La clase práctica del lunes, hoy [actualizado]

[Aquí] pueden bajar una versión taquigrafiada de la clase práctica del lunes, en donde resolvimos el problema 1 de la Guía 6. El ítem respecto a la presión necesitaba revisarse; pueden bajar la versión actualizada de la guía [aquí]. Al final de las notas hay algunos problemas propuestos.

La parte central del problema 1 es razonar la transición de fase. Ahora bien, una vez que lo entendieron, no es necesario aplicar paso por paso los mismos razonamientos a todo problema de condensación de Bose-Einstein que se les presente. No necesitan inventar continuamente la rueda. Lo digo porque en los parciales suelen hacer eso. La rueda ya la damos por inventada, vayan directamente al asunto.

La condensación de Bose-Einstein tiene al menos dos puntos inciertos: el primero es la prescripción de separar en las sumas el término del nivel fundamental y aproximar el resto por una integral. El segundo es entender por qué hay una transición de fase y cómo toda la cuestión depende de manera decisiva de que se tome el límite termodinámico. Este segundo punto está explicado en el apunte de manera bastante formal, a diferencia de la mayoría de los argumentos que encontrarán en los libros. A primera vista, estos argumentos parecen suficientes, pero si se vieran en la necesidad de explicárselos a alguien, descubrirían, con gran azoramiento, que no son tan convincentes como creyeron. Como si repitieran en público un chiste y comprendiesen, cuando ya es demasiado tarde, que sólo lo recuerdan imperfectamente.

Respecto a la prescripción que indica separar la contribución del nivel fundamental y aproximar el resto por una integral, no tengo más que decir que es, como escribiría Lovecraft, intelectualmente repugnante.

En el único, único libro en donde he visto demostrado que esto tiene rigor matemático es en el de Pathria y Beale, en su apéndice F. Hasta cierto punto se entiende todo, pero después entra a jugar el resultado de un paper y la cosa se complica. Pero la demostración existe.

La prescripción de separar e integrar es difícil de justificar gráficamente para el caso del gas en una caja, porque se trata de una integral triple. Para el gas en una trampa armónica, uno puede transformar la suma triple en una suma simple. Como vimos el miércoles, entonces es evidente que la prescripción de separar e integrar es del todo razonable y justificada. El apunte sobre la clase del miércoles está en preparación. Mientras tanto, los urjo a leer las secciones sobre condensado en una trampa armónica en la edición de 2021 del libro de Pathria y Beale, aunque sólo el primero de ellos sea poeta urdu.

Síndrome del fluido normal


“¡Todos pueden ser súper! ¡Y cuando todos sean súper, nadie lo será!” La película Los increíbles (2004) tiene a uno de los villanos más interesantes de las películas de superhéroes. Syndrome no busca dominar al mundo, no desea poder o dinero. Desea que todos sean iguales, y que los superhéroes dejen de ser especiales. ¿Eso es algo bueno, no? ¿Por qué Syndrome sería entonces un villano? Sin embargo, al ver la película, algo parece incorrecto (y casi perverso) en pedirle a Dash con sus 10 años que no participe en el equipo de atletismo de su escuela porque sería excepcional. La película, que a primera vista parece un simple pasatiempo, plantea una discusión interesante sobre la excepcionalidad, la igualdad, y el festejo de la mediocridad.

Los superfluidos son excepcionales. Y algunas de las cosas que hacen son realmente increíbles. Un superfluido es un fluido que fluye sin viscosidad, lo que les permite atravesar canales muy delgados o medios porosos (por los que un fluido viscoso no podría pasar), o trepar por las paredes del recipiente que los contiene. El fenómeno de superfluidez se debe a la formación, a temperaturas muy bajas, de un condensado de Bose-Einstein en el que una fracción de los átomos que formal el fluido (usualmente Helio-4) dejan de tener agitación térmica (sin embargo, la teoría de condensados que vimos en clase corresponde a gases débilmente interactuantes, mientras que el Helio-4 superfluido es un líquido, con una energía potencial de interacción entre sus átomos que no es despreciable). El fenómeno está relacionado también con el de superconductividad.

El siguiente video, corto y muy recomendable, y que vimos rápidamente en clase, muestra varias de las propiedades más llamativas de los superfluidos, como la capacidad de trepar por las paredes de un recipiente, o el “efecto fuente”:


Luego pueden ver un video mas reciente (en castellano) con experimentos de vórtices cuantizados en He-4 superfluido. Como vimos en clase, el hecho de que los bosones que forman el superfluido sean indistinguibles hace que los vórtices en el flujo no puedan rotar a cualquier velocidad, y que su circulación se cuantice. Las lineas blancas sobre fondo negro que se ven en los primeros 5 segundos del video son vórtices cuantizados observados en el laboratorio:


Para los que quieran leer mas sobre He-4 superfluido, les aconsejo leer el siguiente trabajo de Richard Feynman. Aunque es un poco antiguo y la interpretación actual de los rotones es diferente a la planteada en el artículo, muchas de las especulaciones que hace Feynman fueron mas tarde confirmadas en experimentos:

Este trabajo tiene una historia interesante atrás. Feynman presentó, antes de escribir el artículo, sus resultados en un congreso al que asistió Lars Onsager (que era famoso en el área). Feynman estaba bastante orgulloso de si mismo (por estos resultados, pero también se encontraba en ese estado la mayor parte del tiempo), y Onsager decidió darle una lección. La narración completa la pueden encontrar en “Surely You’re Joking, Mr. Feynman!“, pero en palabras de Feynman es más o menos así:

“Bueno, Feynman”, dijo Onsager con voz ronca, “escuché que crees que has entendido el helio líquido”.
“Bueno, sí…”
“Umm…” ¡Y eso fue todo lo que me dijo durante toda la cena! No fue muy estimulante.

Al día siguiente di mi charla, y expliqué todo sobre el helio líquido. Al final, mencioné que había algo que todavía no había logrado entender: si la transición entre una fase y la otra del helio líquido era de primer orden (como cuando un sólido se derrite o un líquido hierve, y la temperatura se mantiene constante) o de segundo orden (como ocurre en el magnetismo, donde la temperatura puede cambiar).

Entonces el profesor Onsager se levantó y dijo duramente: “Bueno, el profesor Feynman es nuevo en nuestra área, y creo que necesita ser educado. Hay algo que tiene que aprender y que debemos decirle”.
Pensé: “¡Oh no! ¿Qué hice mal?”
Onsager dijo: “Deberíamos decirle a Feynman que nadie ha podido obtener el orden de una transición a partir de primeros principios, por lo que el hecho de que su teoría no le permita calcular eso no significa que no haya entendido todo los otros aspectos del helio líquido satisfactoriamente”. Resultó ser un cumplido, pero por la forma en que comenzó, ¡pensé que me iba a dar una paliza!

Aunque Onsager probablemente nos daría una paliza, en nuestro grupo de investigación trabajamos (entre otros temas) en el estudio de flujos y turbulencia en superfluidos y en condensados de Bose-Einstein. En los dos primeros links pueden ver algunas imágenes y videos de simulaciones que hicimos de vórtices cuantizados. Para los mas curiosos (o valientes), en el tercer link les dejo un paper que publicamos hace unos años sobre viscosidad en superfluidos a temperatura finita; el paper usa muchas herramientas de la materia como el ensamble gran-canónico, el potencial químico, fonones y relaciones de dispersión, y teoría cinética y camino libre medio: