Bibliografía

    1. A. Chaigne and J. Kergomard, Acoustics of musical instruments, Springer 2013
    2. K. Tsuji and S. Muller, Physics and music, Springer, 2020
    3. N. Kraus, Of sound mind, MIT press 2021
    4. T. Rossing, Handbook of acoustics, Springer, 2nd edition, 2014
    5. Roederer, Juan G. The physics and psychophysics of music: an introduction. New York: Springer, 1995.
    6. On the Sensations of Tone as a Physiological Basis for the Theory of Music. trad. ELLIS HLF Helmholtz - AJ (Dover, New York, 1954), 1877
    7. Fundamentals of acoustics, Kinsler, Frey, Coppens and Sanders, Wiley
    8. Fletcher, Neville H. “The nonlinear physics of musical instruments.” Reports on progress in physics 62.5 (1999): 723.
    9. Large, Edward W. “Neurodynamics of music.” Music perception (2010): 201-231.
    10. Large, Edward W. “Resonating to musical rhythm: theory and experiment.” The psychology of time (2008): 189-231.
    11. Wallin, Nils L., Bjorn Merker, and Steven Brown, eds. The origins of music. MIT press, 2001.
    12. Powell, J. (2010). How music works: The science and psychology of beautiful sounds, from Beethoven to the Beatles and beyond. Hachette UK.
    13. Sulzer, D. (2021). Music, Math, and Mind. In Music, Math, and Mind. Columbia University Press.
    14. Howe, M. S., & Howe, M. S. (2003). Theory of vortex sound (No. 33). Cambridge university press.
    15. Kraus, Nina. Of sound mind: how our brain constructs a meaningful sonic world. MIT Press, 2021.
    16. Benade, A. H. (1990). Fundamentals of musical acoustics. Courier Corporation.
    17. Amador, A., Perl, Y. S., Mindlin, G. B., & Margoliash, D. (2013). Elemental gesture dynamics are encoded by song premotor cortical neurons. Nature, 495(7439), 59-64.
    18. Dima, G. C., Copelli, M., & Mindlin, G. B. (2018). Anticipated synchronization and zero-Lag phases in population neural models. International Journal of Bifurcation and Chaos, 28(08), 1830025.
Print Friendly, PDF & Email