Cómo aprendí a dejar de preocuparme

La mecánica estadística, que nació a fines del siglo XIX y principios del siglo XX a partir de los trabajos de Boltzmann, Maxwell y Gibbs, tuvo un rol importante durante la Segunda Guerra Mundial. El proyecto Manhattan, que entre 1939 y 1946 reunió a varios de los científicos más brillantes de la época, usó frecuentemente sus herramientas e impulsó el desarrollo de métodos que ampliaron enormemente su área de aplicación. En las últimas clases comenzaron a aparecer métodos, y diversos nombres de científicos, que estuvieron relacionados con el proyecto Manhattan. Así que vamos a dedicar este post a discutir al menos dos de ellos. El proyecto Manhattan tuvo como objetivo fabricar armas nucleares para los Estados Unidos durante la guerra. Jugó un rol central en el fin de la guerra del Pacífico, mostró lo que puede hacer la colaboración científica a gran escala, y generó desarrollos rápidos e importantes. Pero aún hoy se sigue discutiendo la necesidad de bombardear Hiroshima y Nagasaki, o la carrera armamentista nuclear que siguió a continuación. Sobre esa época, y para reflexionar sobe esos temas, les aconsejo “Dr. Strangelove, or How I Learned to Stop Worrying and Love the Bomb” (1964), una película satírica de Stanley Kubrick en la que el genial Peter Sellers tiene tres papeles (el presidente de los Estados Unidos, un capitán británico, y el científico nazi Dr. Strangelove).

En la última clase vimos el método de campo medio para el problema de Ising desarrollado por Hans Bethe. Bethe publicó este resultado en 1935, el año en que se mudó a los Estados Unidos (pueden ver el paper original aquí). Bethe trabajó en el proyecto Manhattan y luego en el desarrollo de la bomba de hidrógeno junto con Edward Teller y Stanislaw Ulam (yo tuve la suerte de conocer y hablar varias veces con Stirling Colgate, que trabajó con Teller y Bethe en este proyecto; probablemente el apellido les resulte de conocido de algún lado). Luego Bethe trabajó en la formación de elementos químicos por fusión nuclear en el interior de las estrellas, por el que ganó el premio Nobel en 1967. La mecánica estadística jugó roles importantes en estos trabajos. Pero su paper más famoso es un paper en el que no trabajó. En 1948, luego de la guerra, Ralph Alpher y George Gamow escribieron un trabajo sobre la formación de los primeros átomos en el universo. Gamow, al enterarse que el paper iba a salir publicado el 1 de abril (“April fools’ day“, el equivalente a nuestro día de los inocentes), agregó a Hans Bethe como segundo autor. Así, el paper de Alpher, Bethe y Gamow se volvió conocido como el paper α-β-γ (alfa, beta y gama). Más tarde, cuando Ralph Alpher trabajó con Robert Herman en el cálculo de la temperatura de la radiación cósmica de fondo, Gamow quiso convencer a Herman de que cambiara su apellido por “Delter”, para poder escribir un paper con autores Alpher, Bethe, Gamow y Delter (α-β-γ-δ). Herman se negó rotundamente.

El método de Montecarlo que usamos para resolver numéricamente el modelo de Ising también fue creado durante el proyecto Manhattan. Stanislaw Ulam inventó al método tal como lo conocemos hoy mientras trabajaba en el proyecto de la bomba atómica. Él y John von Neumann lo usaron en la computadora de Los Alamos para calcular, usando mecánica estadística, la difusión de neutrones en el material para la fisión nuclear. Luego de la guerra, Nicholas Metropolis y Ulam publicaron el primer paper no clasificado explicando el método en detalle. Hoy se usa para resolver en forma numérica una gran variedad de problemas en física.

Los que quieran leer más historias sobre el proyecto Manhattan pueden mirar las memorias de Richard Feynman (¡incluyen lecciones sobre como abrir cajas fuertes!):

Como siempre, en la página de la teórica van a encontrar el video de la última clase, y los apuntes para la próxima.

Sobre la evaluación del miércoles

Recuerden que este miércoles, 1/7, tenemos el segundo round de ejercicios de evaluación, que van a estar centrados en las guías 4 y 5. Igual que la otra vez, les vamos a mandar un mail el miércoles a las 19hs con los ejercicios, y van a tener hasta las 19hs del viernes (2 horas más que la otra vez) para entregarnos la resolución. Recuerden que pueden escribir la resolución como quieran (latex, word, a mano), pero traten de que sea lo más prolijo posible. La forma en que vamos a evaluar es igual que la otra vez; en particular, recuerden que no entregado tiene peor puntuación que cero, así que conviene entregar, además de que les va a ser útil por la devolución que les vamos a dar. Y un comentario más: la evaluación es individual, así que no está permitido ayudarse entre uds. La práctica computacional, que viene pronto, sí va a ser grupal, pero esto no.

¡Estudien mucho, suerte a todos! Y esta tarde zoom.

¡Eres un juguete!

El modelo de Ising es un modelo de juguete para el ferromagnetismo. Sin embargo, esto no significa que sea un modelo poco importante, o que solo tenga utilidad pedagógica. En cierto sentido, el modelo de Ising es el Buzz Lightyear de los modelos de juguete.

El desarrollo de la mecánica estadística entre fines del siglo XIX y principios del siglo XX, de la mano de Boltzmann y de Gibbs, permitió a los físicos comprender mejor varios sistemas y procesos (como el gas ideal, o los fenómenos de transporte), formalizar conceptos (como la noción de equilibrio, los microestados, el desorden, y la entropía), y estudiar fenómenos nuevos (como el condensado de Bose-Eistein, o la superfluidez y la superconductividad). Además, la mecánica estadística amplió el campo de aplicación de la física a otras áreas y a temas interdisciplinarios, como vimos en este post.

Sin embargo, aún en 1944 (más de 70 años después de la publicación de la ecuación de Boltzmann) no estaba claro si la mecánica estadística podría capturar y ayudar a comprender las transiciones de fase, como ocurren en la transición de agua líquida a vapor de agua, o en la magnetización espontánea de ciertos materiales al bajar su temperatura. Y aquí es donde el modelo de Ising, y Lars Onsager, abrieron las puertas a muchos desarrollos cruciales para la física en la segunda mitad del siglo XX. En 1944 Onsager encontró una solución exacta al modelo de Ising en dos dimensiones, calculando la función de partición del sistema, mostrando que podía sufrir una transición de fase y magnetizarse espontáneamente, y calculando la temperatura a la que ocurre la transición. La solución mostró por primera vez que las transiciones de fase aparecen como singularidades de las funciones termodinámicas del sistema, y convenció a los físicos de que la mecánica estadística podía ser usada para estudiar estos fenómenos. Fue tan relevante que al terminar la segunda guerra mundial, cuando varios físicos volvieron a la investigación básica, Hendrik Casimir le comentó en una carta a Wolfgang Pauli que estaba preocupado y dudaba de si podría volver a trabajar en física teórica luego de haber perdido contacto con el tema por tanto tiempo. Pauli (que era famoso por evaluar las teorías de sus colegas muy duramente) lo tranquilizó respondiendo que durante la guerra solo hubo un resultado que debía mirar: “No ha ocurrido mucho que sea de interés, excepto por la solución exacta de Onsager al modelo de Ising en dos dimensiones“.

Onsager es un personaje interesante. Muchos de sus resultados no fueron publicados en papers. La solución exacta al modelo de Ising apreció como una discusión de otro paper, su formula para la temperatura de la transición quedó en un pizarrón luego de un seminario que dió László Tisza, y la predicción de la cuantización de vórtices en un superfluido (luego redescubierta por Feynman) apareció en una paper resumiendo un seminario de otro investigador, en la sección de preguntas y respuestas del público.

Los que quieran jugar un poco con el modelo de Ising en 2D (antes de la práctica numérica), pueden mirar la siguiente página donde pueden simular el sistema con el método de Montecarlo, y variar la temperatura y el campo magnético externo. Para un campo externo igual a cero, prueben ver que pasa con la amplitud de las fluctuaciones en la magnetización si se acercan a la temperatura crítica (Tc ≈ 2.27) desde arriba (es decir, desde temperaturas altas):

Modelo de Ising en 2D

En la página de la teórica van a encontrar el video de la última clase, material adicional, y los apuntes para la próxima clase. Y finalmente, el video en el que Onsager le explica a Ising que solo es un juguete:

Guía 5, semana 2

Recién subimos a la pestaña práctica un nuevo resuelto de la guía 5: el problema 9 (este resuelto está en formato video).  Esta semana deberían terminar con esta guía. ¡Recuerden que el miércoles que viene tenemos evaluación! Ahí evaluaremos los contenidos de las guías 4 y 5. Recuerden también que el lunes que viene tenemos sesión de consultas por zoom en el horario de la práctica.

Superfluidos

¡La referencia cultural que faltaba! A lo largo de la materia tuvimos referencias a Jorge Luis Borges, Arnold Schwarzenegger, Los Simpsons, Stanley Kubrik, Futurama, El libro de los muertos, Alan Turing, los Wachowskis, Jason Statham, Adolfo Bioy Casares, Friedrich Nietzsche, Rick y Morty, Stanislaw LemFlint Lockwood, Andrei Tarkovsky, Pink Floyd, John Snow y Daenerys Targaryen, Led Zeppelin, y Giorgio de Chirico entre otros. No le hacemos asco a nada. Pero a esta sopa le faltaba The Big Bang Theory. En la temporada 8 de The Big Bang Theory, Sheldon y Leonard crean una teoría (la teoría Cooper-Hofstadter) según la cual el vacío se comportaría como un superfluido. Aunque tal teoría existe, no va a ser el tema de este post, que va a lidiar en cambio con cuestiones bastante más mundanas sobre las propiedades de los superfluidos.

Comencemos con un video corto (1:44 minutos) pero muy recomendable, que ilustra varias de las propiedades de superfluidos que vimos en clase. Entre otras cosas, muestra que un superfluido puede atravesar un medio poroso (por el que un fluido viscoso no puede pasar), muestra que el superfluido también puede trepar por las paredes y escapar del recipiente, y el “efecto fuente”:

Luego pueden ver un video mas reciente (en castellano) con experimentos de vórtices cuantizados en He-4 superfluido. Las lineas blancas sobre fondo negro que se ven en los primeros 5 segundos del video son vórtices cuantizados observados en el laboratorio:

Para los que quieran leer mas sobre He-4 superfluido, les aconsejo el siguiente trabajo de Richard Feynman. Aunque es un poco antiguo y la interpretación actual de los rotones es diferente a la planteada en el artículo, muchas de las especulaciones que hace Feynman fueron mas tarde confirmadas en experimentos:

Application of quantum mechanics to liquid Helium

Este trabajo tiene una historia interesante atrás. Feynman presentó previamente sus resultados en un congreso al que asistió Onsager (que era famoso en el área). Feynman estaba bastante orgulloso de si mismo, y Onsager decidió darle una lección. La narración completa la pueden encontrar en “Surely You’re Joking, Mr. Feynman!“, pero en palabras de Feynman es más o menos así:

“Bueno, Feynman”, dijo Onsager con voz ronca, “escuché que crees que has entendido el helio líquido”.
“Bueno, sí…”
“Umm…” ¡Y eso fue todo lo que me dijo durante toda la cena! No fue muy estimulante.
Al día siguiente di mi charla, y expliqué todo sobre el helio líquido. Al final, mencioné que había algo que todavía no había logrado entender: si la transición entre una fase y la otra del helio líquido era de primer orden (como cuando un sólido se derrite o un líquido hierve, y la temperatura se mantiene constante) o de segundo orden (como ocurre en el magnetismo, donde la temperatura puede cambiar).
Entonces el profesor Onsager se levantó y dijo duramente: “Bueno, el profesor Feynman es nuevo en nuestra área, y creo que necesita ser educado. Hay algo que tiene que aprender y que debemos decirle”.
Pensé: “¡Oh no! ¿Qué hice mal?”
Onsager dijo: “Deberíamos decirle a Feynman que nadie ha podido obtener el orden de una transición a partir de primeros principios, por lo que el hecho de que su teoría no le permita calcular eso no significa que no haya entendido todo los otros aspectos del helio líquido satisfactoriamente”. Resultó ser un cumplido, pero por la forma en que comenzó, ¡pensé que me iba a dar una paliza!

En nuestro grupo de investigación trabajamos (entre otros temas) en el estudio de flujos y turbulencia en superfluidos y en condensados de Bose-Einstein. En los dos primeros links pueden ver algunas imágenes y videos de simulaciones que hicimos de vórtices cuantizados. Para los mas curiosos (o valientes), en el tercer link les dejo un paper que publicamos hace un año sobre viscosidad en superfluidos a temperatura finita; el paper usa herramientas de la materia como el ensamble gran-canónico, el potencial químico, fonones y relaciones de dispersión, y teoría cinética y camino libre medio:

Imágenes de simulaciones de turbulencia cuántica
Videos de nudos de vórtices cuantizados
Paper: Quantitative estimation of effective viscosity in quantum turbulence

En la página de la teórica ya está disponible el video de la clase de ayer, y los apuntes para la próxima clase.

Condensados de Bose-Einstein asesinos

En la película Spectral (disponible en Netflix), unos condensados de Bose-Einstein toman vida y congelan a las personas hasta la muerte. Por suerte, gracias al poder de la ciencia, pueden ser atrapados por materiales cerámicos y por el hierro, y por una pistola de pulsos que destruye al condensado (Yeah, science!). En el laboratorio hay pocas chances de que un condensado de Bose-Einstein cobre vida (pero por las dudas, no se acerquen al Laboratorio de Iones y Átomos Fríos del DF). Así que en este post vamos a ver cómo se ve un condensado en la realidad.

A continuación les dejo algunos videos sobre condensados de Bose-Einstein. Como los videos son largos, para aquellos que tienen síndrome de déficit de atención les digo también a qué instante pueden saltear para ver algunas cosas interesantes. Como mencioné en la última clase, recién en 1995 se realizaron los primeros experimentos de condensados de Bose-Einstein en gases diluídos de átomos ultrafríos, en los que la interacción entre los átomos es débil:

El video muestra un experimento con un gas de átomos de sodio. La descripción del experimento ocurre entre el minuto 0:46 hasta 2:50. A partir del minuto 3:10 hasta 3:50 pueden ver mediciones de la temperatura en el gas, y la formación del condensado de Bose-Einstein.

Los que tengan un poco mas de paciencia pueden ver la charla completa de Eric Cornell cuando recibió, junto con Carl Wieman y Wolfgang Ketterle, el premio Nobel por conseguir el primer condensado de Bose-Einstein gaseoso en el laboratorio:

Nobel Lecture by Eric A. Cornell

El video dura 39 minutos. Los que quieran pueden saltear la introducción e ir al minuto 5:23 hasta 7:03, donde Cornell explica el rol que juega la longitud de onda de de Broglie en la transición de fase (algo que vimos en las últimas clases). A partir del minuto 28:49, Cornell muestra imagenes de vórtices cuantizados en el condensado, un tema que veremos en la próxima clase. En el próximo post, videos de superfluidos escapándose espontáneamente de sus recipientes (¡seguro hay una película de ciencia ficción que usa este fenómeno!).

El video de la última cláse teórica, y los apuntes para la próxima clase, están disponibles acá. Y no se olviden de llenar la encuesta obligatoria, siguiendo las instrucciones en este post. ¡Si no la llenan, despídanse de la materia!