Anton Flettner y el efecto Magnus aplicado a la navegación

Como les comenté hoy en la clase de practicas, Anton Flettner fue el primero en concebir y construir una embarcación capaz de propulsarse explotando el resultado que obtuvimos hoy para la fuerza sobre un obstáculo cuyo contorno tiene una circulación atrapada y que enfrenta un flujo uniforme (efecto Magnus).

La idea de Flettner fué construir una embarcación sin velas ni motores, en la cuál un cilindro vertical instalado sobre la cubierta se hiciese rotar a velocidad y dirección controladas de forma de obtener una fuerza sobre el navío en la dirección deseada. A dicho sistema se lo denominó rotor Flettner. Concretamente Flettner utilizó una embarcación preexistente (llamada Baden-Baden) la cuál hizo modificar y rebautizó como Buckau. Este sistema de propulsión demostró fehacientemente su potencialidad como medio de propulsión eólica para embarcaciones cuando el Buckau logró cruzar el océano Atlántico en 1926. Les dejo una foto del Buckau (ex Baden-Baden) junto a estas líneas.

En la actualidad este tipo de propulsión es utilizada como alternativa a turbinas diesel, buscando explotar los recursos naturales renovables (como el viento) para incluso generar la energía con la cuál se hacen rotar los cilindros. Les dejo como ejemplo un video en el cuál se muestra uno de estos barcos modernos de tipo Flettner.

La embarcación que se ve en el video es el denominado E-Ship que la sociedad de construcciones eólicas Enercon (alemana) encomendó construir en 2007 a los astilleros Lindenau Werft de Kiel; comenzó sus operaciones en agosto de 2010 y continúa siendo utilizado en la actualidad. Se trata de un carguero de 130 m de eslora (largo) y 22.5 de manga (ancho), con capacidad para transportar entre 80 y 120 toneladas. Está equipado de 4 rotores Flettner (4 cilindros rotantes) de 27 metros de altura y 4 metros de diámetro, montados en las esquinas de la cubierta.
Espero que les sea util.

Acerca de Heinrich Blasius

Hoy les comenté en la clase practica un poco acerca de los valiosos aportes que Blasius realizó en dinámica de fluidos. Para aquellos que deseen conocer un poco más acerca de la magnitud del aporte de Blasius a la comprensión de flujos viscosos, les dejo aquí un paper publicado en Experiments in Fluids en 2003, en ocasión del 120° aniversario de su nacimiento.

Espero que les sirva.

 

Problemas de potenciales complejos en Mathematica

Curvas de nivel de la función corriente (trazo continuo), de potencial (líneas punteadas) y campo de presiones (en color) para un caso particular de los parámetros del problema.

En este post les dejo un notebook de Mathematica, en el cual les muestro cómo explotar la potencia de esta herramienta de cálculo simbólico (y numérico!) para resolver problemas de flujos potenciales bidimensionales.

En particular, el notebook trata un problema ya conocido por ustedes: el flujo alrededor de un cilindro con una circulación atrapada que enfrenta un flujo uniforme al infinito.

La idea detrás de este post es que tengan una guía de cómo resolver y analizar este ejercicio en Mathematica, teniendo en cuenta que ustedes conocen ya la física del problema, cuyo detalle discutimos en clase practica. El propósito subyacente es que, si así lo desean, puedan extrapolar lo que aprendan aquí a la resolución de cualquier otro problema de la guía.

Sólo a modo de sumario, les cuento qué tipo de cálculos aprenderán a hacer en Mathematica usando este notebook. Entre otras cosas, verán cómo: (i) definir un potencial complejo, (ii) aplicar el teorema del círculo de Milne-Thomson, (iii) determinar las funciones potencial y de corriente, (iv) calcular los campos de velocidad, (v) obtener el campo de presiones en todo punto del espacio usando el teorema de Bernoulli y (vi) calcular la fuerza sobre el obstáculo mediante: (a) la integral de presión sobre el contorno sólido y (b) el teorema de Blasius via el cálculo de residuos. Asimismo, podran ver como se representan usualmente en forma grafica cada uno de estos resultados y como generar dichos graficos en Mathematica.

El archivo/notebook de Mathematica podrán descargarlo haciendo click derecho aquí y eligiendo la opción ‘descargar archivo’.

Espero que les sirva.

Coloquio de James Wallace acerca de como se mide el tensor gradiente de velocidad en flujos turbulentos

El proximo miercoles 1ro. de octubre tendra lugar en el DF un coloquio extraordinario a cargo de James Wallace acerca de tecnicas de medicion del tensor gradiente de velocidad en flujos turbulentos. Wallace es Profesor Emerito y Director del Burgers Program for Fluid Dynamics de la Universidad de Maryland, USA. Ha publicado un gran numero de trabajos en dinamica de fluidos y es un experto en la caracterizacion experimental de flujos turbulentos a traves de tecnicas avanzadas, algunas de las cuales discutira en su charla.

 

Mediciones instantaneas de algunas componentes del tensor gradiente de velocidad para un flujo turbulento. Figura tomada de: J. Wallace & P. Vukoslavcevic, Annual Review of Fluid Mechanics, Vol. 42 (2010). 

 

 

Dado que el modelado teorico del tensor gradiente de velocidad ha sido objeto de estudio tanto en clases teoricas y como en practicas, me parece interesante invitarlos a todos a esta charla en la que se discutiran los aspectos complementarios: como se miden en el laboratorio sus componentes, como se analizan esos datos y -mas importante aun- como la interpretacion dichos resultados nos ayuda a comprender una dinamica compleja como es la de la turbulencia hidrodinamica.

El coloquio tendra lugar el proximo miercoles 1ro de octubre a las 15 hs, en el Aula Federman del Pabellon 1 (primer piso, frente al Laboratorio 1).

Quedan todos invitados, espero que les sirva.

para saber mas acerca del coloquio …  Continue reading

Flujos potenciales bidimensionales en el laboratorio: la celda de Hele-Shaw

Me parece interesante comentarles brevemente en este post cómo es posible obtener y visualizar flujos potenciales bidimensionales en el laboratorio.

Un montaje experimental comúnmente utilizado para producir y estudiar flujos potenciales bidimensionales es la celda de Hele-Shaw, introducida hace más de 100 años por Henry Hele-Shaw. Una celda de Hele-Shaw consiste esencialmente en el flujo de un líquido viscoso entre dos placas plano-paralelas ligeramente separadas entre sí.

La figura muestra un esquema simple de una celda de Hele-Shaw, ilustrando el flujo en torno de un obstáculo; un arreglo lineal para la inyección de colorante (como trazador) y algunas líneas de corriente a modo de visualización. El flujo dentro de la celda, laminar y paralelo, se conoce como flujo de Poiseuille plano y será objeto de estudio en la segunda mitad de la materia (en el marco de la guía de flujos viscosos).

Una propiedad paradójica de la celda de Hele-Shaw es que, a pesar de que el flujo es viscoso, las líneas de corriente bidimensionales que se observan tienen las propiedades de un flujo potencial. No se alarmen: más adelante en el curso veremos en detalle cómo probar esta afirmación.

Les dejo además un video que muestra el dispositivo experimental de Hele-Shaw y su operación. El obstáculo empleado (un cilindro en este caso) es ubicado en el pequeño espacio entre dos placas de vidrio dispuestas verticalmente. Un fluido viscoso y transparente se carga en un reservorio sobre la celda y se lo deja fluir a través de ella bajo la acción de la gravedad. El dispositivo cuenta además (como es usual) con un arreglo lineal de inyectores equiespaciados por donde se hace ingresar un fluido coloreado de iguales características (viscosidad, densidad, etc.). El reservorio se mantiene continuamente alimentado con fluido transparente y la visualización comienza haciendo ingresar el trazador al sistema. Para incrementar el contraste de las líneas observadas, se suele emplear un trazador fluorescente y trabajar a oscuras iluminando únicamente el flujo en la celda. Pueden visualizar el video haciendo click sobre la imagen asociada.

Finalmente, les dejo dos videos más: dos visualizaciones experimentales de las líneas de corriente de un flujo potencial bidimensional uniforme que enfrenta (a) un obstáculo cilíndrico y (b) un perfil alar; ambas obtenidas con la celda de Hele-Shaw mostrada en el primer video.

Espero que les sea util.

Hacer click sobre estas imágenes para ver los videos asociados.

Cálculo del potencial complejo

Aquí les dejo un pdf con un poco más de detalle sobre lo que les comenté hoy en la clase de practicas. Describo en este documento cómo calcular la función corriente para un flujo dado, así como el potencial complejo. Encontrarán además dos cosas adicionales respecto de lo visto en clase: (a) la forma de las líneas de corriente para el caso general, y (b) un caso en el cuál se observa en la naturaleza este tipo de flujo.

Este caso es de interés por dos razones. Por un lado, el ejemplo sirve como ilustración del método general para el cálculo del potencial complejo de un flujo singular (i.e., que incluye singularidades). Por el otro, vemos que calculamos, como les comente en clase, el potencial complejo para los dos ‘ladrillos fundamentales’ de los que están constituidos todos los flujos que consideraremos en esta práctica: una fuente isótropa de caudal constante y un vórtice (dos casos límite que surgen de lo visto en clase y de lo expuesto en este documento).

Cualquier flujo que resulte combinación de ellos (p.ej., dipolos) podrá calcularse fácilmente a partir del resultado que vimos en clase (y que les describo en detalle en el documento que les adjunto) dado que las ecuaciones para la función potencial y la función corriente responden al principio de superposición.

Espero que les sirva.

Fuerza de anclaje necesaria para retener un stent en la aorta abdominal humana

Segun les comenté durante la ultima clase practica, un ‘stent’ medico es un dispositivo tubular metalico en forma de malla usualmente flexible, que tiene el proposito de ensanchar y/o mantener abiertos pasajes naturales del cuerpo que han sido ocluidos por alguna condicion medica (ver figuras). La colocacion quirurgica de stents es una practica usual actualmente, por lo que existen stents arteriales, esofageos, biliares y ureterales, entre otros. La mayor parte de los stents son mantenidos en el lugar de colocacion por la presion de expansion que el mismo dispositivo ejerce contra la pared del pasaje donde es instalado. Sin embargo, en los ultimos años se han reportado casos de migracion de stents que debieron luego ser removidos quirurgicamente por presentar riesgos a la salud del paciente.

En este post les propongo calcular la fuerza que el flujo sanguineo ejerce sobre un stent ubicado en la aorta abdominal humana, a fin de explicar la migracion observada en pacientes y estimar la fuerza de anclaje necesaria para evitarla.

El enunciado completo de este problema adicional, asi como una resolucion sugerida, podran encontrarlo en esta notebook de Mathematica (TM) o bien en este documento PDF construido a partir de ella.

Espero que les sea util.

Fuerza sobre una tuberia en codo – Problema 7 de la Guia 3

En la clase practica de mañana (jueves 18) comenzaremos con la Guia 3, que trata de leyes de conservación, integrales primeras de Bernoulli y teorema de momento. A partir de ellas podremos calcular (entre otras cosas) la fuerza que ejerce un fluido en movimiento sobre el conducto que lo rodea o bien sobre un objeto que se interpone en su camino.

Les dejo en este post el link a un video que ilustra la fuerza que realiza un fluido en movimiento sobre una tubería en codo, que corresponde a una realización experimental del problema propuesto en el Problema 7 de la Guia 3. Podrán ver el video siguiendo este link.

Espero que les sirva.

Un comentario sobre balance hidrostático

Les dejo aquí un pdf con un comentario breve acerca de la hidrostática relacionado con algo que mencioné al pasar durante la ultima clase practica y sus consecuencias para la atmósfera terrestre (vinculado con el Problema 7 de la Guia 2). Para ilustrar el comentario, el pdf tiene embebido un video en el que podrán observar la convección térmica generada por el cuerpo humano en el aire a temperatura ambiente, medida por medio de una técnica experimental denominada “schlieren”.

Para poder visualizarlo les recomiendo utilizar Adobe Acrobat Reader. Si no disponen de él, podrán ver el video siguiendo este link.

Espero que les sirva.