Deng, B. (1994). Constructing homoclinic orbits and chaotic attractors. International Journal of Bifurcation and Chaos, 4(04), 823-841. (PDF). Este paper es sobre cómo escribir una ODE que tenga una órbita homoclínica en 3D.
Chaté, H., & Manneville, P. (1996). Phase diagram of the two-dimensional complex Ginzburg-Landau equation. Physica A: Statistical Mechanics and its Applications, 224(1-2), 348-368. (PDF)
Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’networks. nature, 393(6684), 440. (PDF)
Strogatz, S. H. (2001). Exploring complex networks. nature, 410(6825), 268-276. (PDF)
Pokharel, B., Misplon, M. Z., Lynn, W., Duggins, P., Hallman, K., Anderson, D., … & Pattanayak, A. K. (2018). Chaos and dynamical complexity in the quantum to classical transition. Scientific reports, 8(1), 1-10. (PDF).
Jensen, R. V. (1992). Quantum chaos. Nature, 355(6358), 311-318. (PDF)
i Cancho, R. F., & Solé, R. V. (2003). Least effort and the origins of scaling in human language. Proceedings of the National Academy of Sciences, 100(3), 788-791. (PDF)
Nowak, M. A., & Krakauer, D. C. (1999). The evolution of language. Proceedings of the National Academy of Sciences, 96(14), 8028-8033. (PDF)
Nowak, M. A. (2006). Five rules for the evolution of cooperation. science, 314(5805), 1560-1563. (PDF)
Eigen, M., McCaskill, J., & Schuster, P. (1989). The molecular quasi-species. Adv. Chem. Phys, 75, 149-263. (PDF)
Barland, S., Tredicce, J. R., Brambilla, M., Lugiato, L. A., Balle, S., Giudici, M., … & Miller, M. (2002). Cavity solitons as pixels in semiconductor microcavities. Nature, 419(6908), 699-702. (PDF)
Coullet, P., Mahadevan, L., & Riera, C. S. (2005). Hydrodynamical models for the chaotic dripping faucet. Journal of Fluid Mechanics, 526, 1-17. (PDF). Dinámica de la gotita… de la canilla mal cerrada.
Montbrió, E., Pazó, D., & Roxin, A. (2015). Macroscopic description for networks of spiking neurons. Physical Review X, 5(2), 021028. (PDF).
Burke, J., & Knobloch, E. (2006). Localized states in the generalized Swift-Hohenberg equation. Physical Review E, 73(5), 056211. (PDF)
Crawford, J. D., & Knobloch, E. (1991). Symmetry and symmetry-breaking bifurcations in fluid dynamics. Annual Review of Fluid Mechanics, 23(1), 341-387. (PDF)
Bressloff, P. C., Cowan, J. D., Golubitsky, M., Thomas, P. J., & Wiener, M. C. (2002). What geometric visual hallucinations tell us about the visual cortex. Neural computation, 14(3), 473-491. (PDF)
Butler, T. C., Benayoun, M., Wallace, E., van Drongelen, W., Goldenfeld, N., & Cowan, J. (2012). Evolutionary constraints on visual cortex architecture from the dynamics of hallucinations. Proceedings of the National Academy of Sciences, 109(2), 606-609. (PDF)
Golubitsky, M., & Stewart, I. (2015). Recent advances in symmetric and network dynamics. Chaos: An Interdisciplinary Journal of Nonlinear Science, 25(9), 097612. (PDF)
Alon, U. (2007). Network motifs: theory and experimental approaches. Nature Reviews Genetics, 8(6), 450-461. (PDF)
Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D. U. (2006). Complex networks: Structure and dynamics. Physics reports, 424(4-5), 175-308. (PDF)
Boettiger, A., Ermentrout, B., & Oster, G. (2009). The neural origins of shell structure and pattern in aquatic mollusks. Proceedings of the National Academy of Sciences, 106(16), 6837-6842. (PDF)
Zaikin, A. N., & Zhabotinsky, A. M. (1970). Concentration wave propagation in two-dimensional liquid-phase self-oscillating system. Nature, 225(5232), 535-537. (PDF)
Izhikevich, E. M. (2000). Neural excitability, spiking and bursting. International journal of bifurcation and chaos, 10(06), 1171-1266. (PDF)
Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Transactions on neural networks, 14(6), 1569-1572. (PDF)
Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y., & Zhou, C. (2008). Synchronization in complex networks. Physics reports, 469(3), 93-153. (PDF)
Albert, R., & Barabási, A. L. (2002). Statistical mechanics of complex networks. Reviews of modern physics, 74(1), 47. (PDF)
Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. nature, 393(6684), 440. (PDF)
Feigenbaum, M. J. (1978). Quantitative universality for a class of nonlinear transformations. Journal of statistical physics, 19(1), 25-52. (PDF)
Turing, A. M. (1990). The chemical basis of morphogenesis. Bulletin of mathematical biology, 52(1-2), 153-197. (PDF)
Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of physiology, 117(4), 500-544. (PDF)
Ahlers, G. (2006). Experiments with Rayleigh-Bénard convection. In Dynamics of spatio-temporal cellular structures (pp. 67-94). Springer, New York, NY. (PDF)
Bak, P., Tang, C., & Wiesenfeld, K. (1988). Self-organized criticality. Physical review A, 38(1), 364. (PDF)
Ott, E., & Antonsen, T. M. (2008). Low dimensional behavior of large systems of globally coupled oscillators. Chaos: An Interdisciplinary Journal of Nonlinear Science, 18(3), 037113. (PDF)
Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of the atmospheric sciences, 20(2), 130-141. (PDF)
Aubry, N., Holmes, P., Lumley, J. L., & Stone, E. (1988). The dynamics of coherent structures in the wall region of a turbulent boundary layer. Journal of Fluid Mechanics, 192, 115-173. (PDF)
Holmes, P., Full, R. J., Koditschek, D., & Guckenheimer, J. (2006). The dynamics of legged locomotion: Models, analyses, and challenges. SIAM review, 48(2), 207-304. (PDF)
Golubitsky, M., Stewart, I., Buono, P. L., & Collins, J. J. (1999). Symmetry in locomotor central pattern generators and animal gaits. Nature, 401(6754), 693-695. (PDF)
Khalil, A. S., & Collins, J. J. (2010). Synthetic biology: applications come of age. Nature Reviews Genetics, 11(5), 367-379. (PDF)
Kopell, N., Ermentrout, G. B., Whittington, M. A., & Traub, R. D. (2000). Gamma rhythms and beta rhythms have different synchronization properties. Proceedings of the National Academy of Sciences, 97(4), 1867-1872. (PDF)
Dieckmann, U., & Doebeli, M. (1999). On the origin of species by sympatric speciation. Nature, 400(6742), 354-357. (PDF)Ermentrout, G. B., & Kopell, N. (1986). Parabolic bursting in an excitable system coupled with a slow oscillation. SIAM Journal on Applied Mathematics, 46(2), 233-253. (PDF)
Calbet, X., & López-Ruiz, R. (2001). Tendency towards maximum complexity in a nonequilibrium isolated system. Physical Review E, 63(6), 066116. (PDF)
Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D. U. (2006). Complex networks: Structure and dynamics. Physics reports, 424(4-5), 175-308. (PDF)
Bandt, C., & Pompe, B. (2002). Permutation entropy: a natural complexity measure for time series. Physical review letters, 88(17), 174102. (PDF)
De Aguiar, M. A. M., Baranger, M., Baptestini, E. M., Kaufman, L., & Bar-Yam, Y. (2009). Global patterns of speciation and diversity. Nature, 460(7253), 384-387. (PDF)
Amador, A., Perl, Y. S., Mindlin, G. B., & Margoliash, D. (2013). Elemental gesture dynamics are encoded by song premotor cortical neurons. Nature, 495(7439), 59-64. (PDF)
Pathak, J., Wikner, A., Fussell, R., Chandra, S., Hunt, B. R., Girvan, M., & Ott, E. (2018). Hybrid forecasting of chaotic processes: Using machine learning in conjunction with a knowledge-based model. Chaos: An Interdisciplinary Journal of Nonlinear Science, 28(4), 041101. (PDF)
Restrepo, J. G., Ott, E., & Hunt, B. R. (2006). Characterizing the dynamical importance of network nodes and links. Physical review letters, 97(9), 094102. (PDF)
Pathak, J., Hunt, B., Girvan, M., Lu, Z., & Ott, E. (2018). Model-free prediction of large spatiotemporally chaotic systems from data: A reservoir computing approach. Physical review letters, 120(2), 024102. (PDF)
Magnasco, M. O. (1993). Forced thermal ratchets. Physical Review Letters, 71(10), 1477. (PDF)
Tinsley, M. R., Nkomo, S., & Showalter, K. (2012). Chimera and phase-cluster states in populations of coupled chemical oscillators. Nature Physics, 8(9), 662-665. (PDF)
Kinouchi, O., & Copelli, M. (2006). Optimal dynamical range of excitable networks at criticality. Nature physics, 2(5), 348-351. (PDF)
Totz, J. F., Rode, J., Tinsley, M. R., Showalter, K., & Engel, H. (2018). Spiral wave chimera states in large populations of coupled chemical oscillators. Nature Physics, 14(3), 282-285. (PDF)
Ahlers, G., Grossmann, S., & Lohse, D. (2009). Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection. Reviews of modern physics, 81(2), 503. (PDF)
Abarbanel, H. D., Brown, R., Sidorowich, J. J., & Tsimring, L. S. (1993). The analysis of observed chaotic data in physical systems. Reviews of modern physics, 65(4), 1331. (PDF)
Gilmore, R. (1998). Topological analysis of chaotic dynamical systems. Reviews of Modern Physics, 70(4), 1455. (PDF)
Montoya, J. M., Pimm, S. L., & Solé, R. V. (2006). Ecological networks and their fragility. Nature, 442(7100), 259-264. (PDF)
Wang, L. Z., Zhao, Z. D., Jiang, J., Guo, B. H., Wang, X., Huang, Z. G., & Lai, Y. C. (2019). A model for meme popularity growth in social networking systems based on biological principle and human interest dynamics. Chaos: An Interdisciplinary Journal of Nonlinear Science, 29(2), 023136. (PDF)
Lahmiri, S., & Bekiros, S. (2018). Chaos, randomness and multi-fractality in Bitcoin market. Chaos, solitons & fractals, 106, 28-34. (PDF)
Ovchinnikov, I. V. (2012). Topological field theory of dynamical systems. Chaos: An Interdisciplinary Journal of Nonlinear Science, 22(3), 033134. (PDF)
Buescu, J., de Castro, P. M., Dias, A. P., & Labouriau, I. S. (Eds.). (2012). Bifurcation, symmetry and patterns. Birkhäuser. Capitulo “Symmetry breaking and the origin of species” (PDF)
Aubry, N., Holmes, P., Lumley, J. L., & Stone, E. (1988). The dynamics of coherent structures in the wall region of a turbulent boundary layer. Journal of Fluid Mechanics, 192, 115-173. (PDF)
Cross, M., & Greenside, H. (2009). Pattern formation and dynamics in nonequilibrium systems. Cambridge University Press. (PDF)