estudio de transiciones de fases topológicas de la materia. Las transiciones de fases topológicas involucran un cambio en el orden topológico del sistema: por debajo de una temperatura crítica los “defectos” (por ejemplo, vórtices cuantizados en un superfluido en dos dimensiones) se ordenan en pares (de vórtices con signos opuestos), mientras que por arriba de dicha temperatura se encuentran solitarios y libres. Los interesados en esta transición pueden leer la descripción técnica del premio Nobel, que usa herramientas de la materia (el modelo de Ising, el parámetro de orden, y la energía libre de Landau que veremos la próxima clase):

Yendo hacia atrás en el tiempo y solo llegando en la lista hasta 1982, el premio Nobel de 2003 se entregó a avances en la teoría de superconductores y superfluidos, el de 2001 a los experimentos que obtuvieron los primeros condensados de Bose-Einstein gaseosos en el laboratorio, el de 1996 a la transición de He-3 a la fase superfluida, el de 1991 a avances en el estudio de fases ordenadas en cristales líquidos y polímeros, y el de 1987 a la observación de superconductividad en materiales cerámicos. Los interesados en algunos de estos temas pueden mirar las páginas del premio Nobel, donde encontrarán más información.

Abre tu ojo


Propuse varias soluciones; todas, insuficientes. Las discutimos; al fin, Stephen Albert me dijo:
- En una adivinanza cuyo tema es el ajedrez ¿cuál es la única palabra prohibida? Reflexioné un momento y repuse:
- La palabra ajedrez.
- Precisamente —dijo Albert—. El jardín de los senderos que se bifurcan es una enorme adivinanza, o parábola, cuyo tema es el tiempo; esa causa recóndita le prohíbe la mención de su nombre.

Jorge Luis Borges, El jardín de los senderos que se bifurcan (1941).

Si este post fuera una adivinanza, no podríamos mencionar la palabra “autosemejanza”. Vamos a hablar de fractales y de senderos que se bifurcan. Los fractales son objetos matemáticos que, por construcción, son invariantes de escala (es decir, se prescriben con un conjunto de reglas, usualmente recursivas, que generan una figura o un conjunto autosemejante). Es importante notar que el fenómeno de autosemejanza que se observa en los sistemas físicos cerca del punto crítico no se genera de esta forma, con pasos que se repiten infinitamente. Y en este sentido, los fractales no nos pueden brindar una explicación a la causa de la invariancia de escala. Sin embargo, como objetos matemáticos, pueden servir para estudiar propiedades generales de sistemas que son invariantes de escala, para generar datos sintéticos que tengan esta propiedad (como para generar terrenos o texturas que parezcan realistas en videojuegos), o para crear métodos para cuantificar la posible autosemejanza de un conjunto de datos.

Uno de los ejemplos más sencillos y conocidos está dado por el conjunto de Cantor. Se construye tomando el segmento [0,1], partiéndolo en 3, y removiendo el segmento del medio. Esto nos deja dos nuevos segmentos: [0,1/3] y [2/3,1]. La operación se repite en cada uno de los nuevos segmentos. La figura a continuación muestra el resultado de repetir este procedimiento diez veces (hagan click en la imagen para ver un zoom):

En términos coloquiales, un fractal es una figura construida con pequeñas partes que son similares a la figura completa, en cualquier escala en la que se observe. La construcción recursiva del fractal (que puede ser determinista, o tener componentes aleatorias) asegura que la figura resultante sea autosemejante. Y su “fractalidad” puede cuantificarse de diferentes formas; por ejemplo, calculando funciones de correlación y sus exponentes críticos. O calculando la dimensión fractal o la dimensión de Hausdorff, que están relacionadas con el exponente crítico de la función de correlación a dos puntos.

El término “fractal” fue introducido por Benoit Mandelbrot, que formalizó varias ideas previas de otros matemáticos (especialmente, durante el siglo XX, de Lewis Fry Richardson, que también hizo contribuciones importantes a la meteorología y a la turbulencia). Y fueron usados por Mandelbrot para, entre otras aplicaciones, calcular el perímetro de regiones costeras. Aunque la costa irregular de un país no es generada por una persona que repite reglas como en el conjunto de Cantor (pero en The hitchhiker’s guide to the galaxy pueden opinar distinto), calcular la dimensión fractal de la costa permite obtener buenas estimaciones de la longitud de curvas muy rugosas, y en ciento sentido, autosemejantes. Los que estén interesados en los detalles pueden leer el paper (lindo, clásico, y muy breve) de Mandelbrot sobre este tema:

De la misma forma que conocer la longitud de correlación en el modelo de Ising nos permite inferir propiedades del tamaño de los dominios magnéticos, estimar la dimensión fractal le permitió a Mandelbrot resolver una aparente paradoja al intentar calcular la longitud de curvas autosemejantes: al medir la longitud de una costa, cuando más detalle se tiene sobre su forma, más aumenta su longitud.

Los fractales también pueden generar imágenes visualmente interesantes, como el famoso conjunto de Mandelbrot:

Los que estén interesados en generar fractales con Python pueden ver los siguientes links con instrucciones paso a paso (recomiendo fuertemente el primero), y muchos ejemplos de códigos que pueden cortar y pegar en sus computadoras o en un Google Colab:

Como mencioné más arriba, los fractales pueden tener componentes aleatorias. Y aunque los fractales no brindan una explicación a la causa de la autosemejanza en ciertos sistemas naturales, pueden ser usados para caracterizarla. Además, cumplen teoremas muy interesantes que nos permiten descubrir relaciones sorprendentes entre procesos autosemejantes. Por ejemplo, los ceros de un camino al azar unidimensional de tiempo contínuo (es decir, cada vez que el caminante al azar vueve a pasar por su punto de origen) forman un conjunto fractal. Esto tiene que ver con otro teorema muy extraño que se aplica a un proceso llamado evolución de Schramm-Loewner: una curva al azar en dos dimensiones que sea invariante conforme (una forma más fuerte de la invariancia de escala, en la que la curva no es solo invariante frente a cambios de escala, sino también invariante frente a transformaciones que preserven los ángulos localmente) tiene una relación directa con un proceso de movimiento browniano en una dimensión. Este teorema puede usarse para calcular exponentes críticos en modelos de Ising y de percolación en dos dimensiones, a partir de propiedades del movimiento browniano unidimensional que vimos al principio del curso. ¡Todo se conecta con todo! De pronto, un tema de esta materia viajó al pasado y tuvo un hijo (¡en tu cara, famosa serie de Netflix!).

¡Cambio de planes!


Para que puedan llegar con más tiempo de consultas al segundo parcial, y considerando que tuvimos que cambiar la fecha de este parcial, hoy y la próxima clase habrá un ligero cambio en el orden de la teórica. Veremos primero grupo de renormalización (las dos últimas clases según el cronograma), y luego volveremos para atrás para ver teoría fenomenológica de Landau. ¡Nos vemos a la tarde!