Reflexión final de la teórica


Terminaron las clases teóricas de la materia. Por la pandemia tuvimos, nuevamente, un cuatrimestre virtual. Varias herramientas que nos trajo la virtualidad quedarán en el futuro en el repertorio de herramientas para el aula. A otras, cuando llegue el momento, las dejaremos felizmente atrás. La virtualidad que nos impuso COVID-19 desde principios de 2020 tiene algunas ventajas, que todos apreciamos a lo largo de este tiempo: ahorramos horas de viaje, ustedes pueden ver las clases muchas veces, y podemos ilustrar los temas de las clases con simulaciones y material audiovisual. A esta altura también queda claro que la virtualidad genera cansancio, desgaste y pérdida de motivación. Pero, al menos desde mi punto de vista, también tiene otras dos desventajas importantes: se pierde la gestualidad del aula, y para los profesores es difícil saber cuándo ustedes entienden y cuándo no (o, mejor dicho, cuándo no estamos siendo claros en las explicaciones). Y, más importante aún, es que hay un conjunto importante de conocimientos que no forman parte explícita de los contenidos de las materias, pero que se aprenden informalmente, y que no pueden compartirse ni enseñarse en forma virtual.

Existe un conjunto de normas, una ética científica, que esperamos que aprendan a lo largo de la carrera. No hay una materia específica para esto, se aprende en los pasillos, en las conversaciones con compañeros y docentes, en indicaciones mínimas que se dan en el aula. Cuando cursaron Laboratorio 1, probablemente les dijeron que nunca debían falsificar o inventar un dato. Si rindieron finales presenciales, en algún final les habrá llamado la atención que los dejaron escribir sus notas solos: esperamos que sepan que en ciencia es inaceptable copiarse. En alguna materia les habrán dicho que es importante reconocer lo que uno no sabe, o los errores que uno comete. Y en esta materia, tan vasta en sus aplicaciones, uno de los contenidos no escritos es aprender los límites de lo que sabemos, las limitaciones de las aproximaciones, y cómo aplicarlas correctamente desde nuestro lugar como físicos. A lo largo de la materia vimos, en las clases o en la página web del curso, aplicaciones en economía, en biología y epidemias, meteorología, teoría de la información, cosmología, astrofísica, dinámica de fluidos, física de altas energías, y materia condensada. Es claro que las últimas aplicaciones pertenecen al área del conocimiento abarcada por la física. Las primeras no. Las herramientas de la materia sirven para estudiar (en forma parcial) a estos temas, y no está mal que los consideremos, y que tratemos de aprender cosas nuevas. ¿Pero significa eso que sabemos de esos temas? ¿O que podemos opinar como expertos?

En el último año la pandemia de COVID-19 puso a muchos científicos en una disyuntiva similar. Tal vez ustedes en el futuro se encuentren en una situación parecida trabajando en la academia. O se encuentren trabajando para una empresa que evalúa riesgo bursátil, o colaborando con colegas de otras áreas en grupos interdisciplinarios. La tentación de usar un conjunto de herramientas que sabemos que funcionan en muchísimos casos para opinar como expertos es grande. Pero la ciencia a lo largo de los siglos generó un conjunto de buenas prácticas que nos guían sobre cómo debemos comportarnos en esas situaciones. Y nos enseñan a defender con seguridad lo que sabemos, pero también a escuchar a los expertos de otros temas en sus áreas del conocimiento. Y sobre todo, a comunicar (tanto a nuestros colegas, como al público general) primero lo que no sabemos, para luego poder informar responsablemente lo que aprendimos.

Esto probablemente sea aún más importante para las generaciones futuras de científicos, como ustedes. Que vivamos en una sociedad moderna, con problemas complejos, y en los que la ciencia juega un rol central, no significa que la ciencia o los científicos deban ser los instauradores de la verdad. En una sociedad democrática el rol de la ciencia es (entre otros) el de presentar datos y asesorar a la sociedad en la toma de decisiones, pero no tomar decisiones por ella, ignorar la opinión de otros expertos, o ubicarse en una posición de privilegio. La lucha contra las noticias falsas no puede implicar acallar las opiniones, o negarlas solo con argumentos de autoridad. Y muchos menos puede autorizarnos a jugar con las mismas reglas que los que diseminan noticias falsas, y presentar datos parciales o editados con el fin de imponer una postura, por más convencidos de su validez que estemos. Esto no significa que ustedes no puedan o deban involucrarse en causas sociales, políticas, religiosas o culturales que los interpelen. Pero es importante aclarar desde qué lugar hablan en esos casos, y no mezclar sus deseos o creencias con el trabajo que puedan hacer o con la opinión que puedan dar como científicos.

Como resultado de esto, lo que más extraño del aula desde hace más de un año es el ejercicio de poder conversar con ustedes sobre todos estos contenidos extra-curriculares, que como dice Feynman en algún discurso, esperamos que aprendan “por osmosis”. Se que a algunos estudiantes esto les gusta, y a otros les molesta, pero creo que una parte importante del trabajo en el aula involucra justamente esto: enseñar, con las limitaciones que cada uno de los profesores tenemos, cómo se hace ciencia, cuáles son las buenas prácticas científicas, qué cosas no se hacen, qué cosas nos preguntamos, y cuales están fuera de nuestra área del conocimiento y son conversaciones de café. Esto incluye el manejo honesto de los datos, aceptar el error, aprender a no engañarnos a nosotros mismos, no exagerar la relevancia de nuestros resultados, ser cuidadosos en la comunicación de la ciencia, no usar argumentos de autoridad, y muchas otras prácticas que son centrales para sostener la credibilidad de la ciencia en general, y de nuestro trabajo en particular.

Como la modalidad virtual no permite hacer esto informalmente, elegí cerrar la materia planteando estos temas en este último mensaje. Y mucho mejor que cualquier cosa que yo pueda escribir sobre buenas prácticas científicas, es leer a Feynman. Así que les recomiendo fuertemente que lean el discurso sobre ciencias, pseudo-ciencias, y ética científica que Feynman dio a los graduados de Caltech en 1974:

Aunque todo su discurso no tiene desperdicio, solo voy a resaltar cuatro párrafos que me parecen relevantes, y que traduzco a continuación:

  • Esa es la idea que esperamos que hayan aprendido al estudiar ciencias: nunca les dijimos explícitamente cuál es, pero esperamos que lo hayan descubierto a partir de todos los ejemplos de investigación científica. Es interesante, por lo tanto, mencionarla ahora y hablar de esto explícitamente. Es un tipo de integridad científica, un principio de pensamiento científico que corresponde a un tipo de honestidad absoluta, y tomando distancia. Por ejemplo, si están haciendo un experimento, deben informar todo lo que creen que podría invalidarlo, no solo lo que creen que es correcto.
  • El primer principio es que no debes engañarte a ti mismo, y eres la persona más fácil de engañar. Así que debes tener mucho cuidado con esto. Después de que no te hayas engañado, es más fácil no engañar a otros científicos.
  • Me gustaría agregar algo que no es esencial para la ciencia, pero es algo que creo: no debes engañar a la persona común cuando hablas como científico. No estoy tratando de decirte que no engañes a tu esposa o a tu novia cuando no estás tratando de ser científico. Esos son problemas para ustedes y sus rabinos. Estoy hablando de un tipo específico de integridad adicional que consiste no solo en no mentir, sino en hacer el esfuerzo de tomar distancia para mostrar cómo tal vez estás equivocado, y que debes hacer cuando actúas como científico. Y esta es nuestra responsabilidad, ciertamente para con los otros científicos, y creo que también al hablar con la gente común.
  • Así que solo tengo un deseo para ustedes: que tengan la buena suerte de estar en un lugar donde sean libres de mantener el tipo de integridad que he descrito, y donde no se sientan forzados a perder la integridad para mantener su posición en una organización, o el apoyo financiero, u otras cosas. Ojalá tengan esa libertad.

Como dijo Ben Parker, “con grandes poderes vienen grandes responsabilidades” (y admitamos que saber contar microestados tampoco es un poder tan grande). No hagan daño, sean honestos, trabajen y esfuércense, colaboren, compartan con transparencia sus datos, no sean soberbios, no usen argumentos de autoridad ni se proclamen expertos, aclaren cuándo hablan como científicos y cuándo desde sus creencias, digan explícitamente cuáles son sus conflictos de interés al reportar resultados, y no se pongan a ustedes mismos en situaciones en las que tengan que faltar a la ética científica.

Si esta es la última Física Teórica que cursan, es probable que no nos volvamos a encontrar en un aula (al menos mientras sean estudiantes de grado). Les agradezco la paciencia en este cuatrimestre, y espero que hayan disfrutado la materia. Para mí, es la materia más linda de toda la carrera. Y a todo el resto, espero verlos nuevamente en algún aula. Mucha suerte en el parcial, y a todos los que aprueben los veré en el examen final. Cuídense, y no defrauden nunca a la vocación que los llevó a elegir una carrera científica.

Landau Ginzburg dependiente del tiempo (LGDT)

Hola chicxs
Les dejo, a modo de ejemplo y como tema pochoclero por fuera de la materia, un pequeño código que resuelve la ecuación de Landau Ginzburg si el parámetro de orden depende del tiempo. Desde el lado físico, este modelo es super interesante y relavante para modelar superconductores. Desde el lado numérico, hay varias opciones de cómo discretizar un laplaciano, les dejo dentro del código el link de github donde saqué el método que usé.

https://colab.research.google.com/drive/1R3sOVI5o-Tog-hP5-vlEi0jw2NsPnVS3?usp=sharing

Es algo super ilustrativo, pueden jugar sin problema con los parámetros y con la cantidad de iteraciones a graficar. Nos vemos!

Ceci.

La primera regla es…


La primera regla del Club de la Pelea es que no se habla sobre el Club de la Pelea. Dirigida por David Fincher (director de Mank, disponible en Netflix), la película de 1999 consigue construir el orden (y el desorden) a lo largo de 139 minutos partiendo de 8 simples reglas. ¿Podemos explicar el orden y el desorden de las transiciones de fase y los fenómenos críticos partiendo de unas pocas reglas?

En posteos anteriores vimos que el orden (o desorden) macroscópico de un sistema no se obtiene trivialmente partiendo de las reglas físicas microscópicas que describen al sistema. El orden macroscópico puede no ser computable, o en el mejor de los casos, “more is different” y requiere nuevos métodos y aproximaciones. Por eso cuando se consiguieron explicar los fenómenos críticos con una teoría física, fue claro que se estaba realizando un gran avance en el entendimiento de los sistemas físicos extensos. De hecho, la teoría de fenómenos críticos marcó buena parte de la física de los últimos 50 años. No tiene sentido hacer una competencia entre áreas que obtuvieron más premios Nobel, o considerar que la importancia de un área o de un resultado depende de si sus autores están listados entre los laureados con un premio (“¡Messi no ganó ningún mundial, es un pecho frío!“). Hacer esto ignoraría la cantidad de resultados cruciales para la física que fueron valorados mucho más tarde, o que permearon la física tan profundamente que los olvidamos (la física tal como la conocemos no existiría sin el cálculo infinitesimal, y sin embargo, Newton es conocido popularmente por la gravedad y la manzana).

Sin embargo, hacer el ejercicio inverso sí tiene algún sentido: mirar la lista de premios Nobel da información sobre algunos temas que marcaron épocas en la física (de la misma forma que mirar la lista de selecciones que ganaron mundiales da información sobre estilos de fútbol y jugadores que marcaron épocas). Y desde 1982 hasta la fecha, muchos premios Nobel tuvieron que ver con el desarrollo de la mecánica estadística, y con el estudio directo o indirecto de las transiciones de fase. Comencemos el repaso de estos premios con Wilson:

El uso del grupo de renormalización para comprender fenómenos críticos fue introducido en la segunda mitad del siglo 20 por Leo Kadanoff, Kenneth Wilson y Michael Fisher. Wilson ganó el premio Nobel en 1982 por su teoría de fenómenos críticos en conexión con transiciones de fase (Kadanoff bien podría ser el Messi de esta historia). Wilson falleció en junio de 2013, y en conmemoración de esa fecha la American Physical Society publicó en 2019 este breve artículo que resume varias de sus contribuciones:

Al final del artículo van a encontrar la referencia al paper original de Wilson de 1971 por el que ganó el premio. Los dos artículos de Wilson de 1971 sobre grupo de renormalización y su relación con fenómenos críticos están disponibles (con acceso abierto) en Physical Review B:

Desde 1982 a la fecha al menos en otras seis ocasiones se entregaron premios Nobel en temas relacionados con mecánica estadística y transiciones de fase. El más reciente, a David Thouless, Duncan Haldane, y Michael Kosterlitz (que estuvo conversando con estudiantes del DF hace unos años) se otorgó en 2016 por avances teóricos en el estudio de transiciones de fases topológicas de la materia. Las transiciones de fases topológicas involucran un cambio en el orden topológico del sistema: por debajo de una temperatura crítica los “defectos” (por ejemplo, vórtices cuantizados en un superfluido en dos dimensiones) se ordenan en pares (de vórtices con signos opuestos), mientras que por arriba de dicha temperatura se encuentran solitarios y libres. Los interesados en esta transición pueden leer la descripción técnica del premio Nobel, que usa herramientas de la materia (el modelo de Ising, el parámetro de orden, y la energía libre de Landau):

Yendo hacia atrás en el tiempo y solo llegando en la lista hasta 1982, el premio Nobel de 2003 se entregó a avances en la teoría de superconductores y superfluidos, el de 2001 a los experimentos que obtuvieron los primeros condensados de Bose-Einstein gaseosos en el laboratorio, el de 1996 a la transición de He-3 a la fase superfluida, el de 1991 a avances en el estudio de fases ordenadas en cristales líquidos y polímeros, y el de 1987 a la observación de superconductividad en materiales cerámicos. Los interesados en algunos de estos temas pueden mirar las páginas del premio Nobel, donde encontrarán más información.

¡Y no dejen de mirar las importantes indicaciones para el segundo parcial!

Indicaciones segundo parcial

Para el segundo parcial, valen las mismas indicaciones que di para el primero, con pequeñas modificaciones. Lean atentamente!

Horario: miércoles 7 de julio, de 17 a 22hs. A las 17hs van a recibir un mail mío con el parcial. Las 22hs es la hora límite para entregar: parciales entregados después de esa hora se considerarán no entregados.

Formato de entrega: tienen que mandarme un único pdf con su resolución a mí, guillem@df.uba.ar. El nombre del archivo debería ser Apellido_Nombre_p2.pdf (por ejemplo, el alumno Juan Pérez enviará el archivo Perez_Juan_p2.pdf; el “p2″ significa “parcial 2″). Si alguno quiere hacerlo en latex genial, pero no es para nada obligatorio: pueden hacerlo a mano, sacar foto y convertir a pdf. Sobre esto último, dos comentarios:

1) Asegúrense en estos días de que dominan la técnica para convertir su parcial en un pdf, para que eso no les haga perder tiempo el día del parcial.

2) Asegúrense también de que el pdf que producen se puede leer claramente (eso también tiene que ver con su prolijidad al escribir). Tengan en cuenta que lo que no se entienda no se podrá evaluar.

Qué se puede hacer y qué no: el parcial es a libro abierto, pueden consultar las referencias que quieran. También, si quieren apoyarse en Wolfram para hacer alguna cuenta pueden hacerlo. Lo que no pueden hacer, obviamente, es cooperar entre ustedes (copiarse). A estas alturas, confiamos en que tienen el sentido ético, la dignidad y el respeto (hacia los demás y hacia ustedes mismos) para que eso ni siquiera se les pase por la cabeza. En caso de que detectemos algo raro en alguna resolución, nos reservamos el derecho de tener una entrevista por skype/zoom/meet con el alumno para asegurarnos de que su resolución fue legítima.

Consultas durante el parcial: sólo se permiten consultas de enunciado. Cualquier otro tipo de consulta no será respondido. Las consultas se formularán y responderán únicamente a través del aula zoom, a la que los docentes estaremos conectados durante el parcial. Se recomienda que todos los alumnos se conecten también, para formular sus consultas y para escuchar las consultas de otros. Pero esto no es obligatorio y no es una forma de control: no hace falta que tengan el micro abierto ni la cámara prendida.

Evaluación: todos los problemas del parcial valen lo mismo, y se aprueba con un 6.

Mucha suerte a todos!

Abre tu ojo


Propuse varias soluciones; todas, insuficientes. Las discutimos; al fin, Stephen Albert me dijo:
- En una adivinanza cuyo tema es el ajedrez ¿cuál es la única palabra prohibida? Reflexioné un momento y repuse:
- La palabra ajedrez.
- Precisamente —dijo Albert—. El jardín de los senderos que se bifurcan es una enorme adivinanza, o parábola, cuyo tema es el tiempo; esa causa recóndita le prohíbe la mención de su nombre.

Jorge Luis Borges, El jardín de los senderos que se bifurcan (1941).

Si este post fuera una adivinanza, no podríamos mencionar la palabra “autosemejanza”. Vamos a hablar de fractales y de senderos que se bifurcan. Los fractales son objetos matemáticos que, por construcción, son invariantes de escala (es decir, se prescriben con un conjunto de reglas, usualmente recursivas, que generan una figura o un conjunto autosemejante). Es importante notar que el fenómeno de autosemejanza que se observa en los sistemas físicos cerca del punto crítico no se genera de esta forma, con pasos que se repiten infinitamente. Y en este sentido, los fractales no nos pueden brindar una explicación a la causa de la invariancia de escala. Sin embargo, como objetos matemáticos, pueden servir para estudiar propiedades generales de sistemas que son invariantes de escala, para generar datos sintéticos que tengan esta propiedad (como para generar terrenos o texturas que parezcan realistas en videojuegos), o para crear métodos para cuantificar la posible autosemejanza de un conjunto de datos.

Uno de los ejemplos más sencillos y conocidos está dado por el conjunto de Cantor. Se construye tomando el segmento [0,1], partiéndolo en 3, y removiendo el segmento del medio. Esto nos deja dos nuevos segmentos: [0,1/3] y [2/3,1]. La operación se repite en cada uno de los nuevos segmentos. La figura a continuación muestra el resultado de repetir este procedimiento diez veces (hagan click en la imagen para ver un zoom):

En términos coloquiales, un fractal es una figura construida con pequeñas partes que son similares a la figura completa, en cualquier escala en la que se observe. La construcción recursiva del fractal (que puede ser determinista, o tener componentes aleatorias) asegura que la figura resultante sea autosemejante. Y su “fractalidad” puede cuantificarse de diferentes formas; por ejemplo, calculando funciones de correlación y sus exponentes críticos. O calculando la dimensión fractal o la dimensión de Hausdorff, que están relacionadas con el exponente crítico de la función de correlación a dos puntos.

El término “fractal” fue introducido por Benoit Mandelbrot, que formalizó varias ideas previas de otros matemáticos (especialmente, durante el siglo XX, de Lewis Fry Richardson, que también hizo contribuciones importantes a la meteorología y a la turbulencia). Y fueron usados por Mandelbrot para, entre otras aplicaciones, calcular el perímetro de regiones costeras. Aunque la costa irregular de un país no es generada por una persona que repite reglas como en el conjunto de Cantor (pero en The hitchhiker’s guide to the galaxy pueden opinar distinto), calcular la dimensión fractal de la costa permite obtener buenas estimaciones de la longitud de curvas muy rugosas, y en ciento sentido, autosemejantes. Los que estén interesados en los detalles pueden leer el paper (lindo, clásico, y muy breve) de Mandelbrot sobre este tema:

De la misma forma que conocer la longitud de correlación en el modelo de Ising nos permite inferir propiedades del tamaño de los dominios magnéticos, estimar la dimensión fractal le permitió a Mandelbrot resolver una aparente paradoja al intentar calcular la longitud de curvas autosemejantes: al medir la longitud de una costa, cuando más detalle se tiene sobre su forma, más aumenta su longitud.

Los fractales también pueden generar imágenes visualmente interesantes, como el famoso conjunto de Mandelbrot:

Los que estén interesados en generar fractales con Python pueden ver los siguientes links con instrucciones paso a paso (recomiendo fuertemente el primero), y muchos ejemplos de códigos que pueden cortar y pegar en sus computadoras o en un Google Colab:

Como mencioné más arriba, los fractales pueden tener componentes aleatorias. Y aunque los fractales no brindan una explicación a la causa de la autosemejanza en ciertos sistemas naturales, pueden ser usados para caracterizarla. Además, cumplen teoremas muy interesantes que nos permiten descubrir relaciones sorprendentes entre procesos autosemejantes. Por ejemplo, los ceros de un camino al azar unidimensional de tiempo contínuo (es decir, cada vez que el caminante al azar vueve a pasar por su punto de origen) forman un conjunto fractal. Esto tiene que ver con otro teorema muy extraño que se aplica a un proceso llamado evolución de Schramm-Loewner: una curva al azar en dos dimensiones que sea invariante conforme (una forma más fuerte de la invariancia de escala, en la que la curva no es solo invariante frente a cambios de escala, sino también invariante frente a transformaciones que preserven los ángulos localmente) tiene una relación directa con un proceso de movimiento browniano en una dimensión. Este teorema puede usarse para calcular exponentes críticos en modelos de Ising y de percolación en dos dimensiones, a partir de propiedades del movimiento browniano unidimensional que vimos al principio del curso. ¡Todo se conecta con todo! De pronto, un tema de esta materia viajó al pasado y tuvo un hijo (¡en tu cara, famosa serie de Netflix!).

¡Se viene el Criticalpalooza!


Llegó el festival anual psicodélico de la autosemejanza en la física y en áreas afines. Tenemos entradas para ver ejemplos de fenómenos críticos en física de materiales, sistemas biológicos, fluidos, cosmología, y hasta en neurociencias. Los links de bandas que tocaron en un festival de nombre similar llevan a videos en YouTube. ¡Y para escuchar más música está la playlist oficial de la materia! Y ahora sí, autosemejanza:

Comencemos con el lineup. En el escenario principal, después de Guns N’ Roses, tenemos dos ejemplos de física de materiales y materia condensada. Ya conocemos las transiciones de fase asociadas a los cambios de estado de la materia (sólido, líquido y gaseoso). ¡Pero existen muchos más cambios de fase! Así que veamos el show de bandas menos conocidas (y con ejemplos recientes de publicaciones en física). Primero tenemos a los cristales líquidos. Los cristales líquidos están formados por moleculas anisótropas (generalmente alargadas, por ejemplo con forma de largos cilindros), por lo que se comportan con propiedades intermedias entre los líquidos y los sólidos de acuerdo a en que dirección del material se aplican los esfuerzos. Y tienen al menos dos fases: en la fase nemática (a mayor temperatura) las moléculas están más desordenadas, pero se alinean a lo largo de sus ejes principales. En cambio, en la fase esméctica (a menor temperatura) las moléculas se acomodan en capas más ordenadas, y dentro de cada capa las moléculas están inclinadas con el mismo ángulo. El cambio entre ambas fases es una transición de fase con propiedades críticas. Los interesados pueden mirar un paper reciente (Gim, Beller & Yoon, Nat. Commun. 8, 15453, 2017), donde encontrarán esta figura alucinante con cambios morfológicos del material durante la transición (para temperatura creciente, de izquierda a derecha):

También pueden mirar este paper (el preprint de acceso libre está disponible acá) en el que los autores demuestran la existencia de una fase nemática en un modelo de cristales líquidos formados por barras en una red bidimensional. Y los que quieran leer otro ejemplo de transiciones de fase en materiales, pueden mirar este artículo sobre transiciones sólido-sólido que ocurren por cambios en la forma de partículas coloidales.

Vayamos a otro escenario del Criticalpalooza, y mientras escuchamos The Flaming Lips, veamos ejemplos recientes de transiciones de fase y autosemejanza observados en sistemas biológicos. Ciertas células cambian sus patrones de movimiento de acuerdo a la densidad de células en su entorno. A baja densidad muestran un movimiento desordenado, mientras que a alta densidad muestran patrones de movimiento colectivo y ordenado. La transición entre ambos comportamientos ocurre como una transición de fase. Pueden ver un ejemplo en Szabó et al., Phys. Rev. E 74, 061908 (2006) (el preprint está diponible en este link). La siguiente figura, de ese paper, muestra los patrones de movilidad al aumental la densidad de las células (de izquierda a derecha). Noten el cambio en el orden del sistema:

Los que tengan interés por ver más aplicaciones en biofísica, pueden mirar también un paper sobre fenómenos críticos en membranas lípidas (¡donde estiman exponentes críticos!).

En el mismo escenario donde toca Metallica tenemos una variedad de fenómenos autosemejantes que se observan en fluidos. El más conocido es el fenómeno de la turbulencia, que es heavy metal. Los fluidos más viscosos (donde la viscosidad se mide con un número adimensional, el número de Reynolds) fluyen en forma ordenada y laminar. Pero al aumentar el número de Reynolds (y reducirse la importancia de la viscosidad), generan flujos muy desordenados que tienen propiedades de invariancia de escala. En la siguiente figura, noten como zooms sucesivos en el flujo parecen repetir los patrones (algo similar a lo que vimos en el modelo de Ising en 2D):

Esta es una transición extraña, porque los flujos turbulentos tienen propiedades de criticalidad y autosemejanza, pero son un sistema fuera del equilibrio. Pueden ver más imágenes de flujos turbulentos aquí. Y pueden ver un ejemplo de una transición de fase en turbulencia en un condensado de Bose-Einstein en este paper.

Los que tengan interés por cosmología pueden ir al escenario donde tocan Empire of the SunLee Smolin, y leer este artículo donde se discuten diversos problemas (como la formación de galaxias espirales, la estructura de gran escala del universo, o el universo temprano) desde el punto de vista de fenómenos críticos. Bastante más difícil de leer, pero que sirve como ilustración, es este paper donde se estudia una transición de fase al compactificar una dimensión en teorías de gravedad (compactificar es “enrollar” una dimensión sobre si misma, y hacer tender ese “rollo” a cero). Y en cosmología, algunas teorías predicen que otra transición de fase podría haber ocurrido en el universo temprano, cuando se formaron los primeros átomos. Luego de ese momento el universo se volvió transparente, pero antes de ese instante el universo puede haber sido opalescente en forma crítica (como la mezcla de un líquido y un gas cuando llega a la temperatura crítica y dejan de existir las diferencias entre ambas fases, como se ve en la foto del centro en esta imágen de una mezcla de etano líquido y gaseoso tomada de Wikipedia):

Para cerrar el festival, este Criticalpalooza no tendrá a The Strokes, pero tiene ejemplos de fenómenos críticos en el cerebro (¿lo entendieron?). Las funciones cognitivas involucran procesos que van desde las neuronas individuales hasta regiones grandes del cerebro, y en los últimos años se encontró evidencia creciente de que el cerebro funciona en el borde entre el orden y el desorden, con propiedades de fenómenos críticos. Los interesados en ver ejemplos de criticalidad y autosemejanza en el cerebro pueden mirar este paper o este paper. La siguiente imagen, tomada de Cochi et al., Progress in Neurobiology 158, 132 (2017) (el primero de los dos papers) es bastante sugerente:

Don’t panic!


Antes de comenzar con el último tema de la materia, y aprovechando el fin de semana largo, hagamos una pausa para discutir un tema muy poco serio, pero que no podía quedar afuera de Física Teórica 3: el propulsor de improbabilidad infinita. Así que tomen sus toallas y prepárense para un viaje por la galaxia (luego de este viaje, y para prepararse para la próxima teórica, vean este posteo de Guillem sobre fluidos supercríticos, porque con esto comenzaremos la clase del miércoles).

El propulsor de improbabilidad infinita forma parte de The Hitchhiker’s Guide to the Galaxy, una serie de novelas humorísticas de ciencia ficción, radionovelas, programas de TV, y películas escritas por Douglas Adams. La novela narra (con ligeros cambios en los otros medios) las aventuras de un humano (Arthur Dent) acompañado por dos extraterrestres (Ford Prefect y Zaphod Beeblebrox) luego que la Tierra es destruida. Deben tener en cuenta que la primer radionovela fue emitida por la BBC en 1978, cuando todavía estaba activo Monty Python, por lo que esta no es una típica historia de ciencia ficción. Entre otras nociones memorables, The Hitchhiker’s Guide to the Galaxy nos dijo que la respuesta a la pregunta final sobre la vida, el universo y todo lo demás es “42″ (¡prueben escribir “What is the answer to the ultimate question of life the universe and everything?” en Google!).

El tema que nos convoca es el poco probable uso de las probabilidades que hace esta saga. En The Hitchhiker’s, los personajes viajan en una nave espacial que cruza el universo (violando todas las leyes de la física) gracias al propulsor de improbabilidad infinita. El propulsor se presenta como un método nuevo y maravilloso para cruzar distancias interestelares en forma instantánea, sin “tediosas tonterías en el hiperespacio”. Fue descubierto por casualidad, y su funcionamiento se basa en aumentar la improbabilidad de ciertos sucesos hasta alcanzar valores infinitos. La fuente de aleatoriedad del propulsor es un productor de movimiento browniano (es decir, una taza de té caliente). Una vez encendido, la nave pasa por cada punto concebible de cada universo concebible, simultáneamente. Como resultado del viaje, también pueden ocurrir otras cosas altamente improbables.

Esto es solo un breve resumen de cinco libros en los que nada tiene sentido. Pero hagamos el ejercicio de tratar de tomar seriamente a este propulsor. ¿Qué es la improbabilidad? Si P(x) es la probabilidad de que un evento x ocurra, podríamos asociar la improbabilidad de un evento a la probabilidad de que el suceso no ocurra. Cuando comenzó la materia, vimos que esta probabilidad está dada por:

Esto sería peligrosísimo. Si una máquina convirtiera P en I localmente, le asignaría probabilidad 1 a todas las cosas que no pueden ocurrir. Es genial; podríamos aparecer en otros lugares, pero hay muchas otras cosas malas que podrían pasar. Imaginen si tuviéramos diez crisis como la de COVID-19 en simultáneo.

En realidad la situación es peor, y esta definición no es correcta. La improbabilidad I(x) está acotada entre 0 y 1. Pero Douglas Adams nos dice claramente en The Hitchhiker’s que la improbabilidad puede ser infinita (en caso contrario, la máquina se llamaría el propulsor de improbabilidad unitaria, algo que de todas formas hubiera sido más correcto). Así que en el contexto de la novela puede ser más correcto definir I(x) como:

Esto tiene una serie de problemas aún más grandes. Pero Douglas Adams parece comprender algunos. Cada vez que los personajes usan el propulsor, los efectos secundarios incluyen cambios temporarios (y a veces permanentes) en el medio ambiente, en la estructura morfológica de los personajes, alucinaciones, y la aparición espontánea de ballenas en medio del espacio. Así que si no tenían nada para leer en estos días, pueden mirar el primer libro de esta saga.