Eres Arnold y no lo sabes


Todos los cuerpos absorben radiación electromagnética, y emiten espontáneamente una parte en forma de radiación en equilibrio térmico con el cuerpo (es decir, como fotones a la misma temperatura que la fuente térmica). Esa es la radiación de cuerpo negro. Arnold Schwarzenegger sabe mucho sobre esto, y se cubre en barro frío cada vez que tiene que luchar contra un depredador, porque estos aliens pueden ver la radiación emitida por su cuerpo. Pero todos emitimos esta radiación, no solo Arnold (la radiación no depende de cuantas horas pasemos en el gimnasio). Así que en este post vamos a ver cómo esto se puede usar para saber qué temperatura tienen las personas en los aeropuertos.

¿En qué longitud de onda emite radiación de cuerpo negro una persona a 36 grados Celsius? A partir del espectro de Planck se puede ver que la máxima emisión ocurre para una longitud de onda que sigue la ley de Wien,

donde b = 2898 μm K. Noten que esto significa que al cambiar la temperatura del cuerpo, cambia el “color” de la radiación electromagnética emitida, ya que el color depende del espectro emitido (y fuertemente de en qué longitud de onda está el pico del espectro). Entonces ¿en qué longitud de onda debe observar una cámara para detectar este tipo de radiación? Para 36 grados Celsius, T= 309 K, y λmax ≈ 9.4 μm. De hecho, si variamos la temperatura entre 30 y 40 grados Celsius, el máximo del espectro varía respectivamente entre 9.56 y 9.26 μm (o entre 9560 y 9260 nm). Esto corresponde a radiación electromagnética infraroja. ¡Así que mirando los colores en una cámara infrarroja podemos estimar la temperatura de los cuerpos! Y así también sabemos en qué región del espectro electromagnético funcionan los ojos del depredador que persigue a Schwarzenegger:

Sabiendo esto, ¿a qué temperatura se encuentra la radiación cósmica de fondo? Estamos rodeados por radiación electromagnética de cuerpo negro que fue emitida en el momento en que se formaron los primeros átomos en el universo, y que llega a nosotros proveniente de todas las direcciones. Esta radiación corresponde a fotones que se desacoplaron de la materia en la época de recombinación: el momento en que la temperatura del universo bajó lo suficiente como para que protones y electrones pudieran combinarse formando átomos de hidrógeno (eléctricamente neutros), aproximadamente 370.000 años luego del Big Bang, y  cuando el universo estaba una temperatura media de unos 3000 K. Antes, el campo electromagnético interactuaba con la materia, mientras que luego de la recombinación los fotones de la radiación cósmica de fondo dejaron de interactuar (básicamente, porque la radiación electromagnética dejó de sufrir scattering con los electrones libres). ¡Como resultado, la radiación cósmica de fondo que vemos hoy es un gas de fotones en equilibrio térmico con la materia que formaba el universo hace 13.771.700.000 años!

En 1964, Arno Penzias y Robert Wilson, realizando mediciones con una antena en los Laboratorios Bell, encontraron una extraña señal de microondas con un máximo en λmax ≈ 1 mm. Esa señal captada por la antena corresponde a este gas de fotones, mensajero del universo temprano. Usando nuevamente la ley de Wien podemos ver que esta longitud de onda corresponde a T ≈ 2.7 K (la temperatura determinada originalmente por Penzias y Wilson en 1964 era ligeramente mayor, por la incerteza experimental del instrumento). Esa temperatura corresponde a la temperatura media del gas de fotones que forma la radiación cósmica de fondo. Y no es 3000 K, sino alrededor de 1000 veces menor por la expansión del universo, que resulta también en la expansión del gas y una disminución de la temperatura a medida que el universo envejece. Porque la temperatura T de un gas de fotones cumple la ecuación

donde U es su energía total, y V el volumen ocupado por el gas.

Penzias y Wilson midieron la temperatura media de esta radiación. Pero hoy sabemos que la temperatura de este gas de fotones no es perfectamente isótropa, y que su anisotropía (es decir, su pequeña variación cuando miramos en diferentes direcciones en el universo) nos brinda información sobre el universo temprano. Cuando se resta el valor medio a la radiación, la proyección de las fluctuaciones en la potencia de la radiación que nos llega de diferentes regiones del firmamento se ve así:

Pero esta es otra historia.

Chandra y las enanas blancas


There’s a starman waiting in the sky,
he’d like to come and meet us
but he thinks he’d blow our minds

David Bowie, Starman (1972).

Hablemos de física y rock aprovechando el fin de semana largo.

Chandra y las enanas blancas” no es el nombre de una banda de rock (¡podría serlo!). Pero el personaje principal de esta historia es el verdadero Starman, el hombre de las estrellas. Y los aportes que hizo a la física nos vuelan la mente. Esta es la historia de Subrahmanyan Chandrasekhar y un tipo muy particular de estrellas. Chandrasekhar ganó el premio Nobel en 1983 por sus estudios sobre la evolución y la estructura de las estrellas, pero su camino hasta ese premio no fue fácil. El Dr. Chandra, un personaje en 2001: A Space Odissey, lleva su nombre en homenaje a él.

En las últimas clases vimos que la presión de degeneración en un gas de fermiones es central para explicar la estabilidad de estrellas enanas blancas (y también juega un rol en estrellas de neutrones). Una enana blanca es una estrella que quemó todo su material nuclear: una estrella como el Sol, luego de quemar todo el hidrógeno, quema material nuclear más pesado como el Helio. Para ello necesita mayor presión y temperatura en el núcleo, pero también genera mas energía en la reacción nuclear, y se expande hasta convertirse en una gigante roja. Luego de quemar todo el material disponible para la fusión, sufre una inestabilidad y expulsa buena parte de su masa. El núcleo de la estrella, que puede tener una masa equivalente a la del Sol pero comprimirse hasta un volumen como el de la Tierra, mantiene el calor residual y forma la enana blanca. La siguiente imágen muestra a Sirius B, una enana blanca, indicada por la flecha:

Si una enana blanca no quema más material nuclear, ¿qué mantiene a la estrella estable evitando el colapso gravitatorio? La respuesta es la presión de degeneración en un gas de Fermi: en la estrella la densidad de la materia es tan grande que el gas está degenerado (es decir, las funciones de onda de las diferentes partículas se superponen), y y la presión de Fermi es suficiente para contrarrestar la fuerza de gravedad. Recuerden que la presión de radiación resulta del principio de exclusión de Pauli. Es el hecho de que dos ferminones no puedan tener los mismos números cuánticos lo que evita que la estrella colapse gravitatoriamente. Algo parecido ocurre en estrellas inicialmente aún mas masivas, que pueden evolucionar a estrellas de neutrones. Finalmente, si la masa inicial de la estrella es aún mayor (más grande que la masa límite de Chandrasekhar), la presión de degeneración no es suficiente para evitar el colapso gravitatorio y se puede formar un agujero negro.

Los que quieran leer mas detalles sobre el balance de fuerzas en una estrella enana blanca pueden ver el siguiente link (9 páginas, en inglés):

Chandrasekhar reconoció la existencia de una masa límite, por encima de la cual las estrellas podían colapsar y formar agujeros negros, muy temprano en su carrera científica. Se enfrentó a diversos prejuicios raciales en Inglaterra y en Estados Unidos. Pero, al mismo tiempo, su idea sobre la existencia de una masa límite también se adelantó a la época. Cuando Chandrasekhar formuló su idea, el conocimiento sobre interiores estelares era bastante incipiente. Y por ese motivo muchos físicos y astrónomos presentaron dudas razonables a su validez. Chandrasekhar no bajó los brazos y a lo largo de varias décadas trabajó en mecánica estadística, dinámica de fluidos, relatividad general, y otros temas hasta crear una teoría muy sólida sobre la física de las estrellas. Mientras estudiaba estos fenómenos, y muchos otros, Chandrasekhar estableció las bases de lo que hoy conocemos como la teoría de interiores estelares, y sobre cómo evolucionan las estrellas en el tiempo. Las contribuciones de Chandrasekhar al estudio de interiores estelares, la evolución de las estrellas hasta la formación de enanas blancas o agujeros negros, y sus estudios de la estadística de Fermi-Dirac para explicar la estabilidad de las enanas blancas, lo llevaron a tener diversas disputas con astrónomos renombrados de la época, como Arthur Eddington. Los que quieran conocer parte de esta historia, más detalles sobre evolución estelar y la formación de agujeros negros, y algunos detalles jugosos sobre la pelea entre Chandrasekhar y Eddington, pueden ver este video:


Física macroscópica, Turing y Gödel

Hace unos años un grupo de científicos demostró que, para un problema particular, obtener ciertas propiedades macroscópicas a partir del conocimiento completo y preciso de las leyes microscópicas del sistema es indecidible. El problema particular que consideraron es el de calcular la diferencia de energía entre niveles de un semiconductor (el “gap espectral“, o la energía necesaria para mover un electrón del estado fundamental al estado excitado, en un sistema con muchos electrones). El valor del gap espectral tiene un impacto en el comportamiento macroscópico del sistema: los semiconductores tienen un gap espectral y sus propiedades físicas dependen de este gap, mientras que si no existe un gap, el material sufre una transición a otro estado.

Lo que se demostró es que conociendo completamente la física microscópica del sistema cuántico, la pregunta “¿tiene el sistema un gap espectral?” es indecidible. Que este problema sea indecidible significa que es imposible construir un algoritmo general que siempre nos de la respuesta correcta. Esto no significa que la pregunta no pueda contestarse, o que no pueda calcularse el valor del gap. Lo que significa es que el cálculo de esta propiedad macroscópica (aún conociendo completamente la física miscroscópica del sistema) no puede hacerse usando un único algoritmo que valga en todos los casos. En otras palabras, puede existir un algoritmo que permita obtener la respuesta para un material particular, pero que para otro material el mismo método no sirva. O, como dicen los autores del trabajo, “no puede existir un método general que permita determinar si un material descripto por la mecánica cuántica tiene un gap espectral o no”. No hay atajos elegantes. Hay que hacer física.

La demostración de indecibilidad se realizó mostrando que el problema es equivalente al problema de la parada de Turing. En 1936, Turing demostró que no es posible escribir un “programa” que ejecutado en una “computadora” (técnicamente, un algoritmo en una máquina de Turing) pueda decidir si otro algoritmo terminará de ejecutarse en un número finito de pasos o no. El teorema de Turing está relacionado con otros dos teoremas famosos de Gödel, que dicen (en su forma débil) que es imposible escribir en forma algorítmica un conjunto de reglas (o axiomas) para generar la aritmética que sea a la vez correcta y completa. Noten que si el sistema es incompleto, en algún momento encontraremos algún teorema válido que no podremos probar con los axiomas que tenemos. ¡Y si es incorrecto, en algún momento podremos probar que vale cierto teorema, y también que no vale ese mismo teorema!

Los que quieran saber más pueden leer un artículo sobre el problema del gap espectral en Phys.org, o el paper original publicado en la revista Nature:

Sin embargo, noten que este resultado no implica que no podamos obtener teorías físicas fundamentales, que no se pueda conocer el Hamiltoniano que describe la física básica del problema, o que no se pueda conocer si el sistema tiene un gap o no. Lo que implica es que no alcanza con saber matemáticas y usarlas como en una “receta”, y que siempre tendremos que hacer aproximaciones o consideraciones según la física de cada sistema.

El resultado sobre la indecibilidad del problema del gap espectral es parte de varios resultados recientes que identifican problemas indecidibles o no computables en diferentes áreas de la física (tanto clásica como cuántica), y parten de una pregunta hecha en 1994 por Roger Penrose en un libro hermoso pero también polémico, en el que Penrose se pregunta si existirán problemas de este tipo en sistemas físicos. Mas allá de los detalles técnicos, los resultados pueden ser muy perturbadores para los que esperaban que el curso de mecánica estadística les permita justificar, en forma sistemática, todo lo que no comprendemos de la física macroscópica a partir de fenómenos microscópicos (¡que probablemente tampoco comprendamos muy bien!).

En cierto sentido, esto tiene una relación con la visión de las jerarquías en la física de Feynman de un posteo anterior, donde Feynman decía que es un error pensar que uno puede partir de uno de los extremos (la física microscópica) y caminar solamente desde ese extremo hacia el otro (la física macroscópica), creyendo que de esa forma se alcanzará un entendimiento completo. En esta línea de pensamiento les aconsejo fuertemente leer también este genial artículo de 1972 de Philip Anderson:

donde el señor Anderson entre otras cosas dice:

The ability to reduce everything to simple fundamental laws does not imply the ability to start from those laws and reconstruct the universe [...] At each stage entirely new laws, concepts, and generalizations are necessary, requiring inspiration and creativity to just as great a degree as in the previous one.

La intuición física de Feynman y de Anderson (y de muchos otros físicos) se adelantó a estos resultados más recientes y más formales. Vale aclarar que este artículo de Anderson a veces es mal interpretado. Anderson no dice que los sistemas extensos sigan nuevas leyes fundamentales, o que nuevas fuerzas fundamentales aparezcan como resultado de considerar sistemas con nuevas partículas. Pero sí dice que conocer las leyes fundamentales no es suficiente para con ellas reconstruir el universo en forma sistemática, y que al considerar cada aumento en la escala del sistema, es necesario realizar nueva investigación en física básica, e introducir nuevos conceptos, nuevas ideas y nuevas generalizaciones. Cada capa de la cebolla requiere aproximaciones nuevas, ideas ingeniosas, y mucha creatividad.

¿Y por qué el Señor Anderson insiste con esto? ¿Por qué lo hace? Porque elige hacerlo:


¡Y no dejen de ver el posteo previo, con un notebook que armó uno de sus compañeros para los problemas de la guía 2!

El transportador


¡Fin de semana a pura acción! Luego del parcial, y para cerrar los temas de primera mitad de la materia, hablemos de fenómenos de transporte. En clase vimos como el límite macroscópico de la ecuación de Boltzmann nos da las ecuaciones de los fluidos para un gas muy diluido, y cómo el retorno al equilibrio del sistema puede caracterizarse, macroscópicamente, con coeficientes de transporte (¿qué equilibrio estaría intentando restablecer Frank Martin en sus tres películas?).

La validez del límite hidrodinámico puede verse también en simulaciones numéricas, y a veces la ecuación de Boltzmann o ecuaciones de dinámica molecular para un número muy grande de partículas se usan para simular la dinámica macroscópica de gases y líquidos. En clase vimos un ejemplo de difusión usando Colab con apenas 400 partículas, pero con tiempo y paciencia pueden hacerse cosas más grandes. Tomemos el caso de una instabilidad macroscópica que ocurre en gases y líquidos cuando existe un gradiente tangencial en el momento del fluido: la intestabilidad de Kelvin-Helmholtz.

La inestabilidad de Kelvin-Helmholtz ocurre cuando dos fluidos (usualmente con densidad diferente) se mueven en dirección contraria. En la superficie que separa los dos fluidos el gradiente de velocidad es muy grande. Esta superficie es inestable frente a pequeñas perturbaciones, y al intestabilizarse se genera un patrón de vórtices conocidos como vórtices de Kármán. La intestabilidad que se desarrolla intenta recobrar una distribución homogénea del momento, y resulta en un mezclado y transporte eficiente entre las dos regiones del fluido. Pueden ver un ejemplo de macroscópico en la siguiente foto de unas nubes, noten “las crestas” en el borde superior de las nubes, que resultan en el transporte y mezclado del gas en la parte mas baja con el gas en la parte superior.

Esta misma inestabilidad puede verse en una simulación de dinámica molecular de la mezcla de dos gases usando 9.000.000.000 de partículas (¡comparen este número con las 400 que usamos en clase en el Colab!). Observen cómo se forman las mismas estructuras que en la foto, cómo la mezcla se vuelve cada vez más homogénea como resultado de las colisiones y el transporte, y cómo un flujo macroscópico emerge de la dinámica molecular microscópica:


Para la mayoría de las aplicaciones no podemos (ni tiene mucho sentido) realizar simulaciones con 9.000.000.000 de partículas. En la práctica, la mezca entre dos gases con diferente densidad, la difusión de cambios en la temperatura de un gas, o la conducción de electricidad por el movimiento de los portadores de carga en un conductor, se describen con coeficientes macroscópicos en ecuaciones en el límite hidrodinámico: los coeficientes de transporte. La viscosidad, la conductividad térmica, y la conductividad eléctrica son ejemplos de este tipo de coeficientes. Desde un punto de vista termodinámico, los coeficientes de transporte y su rol en termodinámica de sistemas fuera del equilibrio pueden estudiarse con las relaciones recíprocas de Onsager. En particular, estas relaciones permiten definir coeficientes de transporte en forma precisa, como la razón entre el flujo medio de una cantidad transportada (que intenta recobrar el equilibrio) y el gradiente macroscópico que genera el desbalance en el sistema. Así, los coeficientes de transporte en general toman la forma

donde κ es el coeficiente de transporte, Ju es el flujo medio de alguna magnitud transportada microscópicamente por los choques de moléculas en el gas, y θ es el gradiente de alguna magnitud macroscópica. Por ejemplo, cuando generamos una diferencia en la temperatura entre dos puntos de un gas, se establece un flujo de energía cinética térmica que intenta recobrar la temperatura homogénea, y el coeficiente que mide ese transporte (la razón de proporcionalidad entre ambas magnitudes) es la conductividad térmica. O, si generamos una diferencia de potencial electrostático, se establece una corriente (un flujo de carga), y el coeficiente de proporcionalidad es la conductividad eléctrica.

Indicaciones sobre el parcial

Posteo por acá un mail que mandé a todos el jueves pasado con indicaciones sobre el parcial, por si alguno no lo recibió.

Horario: miércoles 12 de mayo, de 17 a 22hs. A las 17hs van a recibir un mail mío con el parcial. Las 22hs es la hora límite para entregar: parciales entregados después de esa hora se considerarán no entregados.

Formato de entrega: tienen que mandarme un único pdf con su resolución a mí, guillem@df.uba.ar. El nombre del archivo debería ser Apellido_Nombre.pdf (por ejemplo, el alumno Juan Pérez enviará el archivo Perez_Juan.pdf). Si alguno quiere hacerlo en latex genial, pero no es para nada obligatorio: pueden hacerlo a mano, sacar foto y convertir a pdf. Sobre esto último, dos comentarios:

1) Asegúrense en estos días de que dominan la técnica para convertir su parcial en un pdf, para que eso no les haga perder tiempo el día del parcial.

2) Asegúrense también de que el pdf que producen se puede leer claramente (eso también tiene que ver con su prolijidad al escribir). Tengan en cuenta que lo que no se entienda no se podrá evaluar.

Qué se puede hacer y qué no: el parcial es a libro abierto, pueden consultar las referencias que quieran. También, si quieren apoyarse en Wolfram para hacer alguna cuenta pueden hacerlo. Lo que no pueden hacer, obviamente, es cooperar entre ustedes (copiarse). A estas alturas, confiamos en que tienen el sentido ético, la dignidad y el respeto (hacia los demás y hacia ustedes mismos) para que eso ni siquiera se les pase por la cabeza. En caso de que detectemos algo raro en alguna resolución, nos reservamos el derecho de tener una entrevista por skype/zoom/meet con el alumno para asegurarnos de que su resolución fue legítima.

Consultas durante el parcial: sólo se permiten consultas de enunciado. Cualquier otro tipo de consulta no será respondido. Las consultas se formularán y responderán únicamente a través del aula zoom, a la que los docentes estaremos conectados durante el parcial. Se recomienda que todos los alumnos se conecten también, para formular sus consultas y para escuchar las consultas de otros. Pero esto no es obligatorio y no es una forma de control: no hace falta que tengan el micro abierto ni la cámara prendida.

Evaluación: todos los problemas del parcial valen lo mismo, y se aprueba con un 6.

Recomendación: las guías más importantes de esta primera parte de la cursada son la 3 y la 4.

Mucha suerte a todos!