La semana que pasó

  • Primero: hay una versión notoriamente distinta del apunte acerca del problema 3 de la Guía 5, que trata sobre la función de partición canónica de N partículas idénticas no interactuantes. [Aquí].
  • Segundo: lecturas recomendadas para el cálculo de la masa de Chandrasekhar: el libro de Pathria y Beale y el libro de Huang. [Aquí] pueden bajar un apunte de clase, preparado el cuatrimestre pasado, pero inédito.
  • Por último: pueden leer sobre paramagnetismo de Pauli en casi cualquiera de los libros de la bibliografía. Pathria y Beale despachan rápidamente el resultado a temperatura cero y luego discuten el caso general y el de bajas temperaturas. [Aquí] pueden bajar un apunte de cursos pretéritos.
  • Finalmente: es probable que las notas de los parciales estén el lunes.

Apuntes de la clase de hoy

Los problemas de la Guía 5 que vimos hoy en la clase de práctica están pasados en limpio en los siguientes apuntes del cuatrimestre pasado (la numeración puede diferir):

  • Problema 1: paso de sumas a integrales para la función de partición canónica de una partícula en una caja.
  • Problema 3 [versión actualizada]: expansión en potencias del volumen de la función de partición canónica para N partículas indistinguibles en una caja. El límite clásico y la justificación del conteo no tan correcto de Boltzmann.
  • No exactamente el problema 4, pero relacionado. Función de partición gran canónica, funciones de Fermi-Dirac y más cosas que veremos en las próximas clases.

Guía 5 [actualizado]

El ensamble virtuoso

Radu Balescu, “Equilibrium and Nonequilibrium Statistical Mechanics”.

La explicación más razonable I

Richard Feynman, Nobel Lecture.

La explicación más razonable II

Arthur Schopenhauer, citado por Borges en “Otras Inquisiciones”.

Un doble

Edgar Allan Poe, William Wilson.

La Guía 5 puede bajarse [aquí].

Actualización: esta semana sólo hay clases prácticas, de 17 a 22.

Guardianes de la galaxia


Para cerrar los temas de la primera mitad de la materia, el posteo de hoy está dedicado a los cerebros de Boltzmann y su presencia ubicua en la cultura popular. Pueden leer este posteo mientras escuchan la banda de sonido de Guardianes de la Galaxia (ya se enterarán por qué es relevante en este tema).

El concepto de cerebros de Boltzmann se origina en un paper de Boltzmann de 1895 publicado en Nature, en el que Boltzmann defiende su teoría cinética de diversas críticas. Como vimos en clase y en un posteo previo, Boltzmann mostró que para un gas diluido una cantidad que llamó “H” (la entropía de Boltzmann) crece casi siempre hasta alcanzar un máximo. Esto llevó a que la gente se pregunte por qué el universo no se encuentra entonces en el estado más desordenado posible. La respuesta posible (y la primer respuesta que dió Boltzmann) es que el universo debe haber comenzado en un estado de muy baja entropía, y actualmente se encuentra evolucionando hacia un estado cada vez más desordenado y con mayor entropía. Pero la segunda respuesta posible (idea de un asistente de Boltzmann, el Dr. Schuetz) es la siguiente:

Supongamos que todo el universo está, y descansa para siempre, en equilibrio térmico. La probabilidad de que una (solo una) parte del universo se encuentre en un cierto estado, es menor cuanto más lejos esté este estado del equilibrio térmico. Pero esta probabilidad es mayor cuanto mayor es el universo. Si asumimos que el universo es lo suficientemente grande, podemos hacer que la probabilidad de que una parte relativamente pequeña del universo esté en cualquier estado (sin importar el estado de equilibrio) sea tan grande como queramos. También podemos aumentar la probabilidad de que, aunque todo el universo esté en equilibrio térmico, nuestro mundo esté en su estado actual.

Es decir, de la misma forma que la probabilidad de que todas las partículas de un gas en una habitación estén espontáneamente en una esquina de la habitación es muy baja pero no nula, también existe una probabilidad muy baja (pero no nula) de que en un estado de equilibrio térmico desordenado muy extenso, una fluctuación cree la Tierra con todos nosotros y tal como la vemos ahora. De la misma forma, una fluctuación también podría crear espontáneamente los libros de la Bibioteca de Babel de Borges, o los diálogos de una película de David Lynch.

Si una fluctuación (con muy baja probabilidad) podría hacer esto, ¿por qué no podemos imaginar otros microestados posibles? Como una forma de reducir al absurdo este segundo argumento de Boltzmann, se propuso entonces el concepto de los cerebros de Boltzmann: Una fluctuación podría generar espontáneamente un cerebro completo, flotando en el espacio, con todos sus falsos recuerdos de haber existido previamente. ¿Cómo sabemos que nosotros no somos cerebros de Boltzmann, y que actualmente no estamos decayendo hasta apagarnos en el baño térmico del universo?

El argumento en contra de esta idea fue desarrollado por Sir Arthur Eddington en 1931, y más tarde Richard Feynmann también lo consideró en sus Feynman Lectures. Feynman, luego de explicar que si fueramos una fluctuación del universo, al realizar mediciones en zonas que no observamos antes deberíamos ver un nivel de aleatoriedad diferente al que recordamos, concluye:

Por lo tanto, concluimos que el universo no es una fluctuación, y que el orden es un recuerdo de las condiciones cuando las cosas comenzaron. Esto no quiere decir que comprendamos la lógica de esto. Por alguna razón el universo tuvo una entropía muy baja inicialmente, y desde entonces la entropía ha aumentado. Así que ese es el camino hacia el futuro. Ese es el origen de toda irreversibilidad, eso es lo que hace que los procesos de crecimiento y decadencia, que nos hace recordar el pasado y no el futuro, nos recuerden las cosas que están más cerca de ese momento en la historia del universo cuando el orden era más alto que ahora, y por qué no podemos recordar cosas donde el desorden es más alto que ahora, al que llamamos el futuro.”

En años más recientes el concepto de cerebros de Boltzmann también se usó para reducir al absurdo algunas ideas en ciertas teorías cosmológicas. Y, extrañamente, apareció repetidas veces en la cultura popular. Como ejemplos, en Guardianes de la Galaxia vol. 2, Ego (el padre de Peter Quill, alias “Star-lord“) es un cerebro gigante en el espacio, creado al inicio de los tiempos:

Y en Futurama existe una raza de cerebros que flotan en el espacio, que fueron creados espontáneamente durante el Big Bang, y que tienen el poder de volver estúpida a la gente (excepto, obviamente, a los que ya son estúpidos):

La idea del asistente de Boltzmann, el Dr. Schuetz, hoy vuelve a tener interés en el estudio de sistemas estadísticos fuera del equilibrio: hoy sabemos que existen evoluciones posibles de estos sistemas en las que la entropía decrece (durante un tiempo acotado) en lugar de crecer. Pero también sabemos que la probabilidad de hallar al sistema evolucionando en esas condiciones es mucho menor que la probabilidad de que el sistema aumente su entropía. Y no solo eso, podemos calcular la probabilidad de que sucedan este tipo de eventos. Existen varias relaciones que permiten calcular la probabilidad de estos eventos; dos de ellas, que fueron verificadas experimentalmente en los últimos años y juegan un rol importante en el estudio de sistemas cuánticos abiertos, materia condensada, y otros sistemas fuera del equilibrio, son la igualdad de Jarzynski y el teorema de fluctuación de Crooks. Básicamente, estas relaciones nos dicen que la probabilidad de encontrar al sistema “desordenándose” en lugar “ordenándose” crece exponencialmente con el cambio de entropía (o de energía libre) en el sistema. Es decir, cuanto más cambie la entropía al evolucionar el sistema hacia el equilibrio, menos probable será encontrar al sistema evolucionando en la dirección contraria.

Lo que sabemos y lo que sabemos que no sabemos

  • El primer parcial es este miércoles 8 de mayo a las 17 horas.
  • Aún no sabemos el aula. Aula Magna del Pabellón 2.
  • Serán tres problemas de ensambles.
  • Se puede usar una hoja de fórmulas, escrita sólo por una carilla.
  • No se podrán hacer consultas, salvo de enunciado y perpetradas desde el banco.
  • Usen un estilo breve y directo: premisa, ecuación, consecuencia.
  • No incurran en un tratado sobre la construcción axiomática de los reales.
  • Y así con todo.
  • Hora de entrega supuesta: 21.
  • Hora de entrega cierta: 21:30.

4. Enajenarse de la razón o del sentido, por pasión, éxtasis o accidente

Lamento que la clase práctica del lunes pasado no haya salido bien. La ecuación de Boltzmann y los problemas de transporte son muy divertidos. Luego de pasar en limpio los apuntes para la clase, quedó claro que era demasiado. Pueden bajar el apunte [aquí]. Los cálculos son más generales que lo estrictamente necesario para resolver los problemas de la guía. [Aquí] hay una resolución cosecha 2019 del problema 3 que va directo al asunto.

El libro de Dalvit et al. tiene muy buenos problemas de Boltzmann; por ejemplo, vean el 6.19. La primera edición del libro de Huang, que se consigue en la Biblioteca, tiene métodos más sofisticados para resolver aproximadamente la ecuación de Boltzmann. (Está subido al Internet Archive, pero, al día de hoy, está bloqueado. Si alguien lo consigue, pásemelo). Por desgracia, estos temas no llegaron a la segunda edición del libro, que es la que se consigue. Para curarse de espanto, o por mera curiosidad, pueden bajar el libro de Chapman y Cowling,  “The Mathematical Theory of Non-uniform Gases”. Sobre la aproximación de equilibrio local, está bien [esta nota] ligera de la Wikipedia.

Teniendo en cuenta lo restrictivos que fueron los tiempos de clase, en el parcial no vamos a tomar problemas de transporte.

Eterno retorno de una configuración sin recuerdos


Ha llegado el momento de anunciar: Esta isla, con sus edificios, es nuestro paraíso privado. He tomado algunas precauciones -físicas, morales- para su defensa: creo que lo protegerán. Aquí estaremos eternamente -aunque mañana nos vayamos- repitiendo consecutivamente los momentos de la semana y sin poder salir nunca de la conciencia que tuvimos en cada uno de ellos.

Adolfo Bioy Casares, La invención de Morel (1940).

El título del posteo de hoy hace referencia a Eterno resplandor de una mente sin recuerdos, película de 2004 dirigida por Michel Gondry en base a un guión de Charlie Kaufman. Los interesados en las repeticiones pueden ver también I’m Thinking of Ending Things en Netflix (dirigida por Charlie Kaufman), y Memento o Tenet (estas dos últimas dirigidas por Christopher Nolan). También pueden leer “La invención de Morel” de Adolfo Bioy Casares. Pero sepan que la repetición eterna, como los espejos y la cópula para un heresiarca de Uqbar, es abominable (excepto tal vez para Friedrich Nietzsche). Probablemente nos parezca antinatural justamente porque nunca observamos en la naturaleza que las configuraciones de sistemas extensos se repitan exactamente de la misma forma. Esta observación fue una de críticas que Poincaré y Zermelo, entre otros, realizaron a la teoría estadística de Boltzmann. Imagino que Sísifo también tendría sus objeciones. Y a Dormammu tampoco le deben gustar las repeticiones:


En el teorema H de Boltzmann, su entropía casi siempre crece. Imaginemos un gas que ocupa la mitad de un recinto, separado en dos por un tabique. En un dado instante el tabique se retira, y el gas se expande hasta ocupar todo el recinto (con el consecuente aumento de la entropía). Dado que todas las configuraciones son equiprobables, en algún instante todas las moleculas del gas podrían estar en la primera mitad del recinto (al fin y al cabo, podríamos tener configuraciones aún más extrañas). Pero si en ese preciso instante volvemos a poner el tabique, recuperamos en forma espontánea la primera configuración, que tenía menor entropía. Este posible retorno a una configuración previa fue visto por Poincaré como un problema abominable para la teoría de Boltzmann (aunque más tarde Poincaré se convenció del valor de la teoría y se retractó).

Efectivamente, si el número de configuraciones de un gas es discreto, existe una probabilidad no nula de que vuelva espontáneamente a una configuración previa (y si las configuraciones son contínuas, de que vuelva a una configuración arbitrariamente cercana a la configuración inicial). Pero el tiempo necesario para volver a encontrar esta configuración es increíblemente largo, lo que vuelve a este escenario irrelevante a fines prácticos. Estimemos esto para un metro cúbico de aire a temperatura ambiente (T = 300 K). Vimos que el número de configuraciones Σ de un gas ideal lo podemos calcular (en el ensamble microcanónico) como

donde S es la entropía, N el número de partículas, v el volúmen específico del gas, m la masa de las partículas (mayormente moléculas de N2), k la constante de Boltzmann, y h la constante de Planck (ignoro un factor aditivo despreciable en la entropía). Usando valores típicos para estos parámetros (y considerando que v ≈ 5 x 10-29 m3), obtenemos que el número de microestados o configuraciones posibles es

¡Este es un número enorme, con más de 1025 dígitos! Asumamos ahora que las configuraciones cambian cada vez que hay un choque entre partículas. Es decir, cuando las partículas en el gas chocan, intercambian momento, y pasan de una configuración a otra. Como vimos en clase, para el aire a temperatura y presión ambiente, el tiempo entre choques es τ ≈ 10-10 s. Y si todas las configuraciones son equiprobables, podemos estimar el tiempo medio para repetir una configuración como proporcional a Σ·τ, que sigue siendo un número muy grande (un tiempo con más de 1025 dígitos, medido en segundos). ¡Como comparación, la edad del universo es de 4.3 x 1017 s, muchísimo más chica que el tiempo medio necesario para repetir la configuración de un gas en solo un metro cúbico! Por lo que el “casi siempre crece” de Boltzmann está bastante bien.

Hoy sabemos que aún en sistemas con tamaño finito, fuera del equilibro la probabilidad de que la entropía crezca es mucho más grande que la probabilidad de que la entropía disminuya. De hecho, sabemos que la razón entre estas dos probabilidades es igual a la exponencial de la variación de la entropía por el tiempo transcurrido, un número que se vuelve exponencialmente más grande a medida que la entropía del sistema crece, o que transcurre más tiempo. En el caso general este resultado se conoce como el teorema de fluctuación detallado.